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Instructor
• Leader:  AnyScale Learning For All Group, MIT CSAIL
• Focus on solving real world, complex problems requiring 

machine learning where large scale evolutionary computation is 
a core capability

• Applications include
– Circuits, network coding
– Sparse matrix data mapping on parallel architectures
– Finance
– Flavor design
– Wind energy

» Turbine layout
» Resource assessment

– ICU clinical data mining
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Tutorial Goals

• Introduction to GP algorithm, given some knowledge 
of genetic algorithms or evolutionary strategies

• Become familiar with GP design properties and 
recognize them

• Teach it in an undergrad lecture
• Try it “out of the box” - with software libraries of 

others
• Groundwork for advanced topics

– Theory
– Specialized workshops – Symbolic Regression, bloat, etc
– GP Track talks at GECCO, Proceedings of EuroGP, Genetic 

Programming and Evolvable Machines

3

Agenda
Context: Evolutionary Computation and Evolutionary 

Algorithms
1. GP is the genetic evolution of executable

expressions
2. Nuts and Bolts Descriptions of Algorithm 

Components
3. Resources and reference material 
4. Examples
5. Deeper discussion (time permitting)

Agenda
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Agenda
Context: Evolutionary Computation and Evolutionary 

Algorithms

Agenda
5

Neo-Darwinian Evolution

Evolutionary Computation and Evolutionary Algorithms

• Survival and thriving in the environment
• Offspring quantity - based on survival of the fittest
• Offspring variation: genetic crossover and mutation
• Population-based adaptation over generations

6

Problem Domains where EAs are Used

Evolutionary Computation and Evolutionary 
Algorithms

• Where there is need for complex solutions 
– evolution is a process that gives rise to complexity
– a continually evolving, adapting process, potentially with 

changing environment from which emerges modularity, 
hierarchy, complex behavior and complex system 
relationships 

• Combinatorial optimization
– NP-complete and/or poorly scaling solutions via LP or 

convex optimization
– unyielding to approximations (SQP, GEO-P)
– eg. TSP, graph coloring, bin-packing, flows
– for: logistics, planning, scheduling, networks, bio gene 

knockouts
– Typified by discrete variables  
– Solved by Genetic Algorithm (GA) 

7

Problem Domains where EAs are Used

Evolutionary Computation and Evolutionary 
Algorithms

• Continuous Optimization
– non-differentiable, discontinuous, multi-modal, large scale 

objective functions
– applications: engineering, mechanical, material, physics
– Typified by continuous variables
– Solved by Evolutionary Strategy (ES)

• Program Search 
– system identification aka symbolic regression

» chemical processes, financial strategies
– design: creative blueprints, generative designs - antennae, 

Genr8, chairs, lens
– automatic programming:  compiler heuristics
– AI ODEs, invariants, knowledge discovery
– Solved by Genetic Programming (GP)
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Key EA Data Structures

Evolutionary Computation and Evolutionary 
Algorithms

POPULATION
array of struct ind with 
fields genome, 
phenotype fitness
random initialization

GENOTYPE is an array of gene(s)
GENOTYPE is input parameter to 
decoder procedure that returns 
PHENOTYPE
PHENOTYPE is input parameter 
to fitness-evaluation routine that 
returns a numeric variable called 
FITNESS

decoder

fitness

genes
GENOtypE

phenotypeFitness
Function

Genotype-Phenotype Mapping

Ind
• genotype
•phenotype
• fitness

Ind
• genotype
•phenotype
• fitness

Ind
• genotype
•phenotype
• fitness

Population

9

EA Generation Loop

Evolutionary Computation and Evolutionary 
Algorithms

Each generation

select

breed

replace

population = random_pop_init()
generation = 0
while needToStop == false

generation++
phenotypes =decoder(genotypes)
calculateFitness(phenotypes)
parents = select (phenotypes)
offspring = breed(parents.genotypes)
population = replace(parents, offspring)
solution = bestOf(population)
recheck(needToStop)

10

EA Selection 

Evolutionary Computation and Evolutionary Algorithms

fittest program

least fit program

*We give the algorithm a “seed” for its RNG.

