A Novel Component Identification Approach Using
Evolutionary Programming

Aurora Ramirez, José Raul Romero and Sebastian Ventura

Dept. of Computer Science and Numerical Analysis, University of Cérdoba
Rabanales Campus, 14071 Cérdoba, Spain

{i72raqua, jrromero, sventura}@uco.es

ABSTRACT

Component identification is a critical phase in software ar-
chitecture analysis to prevent later errors and control the
project time and budget. Obtaining the most appropriate
architecture according to predetermined design criteria can
be treated as an optimization problem, especially since the
appearance of the Search Based Software Engineering, and
its combination with bio-inspired metaheuristics. In this
work, an evolutionary programming (EP) algorithm is used
to identify components, based on a novel and comprehensi-
ble representation of software architectures.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures;
1.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search -Heuristic methods

General Terms
Algorithms, Software design

Keywords

Component-based architecture, Search Based Software En-
gineering, Evolutionary Programming

1. INTRODUCTION

Architectural analysis places an important role in current
software developments. It is mainly considered a human-
centered decision process, where the abilities and prior ex-
periences of software engineers have a marked influence on
the end product quality and reusability. Therefore, during
the high level analysis, components identification is a criti-
cal approach for dealing with complex systems [1], allowing
to identify the different system elements, as well as their
functionalities and interactions.

Recently, the appearance of SBSE (Search Based Software
Engineering) [2] brings a new perspective for solving specific
problems in Software Engineering through search and opti-
mization approaches. Focusing on architecture optimiza-
tion [3], aspects like the architecture definition, the quality
attributes to be measured and the global objective (refac-
toring, deployment, etc.) reflects a variety of applications.

Copyright is held by the author/owner(s).
GECCO’13 Companion, July 6-10, 2013, Amsterdam, The Netherlands.
ACM 978-1-4503-1964-5/13/07.

209

In this paper we propose a novel evolutionary program-
ming algorithm for software architecture optimization from
analysis models. In a more precise way, a novel encoding
of component-based software architectures closest to the ex-
pert domain comprehension, a fitness based on design con-
cepts and specific genetic operators are presented.

2. ALGORITHM DESIGN

A component-based architecture can be described as a set
of three elements: components, defined as a cohesive group
of classes working together to satisfy its expected behaviour;
interfaces, identified from relationships between classes be-
longing to different components that exchange services (re-
quired by one and provided by the other); and connectors,
the linkage between a pair of required-provided interfaces.

A representation close to the expert domain has been
selected, resulting in a trade-off between performance and
comprehensibility. The hierarchical composition of these
artefacts allows the translation into a tree structure (see
Figure 1).

: Component_1 =

Architecture

Connectors

[Componentj] [Connector_l]
Required |( Provided

Required |( Provided | (Required | ( Provided | Componentz g
A A Classes

interfaces||interfaces

Class_1_2\(Class_2_1)

_prov_

Class_2.2

interfaceslinterfaces] (interface ] {interface
Figure 1: Genotype and phenotype

Components

Component_1

Class 2.2\ (Class_2.2) (Class 1.2
_req_ _req_ _prov_
Class 1.2) |Class_1.2) |Class 2.2

The initialization process begins with a random distribu-
tion of classes into a random number of components. Then,
candidate interfaces and connectors are identified.

After their creation, individuals must be evaluated. Co-
hesion, the degree to which a component performs a well
defined functionality, and coupling, related to the interde-
pendence between components, are well-known design crite-
ria. The distribution of classes among components is also
important, as architectural solutions tend to look for bal-
anced components in terms of size and inner complexity.
Thus, these concepts are translated into quantifiable mea-
sures used to define the fitness function, f (see Equation 1).



Wel
coh; = '[wa-naer g+
(wa+wd+wac+wg)'(ncl_1) ¢ ¢
+w Nae + W n]—!—w ~Ngr
ac ac g g c2 et 1
c cC
1 2-R-(C—2)! k
cop = B . el ;R:Z Z maxr; ;
i=1 j=i+1
o
cv = —
7
" coh; 8 —
f:wcoh'¥+wcop'(1_Cop)+wm,~( 8011)

(1)

The global cohesion is calculated as the average cohesion
of each component (coh;), reflecting the strength of their
internal structures. It considers a weighted sum of rela-
tionships among classes, based on the number of different
types of UML relationships: associations (wa, na), depen-
dencies (wq, nq), aggregations and compositions (wqe, Nac),
and generalizations (wg, ng). The presence of unconnected
clusters of classes (ng,) is penalized, since it might imply
internal dispersion. n.; is the number of internal classes.

