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ABSTRACT
We consider noisy optimization problems, without the as-
sumption of variance vanishing in the neighborhood of the
optimum. We show mathematically that evolutionary algo-
rithms with simple rules and with exponential number of
resamplings lead to a log-log convergence rate (log of the
distance to the optimum linear in the log of the number of
resamplings), as well as with number of resamplings poly-
nomial in the inverse step-size.

Categories and Subject Descriptors
G.1.6 [Optimization]: Unconstrained optimization

General Terms
Theory
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1. THEORETICAL ANALYSIS: EXPO-
NENTIAL NON-ADAPTIVE RULES
CAN LEAD TO LOG/LOG CONVER-
GENCE.

Scale-invaraint noisy optimization theorem: As-
sume that without resampling (rn = 1 in Alg. 1), for
any δ > 0, for some α > 0, α′ > 0, with probabil-
ity 1 − δ/2, with objective function fitness(x) = ||x||,
∃C,C′; C′ exp(−α′n) ≤ ||xn|| ≤ C exp(−αn). Assume,
additionally, that there is scale invariance: σn = C′′||xn||
for some C′′ > 0. Then, for any δ > 0, there is K0 > 0, ζ0 >
0 such that for K ≥ K0, ζ > ζ0, then the convergence above
also holds with probability at least 1− δ for fitness function
f(z) = ||z||p +N and resampling rule as in Alg. 1.

Remarks: Our theorem shows that if a scale invariant
algorithm converges in the noise-free case, then it also con-
verges in the noisy case with the exponential resampling
rule, at least if parameters are large enough. We show a log-
linear convergence rate as in the noise-free case, but at the
cost of more evaluations per iteration. When normalized by
the number of function evaluations, we get log(||xn||) linear
in the logarithm of the number of function evaluations, as
detailed in Corollary 1. This is a log-log convergence when
the results is properly normalized by the number of evalua-
tions.
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Algorithm 1 An evolution strategy, with exponential num-
ber of resamplings. If we consider K = 1 and ζ = 1 we ob-
tain the case without resampling. N is an arbitrary random
variable with bounded density (each use is independent of
others).

Parameters: K > 0,ζ ≥ 0, λ ≥ µ > 0, a dimension d > 0.
Input: an initial x1 ∈ Rd and an initial σ0 > 0.
n← 1
while (true) do

Generate λ individuals i1, . . . , iλ independently using ij = xn+
σn,jN .
Evaluate each of them rn = dKζne times and average their
fitness values.
Select the µ best individuals j1, . . . , jµ.
Update: from x, σn, i1, . . . , iλ and j1, . . . , jµ, compute xn+1

and σn+1.
n← n+ 1

end while

We have shown this property for an exponentially increas-
ing number of resamplings, which is indeed similar to R-
EDA[5], which converges with a small number of iterations
but with exponentially many resamplings per iteration. Our
experiments suggest that this also holds in the polynomial
case.

In the corollary below, we get rid of the scale invariance
and we extend to adaptive rules. In one corollary, we switch
to both (i) adaptive resampling rule and (ii) no scale invari-
ance; each change can indeed be proved independently of
the other.

Algorithm 2 An evolution strategy, with number of resam-
plings polynomial in the step-size. The case without resam-
pling means Y = 1 and η = 0. N is an arbitrary random
variable with bounded density (each use is independent of
others).

Parameters: Y > 0,η ≥ 0, λ ≥ µ > 0, a dimension d > 0.
Input: an initial x1 ∈ Rd and an initial σ0 > 0.
n← 1
while (true) do

Generate λ individuals i1, . . . , iλ independently using ij = xn+
σn,jN .
Evaluate each of them r = dY σn−ηe times and average their
fitness values.
Select the µ best individuals j1, . . . , jµ.
Update: from x, σn, i1, . . . , iλ and j1, . . . , jµ, compute xn+1

and σn+1.
n← n+ 1

end while

Corollary: adaptive resampling and no scale-
invariance. Assume that, in the noise free case, for any
δ > 0, there are constants ρ > 0, V > 0, ρ′ > 0, V ′ > 0 such
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p = 1 p = 2 p = 4
d ζ K Slope