Principles:
• everyone has non-zero probability of 
being an ancestor 
• individual fitness relative to 
population mean fitness or rank of 
fitness is important
• Sometimes the best of a population is 
always bred directly into next generation: 
“elitism”

Some standard methods:
•Roulette wheel
•Tournament Selection

• n tournments of size k

11

EA Tournament Selection 

winner

player 1

player 2

player 3

player 4

4 player tournament

Evolutionary Computation and Evolutionary Algorithms
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EA Breeding
Replication of parent [inheritance]

mutation - [imperfect copy]

crossover - [sexual recombination]

genes
GENOME

Perfect Copy of GENOME

genes
GENOME

A B 0 A B 0
Parent offspring

2 parent crossover

A 0
Child 1

D 00
child 2

C 1B 1 1

A B 0 C 1

parent 1 parent 2

1 1 D 00

1 0 A B 5 3

Choose crossover points and apply mutation randomly 
Use a random number generator 

Evolutionary Computation and Evolutionary Algorithms
13

EA Replacement
Deterministic 
• use best of parents and offspring to replace parents
• replace parents with offspring

Stochastic 
• some sort of tournament or fitness proportional choice
• run a tournament with old pop and offspring
• run a tournament with parents and offspring

Evolutionary Computation and Evolutionary Algorithms
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EA Pseudocode
population.genotypes = random_pop_init()
population.phenotypes =decoder(population.genotypes)
population.fitness= calculate_fitness(population.phenotypes)

•generation = 0
•while needToStop == false

generation++
parents.genotypes = select (population.fitness)
offspring.genotypes = crossover_mutation(parents.genotypes)
offspring.phenotypes =decoder(offspring.genotypes)
offspring.fitness= calculate_fitness(offspring.phenotypes)
population = replace(parents.fitness, offspring.fitness)
refresh(needToStop)

solution = bestOf(population)

generations

select

breed

replace

birth
development

fitness for breeding

development
fitness for breeding

Evolutionary Computation and Evolutionary Algorithms
15

EA Individual Examples

Evolutionary Computation and Evolutionary 
Algorithms

Problem Gene Genome Phenotype
Fitness

Function

TSP 110 sequence of cities tour tour length

Function
optimization 3.21

variables x  of 
function

f(x) |min-f(x)|

graph
k-coloring

permutation
element

sequence for greedy 
coloring

coloring # of uncolored nodes

investment
strategy

rule agent rule set trading strategy portfolio change
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Agenda – section review
Context: Evolutionary Computation and Evolutionary 

Algorithms
– Shown problem domains where EAs are used
– EA  Data Structure: Individual 
– EA Loop

» Evolutionary computation which is agnostic of representation
» Selection
» Replication
» Inheritance and Variation -> crossover and mutation

– Examples of genotypes and phenotypes

Agenda
17

Agenda
Context: Evolutionary Computation and Evolutionary 

Algorithms
1. GP is the genetic evolution of executable

expressions
2. Nuts and Bolts Descriptions of Algorithm 

Components
3. Examples
4. Resources and reference material 
5. Deeper issues (time permitting)

Agenda
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Agenda
Context: Evolutionary Computation and Evolutionary 

Algorithms
1. GP is the genetic evolution of executable

expressions

Agenda
19

EA Individual Examples

Evolutionary Computation and Evolutionary 
Algorithms

Problem Gene Genome Phenotype
Fitness

Function

TSP 110 sequence of cities tour tour length

Function
optimization 3.21

variables x  of 
function

f(x) |min-f(x)|

graph
k-coloring

permutation
element

sequence for greedy 
coloring

coloring # of uncolored nodes

investment
strategy

rule agent rule set trading strategy portfolio change
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Koza’s Executable Expressions
Pioneered circa 1988
• Lisp S-Expressions 

– Composed of 
primitives called 
‘functions’ and 
‘terminals’

Example: 
• primitives: + - * div 

a b c d 4
• (*(- (+ 4 c) b) (div d a))
In a Lisp interpreter:
1. bind a b c and d
2. Evaluate 

expressions

% Lisp interpreter
(set! a 2) -> 2
(set! b 4) -> 4
(set! c 6) -> 6
(set! d 8) -> 8
(*(- (+ 4 c) b) (div d a)) -> 12
; Rule Example
(if (= a b) c d) -> 8
;Predicate:
(> c d) -> nil

GP Evolves Executable Expressions
21

More Lisp details
A Lisp GP system is a large set of functions which are 

interpreted by evaluating the entry function
– Some are definitions of primitives you write!

