
0

Una-May O’Reilly
The Alfa Group: AnyScale Learning for All*

unamay@csail.mit.edu
*formerly: Evolutionary Design & Optimization Group

Genetic Programming

A Tutorial Introduction

Copyright is held by the author/owner(s).
GECCO’13 Companion, July 6–10, 2013,
Amsterdam, The Netherlands.
ACM 978-1-4503-1964-5/13/07. 1

Instructor
• Leader: AnyScale Learning For All Group, MIT CSAIL
• Focus on solving real world, complex problems requiring

machine learning where large scale evolutionary computation is
a core capability

• Applications include
– Circuits, network coding
– Sparse matrix data mapping on parallel architectures
– Finance
– Flavor design
– Wind energy

» Turbine layout
» Resource assessment

– ICU clinical data mining

2

Tutorial Goals

• Introduction to GP algorithm, given some knowledge
of genetic algorithms or evolutionary strategies

• Become familiar with GP design properties and
recognize them

• Teach it in an undergrad lecture
• Try it “out of the box” - with software libraries of

others
• Groundwork for advanced topics

– Theory
– Specialized workshops – Symbolic Regression, bloat, etc
– GP Track talks at GECCO, Proceedings of EuroGP, Genetic

Programming and Evolvable Machines

3

Agenda
Context: Evolutionary Computation and Evolutionary

Algorithms
1. GP is the genetic evolution of executable

expressions
2. Nuts and Bolts Descriptions of Algorithm

Components
3. Resources and reference material
4. Examples
5. Deeper discussion (time permitting)

Agenda

247

4

Agenda
Context: Evolutionary Computation and Evolutionary

Algorithms

Agenda
5

Neo-Darwinian Evolution

Evolutionary Computation and Evolutionary Algorithms

• Survival and thriving in the environment
• Offspring quantity - based on survival of the fittest
• Offspring variation: genetic crossover and mutation
• Population-based adaptation over generations

6

Problem Domains where EAs are Used

Evolutionary Computation and Evolutionary
Algorithms

• Where there is need for complex solutions
– evolution is a process that gives rise to complexity
– a continually evolving, adapting process, potentially with

changing environment from which emerges modularity,
hierarchy, complex behavior and complex system
relationships

• Combinatorial optimization
– NP-complete and/or poorly scaling solutions via LP or

convex optimization
– unyielding to approximations (SQP, GEO-P)
– eg. TSP, graph coloring, bin-packing, flows
– for: logistics, planning, scheduling, networks, bio gene

knockouts
– Typified by discrete variables
– Solved by Genetic Algorithm (GA)

7

Problem Domains where EAs are Used

Evolutionary Computation and Evolutionary
Algorithms

• Continuous Optimization
– non-differentiable, discontinuous, multi-modal, large scale

objective functions
– applications: engineering, mechanical, material, physics
– Typified by continuous variables
– Solved by Evolutionary Strategy (ES)

• Program Search
– system identification aka symbolic regression

» chemical processes, financial strategies
– design: creative blueprints, generative designs - antennae,

Genr8, chairs, lens
– automatic programming: compiler heuristics
– AI ODEs, invariants, knowledge discovery
– Solved by Genetic Programming (GP)

248

8

Key EA Data Structures

Evolutionary Computation and Evolutionary
Algorithms

POPULATION
array of struct ind with
fields genome,
phenotype fitness
random initialization

GENOTYPE is an array of gene(s)
GENOTYPE is input parameter to
decoder procedure that returns
PHENOTYPE
PHENOTYPE is input parameter
to fitness-evaluation routine that
returns a numeric variable called
FITNESS

decoder

fitness

genes
GENOtypE

phenotypeFitness
Function

Genotype-Phenotype Mapping

Ind
• genotype
•phenotype
• fitness

Ind
• genotype
•phenotype
• fitness

Ind
• genotype
•phenotype
• fitness

Population

9

EA Generation Loop

Evolutionary Computation and Evolutionary
Algorithms

Each generation

select

breed

replace

population = random_pop_init()
generation = 0
while needToStop == false

generation++
phenotypes =decoder(genotypes)
calculateFitness(phenotypes)
parents = select (phenotypes)
offspring = breed(parents.genotypes)
population = replace(parents, offspring)
solution = bestOf(population)
recheck(needToStop)

10

EA Selection

Evolutionary Computation and Evolutionary Algorithms

fittest program

least fit program

*We give the algorithm a “seed” for its RNG.

