
Applying Genetic Algorithms to Data Selection for SQL
Mutation Analysis

Ana C.L. Monção
Institute of Informatics

Federal University of Goias
acblmoncao@gmail.com

Celso G. Camilo-Jr
Institute of Informatics

Federal University of Goias
celso@inf.ufg.br

Leonardo T. Queiroz
Institute of Informatics

Federal University of Goias
leonardo.queiroz@gmail.com

Cássio L. Rodrigues
Institute of Informatics

Federal University of Goias
cassio@inf.ufg.br

Plínio de Sá Leitão-Jr
Institute of Informatics

Federal University of Goias
plinio@inf.ufg.br

Auri M.R. Vincenzi
Institute of Informatics

Federal University of Goias
auri@inf.ufg.br

ABSTRACT
This paper presents an approach to Structured Query Lan-
guage (SQL) instruction tests via Mutation Analysis that
uses Evolutionary Algorithms (GA) to select data to be used
in the assessment of mutants. Based on a heuristic perspec-
tive, our aim is to select an effective data set which may
help detect faults in the SQL instructions of a given appli-
cation. The results obtained from experiments reveal a good
performance using GA metaheuristic.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools (e.g., data generators, coverage testing); I.2.8
[Artificial Intelligence]: Problem Solving, Control Meth-
ods, and Search—Heuristic methods

Keywords
Software Testing; Database Application; SQL Mutation Anal-
ysis; Data Selection; Genetic Algorithms.

1. INTRODUCTION
Being, SQL instructions, crucial components in applica-

tions which use relational databases, is important to find a
systematic approach to run tests and ensure the coverage
required to identify most faults. The use of the same pro-
duction environment for testing represents a serious risk to
the applications running. However, there is great difficulty
in finding or generating data to perform the tests with be-
have similar to a production database, as well as a significant
amount of information.

The aim of this work is to select an adequated subset of
tuples, with reduced input domain and reasonable compu-
tational and operational costs, from a real data base to be
used as a test database for SQL instructions tests. Hence,
we intend to apply the principles of Evolutionary Computa-
tion that contribute to the selection of an effective test data
set, and to measure the adequacy of each subset selected,
we make use of the results of SQL Mutation Analysis appli-
cation.

Copyright is held by the author/owner(s).
GECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
ACM 978-1-4503-1964-5/13/07.

2. SQL MUTATION ANALYSIS
Mutation Analysis is a criterion of fault-based testing which

involves inserting small syntactic changes into the code of
testing product P, thus generating its mutants P’. These
mutants are generated from mutation operators that cause
syntactic changes based on the most common mistakes made
by programmers regarding the language of the program un-
der testing [1].

A subsequent analysis verifies whether such changes are
noticeable by test set T, which compares the result from
the original program with that of the mutant. If results are
different, the mutant P’ is said to have been killed by T. The
greater the number of mutants killed, the higher the quality
of T [1]. This is known as score mutation and is calculated
as follows:

ms(P, T) =
DM(P, T)

M(P) − EM(P)

In which: DM(P, T) is the number of mutants killed by test
cases in T ; M(P) is the total number of generated mutants;
EM(P) is the number of mutants equivalent to P.

Tuya et al. [4] proposed a set of SQL operators to generate
mutants that were implemented by SQLMutation tool [3]
used in this work to generate mutants.

3. USING GENETIC ALGORITHMS FOR
DATA SELECTION

Having a PDB (Production Database), we need to select
a minimum subset of tuples to build a Test Database (TDB)
to be used as an input data set to SQL instructions tests.
The selection process resorts to Genetic Algorithms (GA) in
an attempt to find, heuristically, an effective data set that
is capable of detecting the majority of faults in an applica-
tion’s SQL instructions. To use this approach, we choose a
representation model that uses a chromosome implemented
as a vector, in which each position represents a tuple from
one of the PDB tables.

4. EXPERIMENTS AND RESULTS
We created an environment to simulate a real production

database (PDB) based on the model COMPANY proposed
by Elmasri and Navathe’s [2]. We selected the table em-
ployee, loaded with 100.000 tuples, for the creation of in-
structions. A set of 30 SQL instructions was created with

207

various levels of complexity. Mutants were generated for
each instruction through the SQLMutation tool[3].

From these 30 SQL instructions, 3 were selected consider-
ing the highest coverage of mutation operators and complex-
ity. Each one was assessed by Mutation Analysis in order
to calculate the mutation score, having the entire PDB as
input data.

For these, we performed 1.000 random selection experi-
ments with 100 tuples each one (1.000 TDBs) and 10 ran-
dom selection experiments with 10.000 tuples (10 TDBs).

Attempting to find better results (scores) or similar results
with less tuples we performed the first experiments using GA
with the following parameters: 30 generations each one with
100 individuals of 100 genes; 100% of crossover rate with
random cut-off; 3% of mutation rate per gene and elitism of
the two best individuals.

In Table 1 and Figure 1 we may see better results with the
use of GA. For instruction 6 we achieved, more than once,
the same mutation score as one achieved by PDB with only
0,1 % of the amount of data. For instructions number 10
and 11, the results did not reach the mutation score of PDB
but they were much better than randomized experiments.

5. REFERENCES

Table 1: Random and GA results
Random Random GA

SQL PDB (100 tuples) (1000 tuples) (100 tuples)
Best Average Deviation Best Average Deviation Best Average Deviation

6 0,844 0,7778 0,1626 0,0648 0,8000 0,2760 0,1123 0,844 0,5755 0,2035
10 0,928 0,5381 0,0756 0,0523 0,6398 0,2287 0,1200 0,8390 0,7907 0,0440
11 0,939 0,4763 0,0635 0,0430 0,5675 0,1680 0,1097 0,8074 0,7581 0,0357

Figure 1: Scores of random and GA experiments

[1] E. F. Barbosa, J. C. Maldonado, and A. M. R.
Vincenzi. Introduction to software testing.

[2] E. Ramez and S. B. N. Fundamentals of Database
Systems. Pearson, 6 l edition, 2005.

[3] J. Tuya, M. J. Suarez-Cabal, and C. de la Riva.
Sqlmutation: A tool to generate mutants of sql
database queries. Mutation Analysis, Workshop on, 0:1,
2006.

[4] J. Tuya, M. J. Suárez-Cabal, and C. de la Riva.
Mutating database queries. Information and Software
Technology, 49(4):398 – 417, 2007.

208

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20130423183447
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Left
 7.2000
 0.0000

 Both
 AllDoc

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 2
 1
 2

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20130423183447
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Down
 23.8320
 0.0000

 Both
 AllDoc

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 2
 1
 2

 1

 HistoryList_V1
 qi2base