» (defun protectedDivide …)
– Rest is software logic for evolutionary algorithms

Any GP system has a set of functions that are pre-
defined (by compilation or interpretation) for use 
as primitives
also has software logic that handles 
– Population initialization, iteration, selection, breeding, 

replacement
GP expressions are first class objects in LISP so the 

GP software logic can manipulate them as data as 
well as have the interpreter read and evaluate them

GP Evolves Executable Expressions

22

Functions Used in GP Expressions
Predicate
• > < == <>
• (isBlue <arg>)
Other functions
• (addOne <arg>)
• (Max <list>), Max(x,y)
• (Mean<list>), Mean(x,y)
See Eureqa user guide for 
other examples 

– http://creativemachines.cornell.edu/sites/
default/files/Eureqa_User_Guide.pdf

GP Evolves Executable Expressions

Arithmetic
• +, - , div, mult

– Division must be protected
– Return 1 if divisor = 0

• Transcendental: log, exp, 
• Trigonometric: cos, sine, 
Boolean
• AND NOT OR NAND
Logical
• (IF <pred> <True> <False>)
Iteration
• (OVER <list> <function>)

23

Details When Using Executable Expressions
• Sufficiency

– Make sure a solution can be plausibly expressed when 
choosing your primitive set

» Functions must be wisely chosen but not too complex
» General primitives: arithmetic, boolean, condition, iteration, 

assignment
» Problem specific primitives

– Can you handcode a naïve solution?
– Balance flexibility with search space size

• Closure
– Design functions with wrappers that accept any type of 

argument
– Often types will  semantically clash…have a default way of 

dealing with this
• The value of typing

– Strongly typed GP only evolves expressions within type rules
– Trades off semantic structure with flexible search

GP Evolves Executable Expressions
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Abstract Syntax Trees
Motivation: GP needs to be able to crossover and 
mutate executable expressions, how?

– 3+2 
– (+ 2 3)  ; same as above, different syntax
– (3 2 +) ; same too

• Expressions can be represented universally by an 
abstract syntax via a tree
– Tree traversal is syntax and control flow

GP Evolves Executable Expressions
25

Abstract Syntax Trees

GP Evolves Executable Expressions

• Whether parsed preorder (node, left-child, right-child) or
postorder (left-child, right-child, node) or inorder (left, node, right)
the expression evaluates to the same result

Inorder: 2+3

preorder: + 2 3

Post-order: 2 3 + Inorder: (2-3) + (a max best)

preorder: (+ (-2 3) (max a best))

Post-order: (2 3 -) (a best max) +)

+

2 3

+

- max

2 3 a best

•(tree)GP uses an expression tree as its genotype structure

26

Agenda Review
Context: Evolutionary Computation and Evolutionary 

Algorithms
1. GP is the genetic evolution of executable

expressions
– Lisp S-expressions
– Functions and terminals
– Closure and sufficiency
– abstract syntax trees 

Agenda
27

Agenda
Context: Evolutionary Computation and Evolutionary 

Algorithms
1. GP is the genetic evolution of executable

expressions
2. Nuts and Bolts Descriptions of Algorithm 

Components

Agenda
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Population Initialization
• Fill population with random expressions

– Create a function set  and a corresponding function-count set
– Create an terminal set (arg-count = 0), 
– draw from F with replacement and recursively enumerate its 

argument list by additional draws from  U .
– Recursion ends at draw of a terminal
– requires closure and/or typing

• maximum tree height parameter
– At max-height-1, draw from only

• “ramped half-half” method ensures diversity
– equal quantities of trees of each height
– half of height’s trees are full

» For full tree, only draw from terminals at max-height-1

Nuts and Bolts GP Design
29

Determining a Expression’s Fitness
• One test case:

– Execute the expression with the problem decision variables (ie
terminals) bound to some test value and with side effect values 
initialized