Principles:
• everyone has non-zero probability of
being an ancestor
• individual fitness relative to
population mean fitness or rank of
fitness is important
• Sometimes the best of a population is
always bred directly into next generation:
“elitism”

Some standard methods:
•Roulette wheel
•Tournament Selection

• n tournments of size k

11

EA Tournament Selection

winner

player 1

player 2

player 3

player 4

4 player tournament

Evolutionary Computation and Evolutionary Algorithms

249

12

EA Breeding
Replication of parent [inheritance]

mutation - [imperfect copy]

crossover - [sexual recombination]

genes
GENOME

Perfect Copy of GENOME

genes
GENOME

A B 0 A B 0
Parent offspring

2 parent crossover

A 0
Child 1

D 00
child 2

C 1B 1 1

A B 0 C 1

parent 1 parent 2

1 1 D 00

1 0 A B 5 3

Choose crossover points and apply mutation randomly
Use a random number generator

Evolutionary Computation and Evolutionary Algorithms
13

EA Replacement
Deterministic
• use best of parents and offspring to replace parents
• replace parents with offspring

Stochastic
• some sort of tournament or fitness proportional choice
• run a tournament with old pop and offspring
• run a tournament with parents and offspring

Evolutionary Computation and Evolutionary Algorithms

14

EA Pseudocode
population.genotypes = random_pop_init()
population.phenotypes =decoder(population.genotypes)
population.fitness= calculate_fitness(population.phenotypes)

•generation = 0
•while needToStop == false

generation++
parents.genotypes = select (population.fitness)
offspring.genotypes = crossover_mutation(parents.genotypes)
offspring.phenotypes =decoder(offspring.genotypes)
offspring.fitness= calculate_fitness(offspring.phenotypes)
population = replace(parents.fitness, offspring.fitness)
refresh(needToStop)

solution = bestOf(population)

generations

select

breed

replace

birth
development

fitness for breeding

development
fitness for breeding

Evolutionary Computation and Evolutionary Algorithms
15

EA Individual Examples

Evolutionary Computation and Evolutionary
Algorithms

Problem Gene Genome Phenotype
Fitness

Function

TSP 110 sequence of cities tour tour length

Function
optimization 3.21

variables x of
function

f(x) |min-f(x)|

graph
k-coloring

permutation
element

sequence for greedy
coloring

coloring # of uncolored nodes

investment
strategy

rule agent rule set trading strategy portfolio change

250

16

Agenda – section review
Context: Evolutionary Computation and Evolutionary

Algorithms
– Shown problem domains where EAs are used
– EA Data Structure: Individual
– EA Loop

» Evolutionary computation which is agnostic of representation
» Selection
» Replication
» Inheritance and Variation -> crossover and mutation

– Examples of genotypes and phenotypes

Agenda
17

Agenda
Context: Evolutionary Computation and Evolutionary

Algorithms
1. GP is the genetic evolution of executable

expressions
2. Nuts and Bolts Descriptions of Algorithm

Components
3. Examples
4. Resources and reference material
5. Deeper issues (time permitting)

Agenda

18

Agenda
Context: Evolutionary Computation and Evolutionary

Algorithms
1. GP is the genetic evolution of executable

expressions

Agenda
19

EA Individual Examples

Evolutionary Computation and Evolutionary
Algorithms

Problem Gene Genome Phenotype
Fitness

Function

TSP 110 sequence of cities tour tour length

Function
optimization 3.21

variables x of
function

f(x) |min-f(x)|

graph
k-coloring

permutation
element

sequence for greedy
coloring

coloring # of uncolored nodes

investment
strategy

rule agent rule set trading strategy portfolio change

251

20

Koza’s Executable Expressions
Pioneered circa 1988
• Lisp S-Expressions

– Composed of
primitives called
‘functions’ and
‘terminals’

Example:
• primitives: + - * div

a b c d 4
• (*(- (+ 4 c) b) (div d a))
In a Lisp interpreter:
1. bind a b c and d
2. Evaluate

expressions

% Lisp interpreter
(set! a 2) -> 2
(set! b 4) -> 4
(set! c 6) -> 6
(set! d 8) -> 8
(*(- (+ 4 c) b) (div d a)) -> 12
; Rule Example
(if (= a b) c d) -> 8
;Predicate:
(> c d) -> nil

GP Evolves Executable Expressions
21

More Lisp details
A Lisp GP system is a large set of functions which are

interpreted by evaluating the entry function
– Some are definitions of primitives you write!