2

1
1 -0.21
2 -0.21

2
1 -0.33
2 -0.39

3
1 -0.60
2 -0.53

3

1
1 -0.38
2 -0.45

2
1 -0.50
2 -0.55

3
1 -0.49
2 -0.56

4

1
1 -0.40
2 -0.46

2
1 -0.54
2 -0.57

3
1 -0.58
2 -0.49

5

1
1 -0.41
2 -0.44

2
1 -0.56
2 -0.58

3
1 -0.64
2 -0.58

d ζ K Slope

2

1
1 -0.11
2 -0.08

2
1 -0.14
2 -0.19

3
1 -0.24
2 -0.26

3

1
1 -0.25
2 -0.27

2
1 -0.28
2 -0.29

3
1 -0.35
2 -0.36

4

1
1 -0.20
2 -0.25

2
1 -0.30
2 -0.26

2
1 -0.32
2 -0.35

5

1
1 -0.18
2 -0.18

2
1 -0.24
2 -0.22

3
1 -0.32
2 -0.35

d ζ K Slope

2

1
1 -0.07
2 -0.03

2
1 -0.10
2 -0.09

3
1 -0.11
2 -0.17

3

1
1 -0.09
2 -0.14

2
1 -0.14
2 -0.14

3
1 -0.13
2 -0.15

4

1
1 -0.09
2 -0.09

2
1 -0.10
2 -0.11

3
1 -0.20
2 -0.18

5

1
1 -0.05
2 -0.06

2
1 -0.07
2 -0.09

3
1 -0.10
2 -0.12

Table 1: Estimated slope with rn = dKnζe resam-
plings at iteration n, for dimension 2, 3, 4, 5. Slopes
are estimated on the second half of the curve.

that with probability at least 1 − δ, ∀n ≥ 1, V ′ exp(−ρ′n) ≤
σn ≤ V exp(−ρn). Then the theorem still holds in the noisy

case when the number of revaluations is Y
(

1
σn

)η
for Y and

η sufficiently large. Individuals are still randomly drawn us-
ing xn + σnN for some random variable N with bounded
density.

Remark: The last remark is here for cases like self-
adaptive algorithms, in which we do not use directly a Gaus-
sian random variable, but a Gaussian random variable mul-
tiplied e.g. by exp( 1√

d
)Gaussian, with Gaussian a standard

Gaussian random variable. For example, SA-ES algorithms
as in [1] are included in this proof because they converge
log-linearly.This is a log-log convergence when the results is
properly normalized by the number of evaluations.

Experiments are performed in a real setting, without scale
invariance. These experiments consider a polynomial num-
ber of resamplings (see legend) rather than an exponential
one or an adaptive rule depending on σ. Table 1 show the
estimated slopes with p = 1, 2, 4 and d = 2, 3, 4, 5. In this ta-
ble, µ = min(d, dλ/4e), λ = dd

√
de. This is consistent with

[2, 4]. We get larger slopes (faster convergence; maybe just
non-asymptotically) than − 1

2p
, with ζ = 2 or ζ = 3. ζ = 0

performs very poorly. R-EDA[5] reaches − 1
2p

; we seemingly
get slightly better but this might be due to a non-asymptotic
effect.

2. CONCLUSION
We have shown mathematically some log-log convergence

(see Section 2.1) and studied experimentally the slope in this
log-log convergence (see Section 2.2). Section 2.3 gives some
research directions.

2.1 Log-log convergence
We have shown that the log-log convergence (i.e. linear

convergence with x-axis the log of the number of evaluations
and y-axis the log of the distance to the optimum) occurs in

various cases:
• non-adaptive rules, with number of resamplings exponen-
tial in the iteration counter (mathematical proof); as shown
by Corollary 2, this can be extended to non scale-invariant
algorithms;
• adaptive rules, with number of resamplings polynomial
in 1/σn with σn the step-size (mathematical proof; how-
ever, there is a strong sensitivity to constants Y and η with

Y
(

1
σn

)η
resamplings per individual);

• non-adaptive rule, with polynomial number of resam-
plings; whereas this case is a quite convenient scheme ex-
perimentally, we have no proof in this case.

2.2 Slope in log-log convergence
Experimentally, the best slope in the log-log representa-

tion is often close to − 1
2p

for fitness function ||x||p +N . It

is known that under modeling assumptions (i.e. the func-
tion is regular enough for being optimized by learning), it is
possible to do better than that (the slope becomes −1/2 for
infinitely differentiable cases, see [3] and references therein);
under locality assumptions (if it is assumed that sampling
far from the optimum can not bring additional information)
there are still gaps between the upper and lower bounds,
and the rates (the constants in the slope) of evolution strate-
gies are not yet known, so we can only see experimentally
a nearly good (not perfect) accordance with the − 1

2p
model

(for fitness(x) = ||x||p+N ) and an accordance with the − 1
p

bound (slopes are always at best − 1
p

at least for large num-

bers of evaluations). The most stable results (linear slope
on the log-log scale quickly visible) come from simple non-
adaptive rules, e.g. number of revaluations per individual
quadratic in the number of iterations.

2.3 Further work
The main further work is the mathematical analysis of

the polynomial number of resamplings in the non-adaptive
case. Also, a combination of adaptive and non-adaptive rules
might be interesting; adaptive rules are intuitively satisfac-
tory, but non-adaptive polynomial rules provide simple ef-
ficient solutions, with empirically easy (no tuning) results.
If our life depended on a scheme, we would for the moment
choose a simple polynomial rule with a number of revalu-
ations quadratic in the number of evaluations, in spite of
(maybe) moderate elegance due to lack of adaptivity.
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