– Designate the “result” of the expression
• Measure the error between the correct output values for the 

inputs and the result of the expression 
– Final output may be side effect variables, or return value of 

expression
– Eg. Examine expression result and expected result for regression
– Eg. the heuristic in a compilation, run the binary with different 

inputs and measure how fast they ran.
– EG, Configure a circuit from the genome, test the circuit with an 

input signal and measure response vs desired response 
• Usually have more than one test case but cannot enumerate 

them all
– Use rational design to create incrementally more difficult test cases 

(eg block stacking)
– Use balanced data for regression

Nuts and Bolts GP Design

30

Things to Ensure to Evolve Programs
• Programs of varying length and structure 

must compose the search space
• Closure
• Crossover of the genotype must preserve 

syntactic correctness so the program can 
be directly executed

Nuts and Bolts GP Design
31

if

S

t2

Tnot

sumsum

>

t1 t5

Parent 2

if
G

av
<

t2

Rand

t1

sumsum

>

t1 t5

Child 1

t3
=

max

t4

if

S Tnot

Child 2

if

G

av
<

t2 t3
=

max

t4

and

t1

Parent 1

R

GP Tree Crossover

Nuts and Bolts GP Design
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Tree Crossover Details
• Crossover point in each 

parent is picked at random
• Conventional practices

– All nodes with equal 
probability

– leaf nodes chosen with 0.1 
probility and non-leaf with 
0.9 probability

• Probability of crossover
– Typically 0.9

• Maximum depth of child is a 
run parameter
– Typically ~ 15
– Can be size instead

• Two identical parents rarely 
produce offspring that are 
identical to them

• Tree-crossover produces 
great variations in offspring 
with respect to parents

• Crossover, in addition to 
preserving syntax, allows 
expressions to vary in 
length and structure (sub-
expression nesting)

Nuts and Bolts GP Design
33

GP Tree Mutation
• Often only crossover is used
• But crossover behaves often like macro-mutation
• Mutation can be better tuned to control the size of 

the change
• A few different versions

Nuts and Bolts GP Design

34

if

G

av
<

t2 t3
=

max

t4

and

t1

Parent

R
if

G

av
<

t2 t1
=

max

t4

and

t1

Mutant-subst

R

if

G

av
<

t2 t3
=

t4

and

t1

Mutant-deletion
R

if

G

av
<

t2

t3

=
max

t4

and

t1

Mutant-addition
R

max

HVL-Mutation: substitution, deletion, insertion

Nuts and Bolts GP Design
35

Other Sorts of Tree Mutation
• Koza:

– Randomly remove a sub-tree and replace it
– Permute: mix up order of args to operator 
– Edit: + 1 3 -> 4, and(t t) -> t
– Encapsulate: name a sub-tree, make it one node and allow 

re-use by others (protection from crossover)
» Developed into advanced GP concept known as 

 Automatic module definition
 Automatically defined functions (ADFs)

• Make your own
– Could even be problem dependent (what does a subtree 

do? Change according to its behavior)

Nuts and Bolts GP Design
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Selection in GP

• Proceeds in same manner as evolutionary algorithm
– Same set of methods
– Conventionally use tournament selection
– Also see fitness proportional selection
– Cartesian genetic programming:

» One parent: generate 5 children by mutation
» Keep best of parents and children and repeat

 If parent fitness = child fitness, keep child

37

Top Level GP Algorithm

Nuts and Bolts GP Design - Summary

Begin
pop = random programs from a   set of operators and operands
repeat

execute each program in pop with each set of inputs
measure each program’s fitness
repeat

select 2 parents
copy 2 offspring from parents

crossover
mutate

add to new-pop
until pop-size

pop = new-pop
until max-generation 

or
adequate program found

End

Grow or Full

•Tournament selection
•Fitness proportional selection
•Your favorite selection

Ramped-half-half

Prepare input data
Designate solution
Define error between actual
and expected

Sub-tree crossover•HVL-mutate
•Subtree subst
•Permute
•Edit
•Your own

Max-init-tree-height

Prob to crossover

Max-tree-height

Mutation probs

Tournament size

Leaf:node bias

38

GP Preparatory Steps
1. Decide upon functions and terminals

– Terminals bind to decision variables in problem
– Defines the search space

2. Set up the fitness function
– Translation of problem goal to GP goal
– Minimization of error between desired and evolved
– Maximization of a problem based score

3. Decide upon run parameters
– Population size is most important

» Budget driven or resource driven
– GP is robust to many other parameter choices

4. Determine a halt criteria and result to be returned
– Maximum number of fitness evaluations
– Time
– Minimum acceptable error
– Good enough solution (satisficing)

Nuts and Bolts GP Design
39

GP Parameters
• Population size
• Number of generations
• Max-height of trees on 

random initialization
– Typically 6

• Probability of crossover
– Higher than mutation
– 0.9 
– Rest of offspring are copied

• Probability of mutation
– Probabilities of addition, 

deletion and insertion

• Population initialization 
method
– Ramped-half-half
– All full
– All non-full

• Selection method
– Elitism?