» (defun protectedDivide …)
– Rest is software logic for evolutionary algorithms

Any GP system has a set of functions that are pre-
defined (by compilation or interpretation) for use
as primitives
also has software logic that handles
– Population initialization, iteration, selection, breeding,

replacement
GP expressions are first class objects in LISP so the

GP software logic can manipulate them as data as
well as have the interpreter read and evaluate them

GP Evolves Executable Expressions

22

Functions Used in GP Expressions
Predicate
• > < == <>
• (isBlue <arg>)
Other functions
• (addOne <arg>)
• (Max <list>), Max(x,y)
• (Mean<list>), Mean(x,y)
See Eureqa user guide for
other examples

– http://creativemachines.cornell.edu/sites/
default/files/Eureqa_User_Guide.pdf

GP Evolves Executable Expressions

Arithmetic
• +, - , div, mult

– Division must be protected
– Return 1 if divisor = 0

• Transcendental: log, exp,
• Trigonometric: cos, sine,
Boolean
• AND NOT OR NAND
Logical
• (IF <pred> <True> <False>)
Iteration
• (OVER <list> <function>)

23

Details When Using Executable Expressions
• Sufficiency

– Make sure a solution can be plausibly expressed when
choosing your primitive set

» Functions must be wisely chosen but not too complex
» General primitives: arithmetic, boolean, condition, iteration,

assignment
» Problem specific primitives

– Can you handcode a naïve solution?
– Balance flexibility with search space size

• Closure
– Design functions with wrappers that accept any type of

argument
– Often types will semantically clash…have a default way of

dealing with this
• The value of typing

– Strongly typed GP only evolves expressions within type rules
– Trades off semantic structure with flexible search

GP Evolves Executable Expressions

252

24

Abstract Syntax Trees
Motivation: GP needs to be able to crossover and
mutate executable expressions, how?

– 3+2
– (+ 2 3) ; same as above, different syntax
– (3 2 +) ; same too

• Expressions can be represented universally by an
abstract syntax via a tree
– Tree traversal is syntax and control flow

GP Evolves Executable Expressions
25

Abstract Syntax Trees

GP Evolves Executable Expressions

• Whether parsed preorder (node, left-child, right-child) or
postorder (left-child, right-child, node) or inorder (left, node, right)
the expression evaluates to the same result

Inorder: 2+3

preorder: + 2 3

Post-order: 2 3 + Inorder: (2-3) + (a max best)

preorder: (+ (-2 3) (max a best))

Post-order: (2 3 -) (a best max) +)

+

2 3

+

- max

2 3 a best

•(tree)GP uses an expression tree as its genotype structure

26

Agenda Review
Context: Evolutionary Computation and Evolutionary

Algorithms
1. GP is the genetic evolution of executable

expressions
– Lisp S-expressions
– Functions and terminals
– Closure and sufficiency
– abstract syntax trees

Agenda
27

Agenda
Context: Evolutionary Computation and Evolutionary

Algorithms
1. GP is the genetic evolution of executable

expressions
2. Nuts and Bolts Descriptions of Algorithm

Components

Agenda

253

28

Population Initialization
• Fill population with random expressions

– Create a function set  and a corresponding function-count set
– Create an terminal set (arg-count = 0), 
– draw from F with replacement and recursively enumerate its

argument list by additional draws from  U .
– Recursion ends at draw of a terminal
– requires closure and/or typing

• maximum tree height parameter
– At max-height-1, draw from only

• “ramped half-half” method ensures diversity
– equal quantities of trees of each height
– half of height’s trees are full