Coupling (cop) concerns the relationships among classes
belonging to different components, based on the number of
combinations of C' components. It varies between 0 (compo-
nents only related through interfaces) and 1 (all components
are mutually connected). R accumulates a penalty rate for
each pair of linked components based on the strongest re-
lationship between them (maxrﬁ ;). Rmax represents the
worst situation, i.e. all components are related with the rest
by means of the strongest relationship.

The coefficient of variation, cv, provides a normalized
measure of the component size dispersion. u and o rep-
resent the mean and standard deviation of the component
internal size, respectively. In opposition to coh, cv and cop
must be minimized, so arithmetical transformations using
its maximum values are realised in order to maximize f.

Finally, each individual in the population is selected to
act as parent, generating a new solution. A probabilistic
roulette with five mutators is applied in order to obtain off-
springs. Each one represents an architectural transforma-
tion: add and remove components, split and merge them or
move classes from one component to another one. The re-
placement strategy establishes a competition between each
parent and its offspring, so only the best individual survives.

3. EXPERIMENTATION

The complete approach has been written in Java using the
Datapro4j library ' and JCLEC framework [4]. To analyse
the performance and accuracy of this proposal, 30 execu-
tions were performed over three diverse problems, i.e. archi-
tectural specifications. In absence of other proposals to com-
pare with, a random search (RS) has been also performed.
Table 1 shows the average of fitness values of the best so-
lutions found. The parameter configuration used was: 100
individuals as population, 100 generations, 2-8 components,
Weoh = 0.3, Weoupt = 0.4 and we, = 0.3.

In general terms, the EP algorithm obtains better solu-
tions in all problem instances. Special attention must be

Yhttp:/ /www.uco.es/grupos,/kdis/dataprod]

210

placed in the first instance, where all solutions obtained
achieve the minimum value for the coupling measure. Even
when RS is able to find a set of components with similar
sizes, the rest of measures are significantly worse. As for the
EP approach, a more appropriate trade-off between size dis-
persion and the rest of measures has been achieved, which
mainly benefits the cohesion. Finally, the EP algorithm is
able to evolve and keep architectures with different number
of components and connectors during the search.

Table 1: Results for EP and RS algorithms

NekoHTML | AquaLush | Datapro4;j

Fitness 0.7216 0.6483 0.4690

EP Cohesion 0.1762 0.1430 0.0586
Coupling 0.0000 0.1411 0.5162

CV 0.8333 1.0175 1.1218
Fitness 0.6198 0.4640 0.3316

RS Cohesion -0.0390 -0.2510 0.0541
Coupling 0.1420 0.3694 0.9522
(GAY 0.3129 0.3460 0.1008

The Wilcoxon signed-rank statistical test has demonstrated
that the EP algorithm performs significantly better than RS
with 90% confidence.

4. CONCLUSIONS

This paper presents a novel approach for the identification
of component-based architectures from analysis models. The
proposed encoding uses trees structures, similar to the one
used by the underlying specification models, which brings
the approach closer to the software architect. Specific ge-
netic operators simulating architectural transformations and
a fitness function inspired in cohesion and coupling concepts
conform the core of the evolutionary search.

Experimentation has shown very promising results in terms
of cohesion and coupling. Furthermore, our approach can
generate and evolve individuals with different number and
configurations of components and connectors, showing a flex-
ible handling of software architectures.

Acknowledgments

Work supported by the Ministry of Science and Technology,
project TIN2011-22408, and FEDER, funds.

5. REFERENCES

[1] C. Szyperski, Component Software: Beyond
Object-Oriented Programming. Boston, USA:
Addison-Wesley Longman Publ. Co., 2nd ed., 2002.
M. Harman, S. A. Mansouri, and Y. Zhang, “Search
Based Software Engineering: Trends, Techniques and
Applications,” ACM Comput. Surv., vol. 45, no. 1,

pp. 11:1-61, 2012.

A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and

I. Meedeniya, “Software architecture optimization
methods: A systematic literature review,” IEEE Trans.
on Software Engineering, no. 99, pp. 1-26, 2012.

S. Ventura, C. Romero, A. Zafra, J. A. Delgado, and
C. Hervas, “JCLEC: a java framework for evolutionary
computation,” Soft Comput., vol. 12, no. 4,

pp. 381-392, 2007.

2]