• Termination criteria
• Fitness function 
• what is used as “solution”

of expression

Nuts and Bolts GP Design
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Run Level GP Flowchart

Nuts and Bolts GP Design
From http://www.genetic-programming.com/gpflowchart.html

41

Agenda Checkpoint
Nuts and Bolts GP Design
• How we create random GP expressions
• How we create a diverse population of expressions
• A general procedure for fitness function design
• How we mutate and crossover expressions
• Selection
• Put it together: one algorithm, at run level

Agenda

42

Agenda
Context: Evolutionary Computation and Evolutionary 

Algorithms
1. GP is the genetic evolution of executable

expressions
2. Nuts and Bolts Descriptions of Algorithm 

Components
3. Resources and reference material 

Agenda
43

Reference Material
Where to identify conference and journal material
• Genetic Programming Bibiliography

– http://www.cs.bham.ac.uk/~wbl/biblio/
Online Material
• ACM digital library: http://portal.acm.org/ 

– GECCO conferences, 
– GP conferences (pre GECCO), 
– Evolutionary Computation Journal (MIT Press)

• IEEE digital library: 
http://www.computer.org/portal/web/csdl/home 
– Congress on Evolutionary Computation (CEC)
– IEEE Transactions on Evolutionary Computation

• Springer digital library: http://www.springerlink.com/
– European Conference on Genetic Programming: “EuroGP”

257



44

GP Software
Commonly used in published research (and somewhat 
active):
• Java: ECJ, TinyGP, 
• Matlab: GPLab, GPTips
• C/C++: MicroGP
• Python: DEAP, PyEvolve
• .Net: Aforge.NET
Others
• http://www.epochx.org/index.php

Strongly typed GP, Grammatical evolution, etc
Lawrence Beadle and Colin G Johnson 

• http://www.tc33.org/genetic-programming/genetic-
programming-software-comparison/
– Dated Feb 15, 2011

45

Genetic Programming Benchmarks

Genetic programming needs better benchmarks
– James McDermott, David R. White, Sean Luke, Luca Manzoni, Mauro 

Castelli, Leonardo Vanneschi, Wojciech Ja ́skowski, Krzysztof Krawiec, 
Robin Harper, Kenneth De Jong, and Una-May O’Reilly.

– In Proceedings of GECCO 2012, Philadelphia, 2012. ACM. 

• Related benchmarks wiki
– http://GPBenchmarks.org

46

Software Packages for Symbolic Regression

No Source code available
• Datamodeler - mathematica, Evolved Analytics
• Eureqa II  - a software tool for detecting equations 

and hidden mathematical relationships in data
– http://creativemachines.cornell.edu/eureqa
– Plugins to Matlab, mathematica, Python
– Convenient format for data presentation
– Standalone or grid resource usage
– Windows, Linux or Mac
– http://www.nutonian.com/ for cloud version

• Discipulus™ 5 Genetic Programming Predictive
Modelling

47

Reference Material - Books
• Genetic Programming, James McDermott and Una-May O'Reilly, In the 

Handbook of Computational Intelligence (forthcoming), Topic Editors: Dr. 
F. Neumann and Dr. K Witt, Editors in Chief Prof. Janusz Kacprzyk and 
Prof. Witold Pedrycz.

• Essentials of Metaheuristics, Sean Luke, 2010
• Genetic Programming: From Theory to Practice

– 10 years of workshop proceedings, on SpringerLink, edited
• A Field Guide to Genetic Programming, Poli, Langdon, McPhee, 2008, Lulu 

and online digitally
• Advances in Genetic Programming

– 3 years, each in different volume, edited
• John R. Koza

– Genetic Programming: On the Programming of Computers by Means of Natural Selection, 1992 (MIT 
Press)

– Genetic Programming II: Automatic Discovery of Reusable Programs, 1994 (MIT Press)
– Genetic Programming III: Darwinian Invention and Problem Solving, 1999 with Forrest H Bennett III, 

David Andre, and Martin A. Keane, (Morgan Kaufmann)
– Genetic Programming IV: Routine Human-Competitive Machine Intelligence, 2003 with Martin A. 