» For full tree, only draw from terminals at max-height-1

Nuts and Bolts GP Design
29

Determining a Expression’s Fitness
• One test case:

– Execute the expression with the problem decision variables (ie
terminals) bound to some test value and with side effect values
initialized

– Designate the “result” of the expression
• Measure the error between the correct output values for the

inputs and the result of the expression
– Final output may be side effect variables, or return value of

expression
– Eg. Examine expression result and expected result for regression
– Eg. the heuristic in a compilation, run the binary with different

inputs and measure how fast they ran.
– EG, Configure a circuit from the genome, test the circuit with an

input signal and measure response vs desired response
• Usually have more than one test case but cannot enumerate

them all
– Use rational design to create incrementally more difficult test cases

(eg block stacking)
– Use balanced data for regression

Nuts and Bolts GP Design

30

Things to Ensure to Evolve Programs
• Programs of varying length and structure

must compose the search space
• Closure
• Crossover of the genotype must preserve

syntactic correctness so the program can
be directly executed

Nuts and Bolts GP Design
31

if

S

t2

Tnot

sumsum

>

t1 t5

Parent 2

if
G

av
<

t2

Rand

t1

sumsum

>

t1 t5

Child 1

t3
=

max

t4

if

S Tnot

Child 2

if

G

av
<

t2 t3
=

max

t4

and

t1

Parent 1

R

GP Tree Crossover

Nuts and Bolts GP Design

254

32

Tree Crossover Details
• Crossover point in each

parent is picked at random
• Conventional practices

– All nodes with equal
probability

– leaf nodes chosen with 0.1
probility and non-leaf with
0.9 probability

• Probability of crossover
– Typically 0.9

• Maximum depth of child is a
run parameter
– Typically ~ 15
– Can be size instead

• Two identical parents rarely
produce offspring that are
identical to them

• Tree-crossover produces
great variations in offspring
with respect to parents

• Crossover, in addition to
preserving syntax, allows
expressions to vary in
length and structure (sub-
expression nesting)

Nuts and Bolts GP Design
33

GP Tree Mutation
• Often only crossover is used
• But crossover behaves often like macro-mutation
• Mutation can be better tuned to control the size of

the change
• A few different versions

Nuts and Bolts GP Design

34

if

G

av
<

t2 t3
=

max

t4

and

t1

Parent

R
if

G

av
<

t2 t1
=

max

t4

and

t1

Mutant-subst

R

if

G

av
<

t2 t3
=

t4

and

t1

Mutant-deletion
R

if

G

av
<

t2

t3

=
max

t4

and

t1

Mutant-addition
R

max

HVL-Mutation: substitution, deletion, insertion

Nuts and Bolts GP Design
35

Other Sorts of Tree Mutation
• Koza:

– Randomly remove a sub-tree and replace it
– Permute: mix up order of args to operator
– Edit: + 1 3 -> 4, and(t t) -> t
– Encapsulate: name a sub-tree, make it one node and allow

re-use by others (protection from crossover)
» Developed into advanced GP concept known as

 Automatic module definition
 Automatically defined functions (ADFs)

• Make your own
– Could even be problem dependent (what does a subtree

do? Change according to its behavior)

Nuts and Bolts GP Design

255

36

Selection in GP

• Proceeds in same manner as evolutionary algorithm
– Same set of methods
– Conventionally use tournament selection
– Also see fitness proportional selection
– Cartesian genetic programming:

» One parent: generate 5 children by mutation
» Keep best of parents and children and repeat

 If parent fitness = child fitness, keep child

37

Top Level GP Algorithm

Nuts and Bolts GP Design - Summary

Begin
pop = random programs from a set of operators and operands
repeat

execute each program in pop with each set of inputs
measure each program’s fitness
repeat

select 2 parents
copy 2 offspring from parents

crossover
mutate

add to new-pop
until pop-size

pop = new-pop
until max-generation

or
adequate program found

End

Grow or Full

•Tournament selection
•Fitness proportional selection
•Your favorite selection

Ramped-half-half

Prepare input data
Designate solution
Define error between actual
and expected

Sub-tree crossover•HVL-mutate
•Subtree subst
•Permute
•Edit
•Your own

Max-init-tree-height

Prob to crossover

Max-tree-height

Mutation probs

Tournament size

Leaf:node bias

38

GP Preparatory Steps
1. Decide upon functions and terminals

– Terminals bind to decision variables in problem
– Defines the search space

2. Set up the fitness function
– Translation of problem goal to GP goal
– Minimization of error between desired and evolved
– Maximization of a problem based score