Keane, Matthew J. Streeter, William Mydlowec, Jessen Yu, and Guido Lanza
• Linear genetic programming, Markus Brameier, Wolfgang Banzhaf, 

Springer (2007)
• Genetic Programming: An Introduction, Banzhaf, Nordin, Keller, Francone, 

1997 (Morgan Kaufmann)
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Specific References in Tutorial
Classic Books 
• Adaptation in Natural and Artificial Systems, John H Holland, (1992), MIT 

Press.
• Evolutionsstrategie, Ingo Rechenberg, (1994), Frommann-Holzboog.
• Artificial Intelligence through Simulated Evolution, L.J. Fogel, A.J. Owens, 

and M.J. Walsh (1966), John Wiley, NY.
Academic Papers
• On the Search Properties of Different Crossover Operators in Genetic 

Programming, Riccardo Poli and William B. Langdon, Genetic 
Programming 1998: Proceedings of the Third Annual Conference, pp. 293-
301, Morgan Kaufmann, 22-25 July 1998.

• Where does the Good Stuff Go and Why? Goldberg and O’Reilly, 
Proceedings of the First European Workshop on Genetic Programming, 
LNCS, Vol. 1391, pp. 16-36, Springer-Verlag, 14-15 April 1998.

• Cartesian genetic programming, GECCO-2008 tutorials, pp. 2701-2726, 
ACM, 12-16 July 2008.
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Agenda
Context: Evolutionary Computation and Evolutionary 

Algorithms
1. GP is the genetic evolution of executable

expressions
2. Nuts and Bolts Descriptions of Algorithm 

Components
3. Resources and reference material 
4. Examples

Agenda
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Simple Symbolic Regression
• Given a set of independent 

decision variables and 
corresponding values for a 
dependent variable

• Want: a model that predicts the 
dependent variable

– Eg: linear model with numerical 
coefficients

» Y= aX1 + bX2 + c(X1X2)
– Eg: non-linear model

» y= a x12 + bx23

– Prediction accuracy: minimum 
error between model prediction and 
actual samples

• Usually: designer provides a model 
and a regression (ordinary least 
squares, Fourier series) 
determines coefficients 

• With genetic programming, the 
model (structure) and the 
coefficients can be learned

• Example: y=f(x)
• Domain of x [-1.0,+1.0]
• Choose the operands

– X
• Choose the operators

– +, - , *, / (protected)
– Maybe also sin, cos, exp, log 

(protected)
• Fitness function: sum of absolute 

error between yi, and expression’s 
return values

• Prepare 20 points for test cases
• Test problem:

– Y=x4 + x3 + x2 + x
– GP can create coefficients (x/x div 

x+x = 1/2) but…

GP Examples
51

Symbolic Regression with Numeric 
Coefficients:Ephemeral Random Constants

• New Test problem: 

– Y=3x4 + 10x3 + 2x2 + 3x

• requires constant creation
• Ephemeral random constants 

provide GP with numerical 
solution components

• Provide ERC set

• Include R among the operands. 
When individual is to be 
randomly created and R is 
drawn, one of the elements in 
R becomes the new operand.

• GP only has the constants 
that are randomly drawn in 
the initial population

• Constants could be lost 
through the selection 
process (no expression with 
a constant survives 
reproduction)

• But, GP has more primitive 
material to work with

• It works…partially
• Issue with size of constants, 

coordination of model and 
coefficient search, as a 
“clump” of numbers grows, 
it is more vulnerable to 
crossover disruption 

GP Examples

R  {10,9,8,...0...8,9,10}
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The Block Stacking Problem

Block Stacking Example

Goal: a plan to rearrange the current state of stack and table
into the goal stack

Current State

A

C

F

E

D B

stack

table

table

Goal Stack

A

B

C

D

E

F

stack

Koza-92

53

Block Stacking Problem: Primitives
• State (updated via side-

effects)
– *currentStack*
– *currentTable*

• The operands
– Each block by label

• Operators returning a block 
based on current stack
– top-block 
– next-needed 
– top-correct

• Block Move Operators 
return boolean
– Return nil if they do 

nothing, t otherwise
– Update *currentTable* and 

*currentStack*
– to-stack(block)
– to-table(block)

• Sequence Operator returns 
boolean
– Do-until(action, test)

» Macro, iteration timeouts
» Returns t if test satisified, 

nil if timed out 
• Boolean operators

– NOT(a), EQ(a b)

Block Stacking Example

54

Random Block Stacking Expressions
• eq(to-table(top-block) next-needed)

– Moves top block to table and returns nil
• to-stack(top-block)

– Does nothing
• eq(to-stack(next-needed) 

eq (to-stack(next-needed) to-stack(next-needed)))
– Moves next-needed block from table to stack 3 times

• do-until(to-stack(next-needed)
(not(next-needed))

- completes existing stack correctly (but existing 
stack could be wrong)

Block Stacking Example
55

Block Stacking Fitness Cases

• different initial stack and table 
configurations (Koza - 166)
– stack is correct but not complete
– top of stack is incorrect and stack is incomplete
– Stack is complete with incorrect blocks

• Each correct stack at end of expression 
evaluation scores 1 “hit”

• fitness is number of hits (out of 166)

Block Stacking Example
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Evolved Solutions to Block Stacking
eq(do-until(to-table(top-block) (not top-block))

do-until(to-stack(next-needed) (not next-needed)

– first do-until removes all blocks from stack until it is empty and top-block 
returns nil

– second do-until puts blocks on stacks correctly until stack is correct and 
next-needed returns nil

– eq is irrelevant boolean test but acts as connective
– wasteful in movements whenever stack is correct

• Add a fitness factor for number of block movements
do-until(eq (do-until (to-table(top-block) 

(eq top-block top-correct))
(do-until (to-stack(next-needed) (not next-needed))

(not next-needed)
– Moves top block of stack to table until stack is correct
– Moves next needed block from table to stack
– Eq is again a connective, outer do-until is harmless, no-op

Block Stacking Example
57

More Examples of Genetic Programming
• Evolve priority functions 

that allow a compiler to 
heuristically choose 
between alternatives in 
hyper-block allocation

• Evolve a model that 
predicts, based on past 
market values, whether a 
stock’s value will increase, 
decrease or stay the same
– Measure-correlate-predict a 

wind resource
– ICU clinical forecasting

» FlexGP

• Flavor design
– Model each panelist

» Advanced methods for 
panelist clustering, 
bootstrapped flavor 
optimization

• Community Benchmarks
– Artifical Ant
– Boolean Multiplexor

• FlexGP
– Cloud scale, flexibly 

factored and scaled GP 

GP Examples
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Agenda
Context: Evolutionary Computation and Evolutionary 

Algorithms
1. GP is the genetic evolution of executable

expressions
2. Nuts and Bolts Descriptions of Algorithm 

Components
3. Resources and reference material 
4. Examples
5. Deeper discussion (time permitting)

Agenda
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How Does it Manage to Work
• Exploitation and exploration

– Selection
– Crossover

• Selection
– In the valley of the blind, 

the one-eyed man is king
• Crossover: combining
• Koza’s description

– Identification of sub-trees 
as sub-solutions

– Crossover unites sub-
solutions

• For simpler problems it 
does work

• Current theory and 
empirical research have 
revealed more complicated 
dynamics

Time Permitting
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Why are we still here? 
Issues and Challenges

• Trees use up a lot of 
memory

• Trees take a long time 
to execute
– Change the language for 

expressions
» C, Java

– Pre-compile the 
expressions, PDGP 
(Poli)

– Store one big tree and 
mark each pop member 
as part of it

» Compute subtrees for 
different inputs, store 
and reuse

• Bloat: Solutions are full of 
sub-expressions that may 
never execute or that 
execute and make no 
difference

• Operator and operand sets 
are so large, population is 
so big, takes too long to run

• Runs “converge” to a non-
changing best fitness
– No progress in solution 

improvement before a good 
enough solution is found

Time Permitting
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Runs “converge”: Evolvability
• Is an expression tree ideal for evolvability?
• Trees do not align, not mixing likes with likes as we 

would do in genetic algorithm
• Biologically this is called “non-homologous”
• One-point crossover

– By Poli & Langdon 
– Theoretically a bit more tractable
– Not commonly used
– Still not same kind of genetic material being swapped

Time Permitting
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Evolvability: are there building
blocks?