3. Decide upon run parameters
– Population size is most important

» Budget driven or resource driven
– GP is robust to many other parameter choices

4. Determine a halt criteria and result to be returned
– Maximum number of fitness evaluations
– Time
– Minimum acceptable error
– Good enough solution (satisficing)

Nuts and Bolts GP Design
39

GP Parameters
• Population size
• Number of generations
• Max-height of trees on

random initialization
– Typically 6

• Probability of crossover
– Higher than mutation
– 0.9
– Rest of offspring are copied

• Probability of mutation
– Probabilities of addition,

deletion and insertion

• Population initialization
method
– Ramped-half-half
– All full
– All non-full

• Selection method
– Elitism?

• Termination criteria
• Fitness function
• what is used as “solution”

of expression

Nuts and Bolts GP Design

256

40

Run Level GP Flowchart

Nuts and Bolts GP Design
From http://www.genetic-programming.com/gpflowchart.html

41

Agenda Checkpoint
Nuts and Bolts GP Design
• How we create random GP expressions
• How we create a diverse population of expressions
• A general procedure for fitness function design
• How we mutate and crossover expressions
• Selection
• Put it together: one algorithm, at run level

Agenda

42

Agenda
Context: Evolutionary Computation and Evolutionary

Algorithms
1. GP is the genetic evolution of executable

expressions
2. Nuts and Bolts Descriptions of Algorithm

Components
3. Resources and reference material

Agenda
43

Reference Material
Where to identify conference and journal material
• Genetic Programming Bibiliography

– http://www.cs.bham.ac.uk/~wbl/biblio/
Online Material
• ACM digital library: http://portal.acm.org/

– GECCO conferences,
– GP conferences (pre GECCO),
– Evolutionary Computation Journal (MIT Press)

• IEEE digital library:
http://www.computer.org/portal/web/csdl/home
– Congress on Evolutionary Computation (CEC)
– IEEE Transactions on Evolutionary Computation

• Springer digital library: http://www.springerlink.com/
– European Conference on Genetic Programming: “EuroGP”

257

44

GP Software
Commonly used in published research (and somewhat
active):
• Java: ECJ, TinyGP,
• Matlab: GPLab, GPTips
• C/C++: MicroGP
• Python: DEAP, PyEvolve
• .Net: Aforge.NET
Others
• http://www.epochx.org/index.php

Strongly typed GP, Grammatical evolution, etc
Lawrence Beadle and Colin G Johnson

• http://www.tc33.org/genetic-programming/genetic-
programming-software-comparison/
– Dated Feb 15, 2011

45

Genetic Programming Benchmarks

Genetic programming needs better benchmarks
– James McDermott, David R. White, Sean Luke, Luca Manzoni, Mauro

Castelli, Leonardo Vanneschi, Wojciech Ja ́skowski, Krzysztof Krawiec,
Robin Harper, Kenneth De Jong, and Una-May O’Reilly.

– In Proceedings of GECCO 2012, Philadelphia, 2012. ACM.

• Related benchmarks wiki
– http://GPBenchmarks.org

46

Software Packages for Symbolic Regression

No Source code available
• Datamodeler - mathematica, Evolved Analytics
• Eureqa II - a software tool for detecting equations

and hidden mathematical relationships in data
– http://creativemachines.cornell.edu/eureqa
– Plugins to Matlab, mathematica, Python
– Convenient format for data presentation
– Standalone or grid resource usage
– Windows, Linux or Mac
– http://www.nutonian.com/ for cloud version

• Discipulus™ 5 Genetic Programming Predictive
Modelling

47

Reference Material - Books
• Genetic Programming, James McDermott and Una-May O'Reilly, In the

Handbook of Computational Intelligence (forthcoming), Topic Editors: Dr.
F. Neumann and Dr. K Witt, Editors in Chief Prof. Janusz Kacprzyk and
Prof. Witold Pedrycz.

• Essentials of Metaheuristics, Sean Luke, 2010
• Genetic Programming: From Theory to Practice

– 10 years of workshop proceedings, on SpringerLink, edited
• A Field Guide to Genetic Programming, Poli, Langdon, McPhee, 2008, Lulu

and online digitally
• Advances in Genetic Programming

– 3 years, each in different volume, edited
• John R. Koza

– Genetic Programming: On the Programming of Computers by Means of Natural Selection, 1992 (MIT
Press)

– Genetic Programming II: Automatic Discovery of Reusable Programs, 1994 (MIT Press)
– Genetic Programming III: Darwinian Invention and Problem Solving, 1999 with Forrest H Bennett III,

David Andre, and Martin A. Keane, (Morgan Kaufmann)
– Genetic Programming IV: Routine Human-Competitive Machine Intelligence, 2003 with Martin A.

Keane, Matthew J. Streeter, William Mydlowec, Jessen Yu, and Guido Lanza
• Linear genetic programming, Markus Brameier, Wolfgang Banzhaf,

Springer (2007)
• Genetic Programming: An Introduction, Banzhaf, Nordin, Keller, Francone,

1997 (Morgan Kaufmann)

258

48

Specific References in Tutorial
Classic Books
• Adaptation in Natural and Artificial Systems, John H Holland, (1992), MIT

Press.
• Evolutionsstrategie, Ingo Rechenberg, (1994), Frommann-Holzboog.
• Artificial Intelligence through Simulated Evolution, L.J. Fogel, A.J. Owens,

and M.J. Walsh (1966), John Wiley, NY.
Academic Papers
• On the Search Properties of Different Crossover Operators in Genetic

Programming, Riccardo Poli and William B. Langdon, Genetic
Programming 1998: Proceedings of the Third Annual Conference, pp. 293-
301, Morgan Kaufmann, 22-25 July 1998.

• Where does the Good Stuff Go and Why? Goldberg and O’Reilly,
Proceedings of the First European Workshop on Genetic Programming,
LNCS, Vol. 1391, pp. 16-36, Springer-Verlag, 14-15 April 1998.

• Cartesian genetic programming, GECCO-2008 tutorials, pp. 2701-2726,
ACM, 12-16 July 2008.

49

Agenda
Context: Evolutionary Computation and Evolutionary

Algorithms
1. GP is the genetic evolution of executable

expressions
2. Nuts and Bolts Descriptions of Algorithm

Components
3. Resources and reference material
4. Examples

Agenda

50

Simple Symbolic Regression
• Given a set of independent

decision variables and
corresponding values for a
dependent variable

• Want: a model that predicts the
dependent variable

– Eg: linear model with numerical
coefficients

» Y= aX1 + bX2 + c(X1X2)
– Eg: non-linear model

» y= a x12 + bx23

– Prediction accuracy: minimum
error between model prediction and
actual samples

• Usually: designer provides a model
and a regression (ordinary least
squares, Fourier series)
determines coefficients

• With genetic programming, the
model (structure) and the
coefficients can be learned

• Example: y=f(x)
• Domain of x [-1.0,+1.0]
• Choose the operands

– X
• Choose the operators

– +, - , *, / (protected)
– Maybe also sin, cos, exp, log

(protected)
• Fitness function: sum of absolute

error between yi, and expression’s
return values

• Prepare 20 points for test cases
• Test problem:

– Y=x4 + x3 + x2 + x
– GP can create coefficients (x/x div

x+x = 1/2) but…

GP Examples
51

Symbolic Regression with Numeric
Coefficients:Ephemeral Random Constants

• New Test problem:

– Y=3x4 + 10x3 + 2x2 + 3x

• requires constant creation
• Ephemeral random constants

provide GP with numerical
solution components

• Provide ERC set

• Include R among the operands.
When individual is to be
randomly created and R is
drawn, one of the elements in
R becomes the new operand.