• Does a tree or expression 
have building blocks?
– Context sensitivity of sub-

expressions
– What is the “gene” or unit 

of genetic transmission?
– Building blocks may come 

and go depending on the 
context in which they are 
found

• Where does the Good Stuff 
Go and Why?
– Goldberg and O’Reilly

• The semantics of the 
operators influences the 
shape of the expressed part 
of the tree

• A look at two extremes:
– (iflte x a) -ORDER

» Context sensitive
– (+ a b) - MAJORITY

» Aggregation
• Even with this 

simplification, predicting 
the dynamics is difficult

• Will an imperative 
expression language offer 
better building blocks?

• Will a linear genome 
provide less complicated 
genome dynamics?

Time Permitting
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Evolvability - modularity and reuse
• Expression tree must be big 

to express reuse and 
modularity

• Is there a better way to 
design the genome to allow 
modularity to more easily 
evolve?

Time Permitting
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Evolvability: modularity and reuse

Time Permitting
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Register Machine Genotype
• linear genotype, varying length, direct data

Time Permitting

CPU Registers

A B C
12288 56

genotypeb = b+c
a = a xor c
c = b*c
c = c-a

P1

P2

b=…

a=…

c=…

c=…

b=…

a=…

c=…

c=…

1
2
3

5
4

6
7
8

3

4
5
6

1
2

7
8

C1 C2

Crossover
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Register Machine Advantages
• Easier on memory and crossover handling
• Supports aligned “homologous” crossover
• Registers can act as poor-man’s modules
• The primitive level of expressions allows for

– Potentially more easily identifiable building blocks
– Potentially less context dependent building blocks

• The register level instructions can be further 
represented as machine instructions (bits) and run 
native on the processor
– AIM-GP (Auto Induction of Machine Code GP)
– Intel or PPC or PIC, java byte code,
– Experience with RISC or CISC architectures 
– Patent number: 5946673, DISCIPLUS system

Time Permitting
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Cartesian Genetic Programming

Time Permitting

• Developer: Julian Miller
• operators and operands are 

nodes and data flow is 
described by genome

• Fixed length genome but 
variable length phenome
– Integers in blocks
– For each block, integers to 

name inputs and operator
• Unexpressed genetic 

material can be turned on 
later

• No bloat observed (plus 
nodes are upper bounded
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Dealing with Bloat
• Why does it occur?

– Crossover is destructive
– Effective fitness is selected for

• Effective fitness
– Not just my fitness but the 

fitness of my offspring
• Approaches

– Avoid - change genome 
structure

– Remove: Koza’s edit operation
– Pareto GP
– Penalize: parsimony pressure

» Fitness =
A(perf) + (1-a)(complexity

• “Operator equalisation for bloat free genetic 
programming and a survey of bloat control 
methods”, by Sara Silva and Stephen Dignum
and Leonardo Vanneschi

– GPEM Vol 13, #2, 2012

Examples: 
• (not (not x))
• (+ x 0)
• (* x 1)
• (Move left move-right)
• If (2=1) action

No difference to fitness (defn 
by Banzhaf, Nordin and 
Keller)

Can be local or global

Time Permitting
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Agenda
Context: Evolutionary Computation and Evolutionary 

Algorithms
1. GP is the genetic evolution of executable

expressions
2. Nuts and Bolts Descriptions of Algorithm 

Components
3. Resources and reference material 
4. Examples
5. Deeper discussion (time permitting)

Agenda
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The End
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Notes for Instructor
To do
• MUST: Fix slide animation throughout
• MUST: Select and Prepare demos to motivate the 

talk
– Eureqa I of 2 on youtube
– http://www.cs.northwestern.edu/~fjs750/netlogo/final/gpde

mo.html
– Truck Demo applet by Tobias Blickle

» http://www.handshake.de/user/blickle/Truck/index.html

• Optionally add another example using Pagie 2d 
which shows some expressions, their errors, the 
next gen, etc
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