• GP only has the constants
that are randomly drawn in
the initial population

• Constants could be lost
through the selection
process (no expression with
a constant survives
reproduction)

• But, GP has more primitive
material to work with

• It works…partially
• Issue with size of constants,

coordination of model and
coefficient search, as a
“clump” of numbers grows,
it is more vulnerable to
crossover disruption

GP Examples

R  {10,9,8,...0...8,9,10}

259

52

The Block Stacking Problem

Block Stacking Example

Goal: a plan to rearrange the current state of stack and table
into the goal stack

Current State

A

C

F

E

D B

stack

table

table

Goal Stack

A

B

C

D

E

F

stack

Koza-92

53

Block Stacking Problem: Primitives
• State (updated via side-

effects)
– *currentStack*
– *currentTable*

• The operands
– Each block by label

• Operators returning a block
based on current stack
– top-block
– next-needed
– top-correct

• Block Move Operators
return boolean
– Return nil if they do

nothing, t otherwise
– Update *currentTable* and

currentStack
– to-stack(block)
– to-table(block)

• Sequence Operator returns
boolean
– Do-until(action, test)

» Macro, iteration timeouts
» Returns t if test satisified,

nil if timed out
• Boolean operators

– NOT(a), EQ(a b)

Block Stacking Example

54

Random Block Stacking Expressions
• eq(to-table(top-block) next-needed)

– Moves top block to table and returns nil
• to-stack(top-block)

– Does nothing
• eq(to-stack(next-needed)

eq (to-stack(next-needed) to-stack(next-needed)))
– Moves next-needed block from table to stack 3 times

• do-until(to-stack(next-needed)
(not(next-needed))

- completes existing stack correctly (but existing
stack could be wrong)

Block Stacking Example
55

Block Stacking Fitness Cases

• different initial stack and table
configurations (Koza - 166)
– stack is correct but not complete
– top of stack is incorrect and stack is incomplete
– Stack is complete with incorrect blocks

• Each correct stack at end of expression
evaluation scores 1 “hit”

• fitness is number of hits (out of 166)

Block Stacking Example

260

56

Evolved Solutions to Block Stacking
eq(do-until(to-table(top-block) (not top-block))

do-until(to-stack(next-needed) (not next-needed)

– first do-until removes all blocks from stack until it is empty and top-block
returns nil

– second do-until puts blocks on stacks correctly until stack is correct and
next-needed returns nil

– eq is irrelevant boolean test but acts as connective
– wasteful in movements whenever stack is correct

• Add a fitness factor for number of block movements
do-until(eq (do-until (to-table(top-block)

(eq top-block top-correct))
(do-until (to-stack(next-needed) (not next-needed))

(not next-needed)
– Moves top block of stack to table until stack is correct
– Moves next needed block from table to stack
– Eq is again a connective, outer do-until is harmless, no-op

Block Stacking Example
57

More Examples of Genetic Programming
• Evolve priority functions

that allow a compiler to
heuristically choose
between alternatives in
hyper-block allocation

• Evolve a model that
predicts, based on past
market values, whether a
stock’s value will increase,
decrease or stay the same
– Measure-correlate-predict a

wind resource
– ICU clinical forecasting

» FlexGP

• Flavor design
– Model each panelist

» Advanced methods for
panelist clustering,
bootstrapped flavor
optimization

• Community Benchmarks
– Artifical Ant
– Boolean Multiplexor

• FlexGP
– Cloud scale, flexibly

factored and scaled GP

GP Examples

58

Agenda
Context: Evolutionary Computation and Evolutionary

Algorithms
1. GP is the genetic evolution of executable

expressions
2. Nuts and Bolts Descriptions of Algorithm

Components
3. Resources and reference material
4. Examples
5. Deeper discussion (time permitting)

Agenda
59

How Does it Manage to Work
• Exploitation and exploration

– Selection
– Crossover

• Selection
– In the valley of the blind,

the one-eyed man is king
• Crossover: combining
• Koza’s description

– Identification of sub-trees
as sub-solutions

– Crossover unites sub-
solutions

• For simpler problems it
does work

• Current theory and
empirical research have
revealed more complicated
dynamics

Time Permitting

261

60

Why are we still here?
Issues and Challenges

• Trees use up a lot of
memory

• Trees take a long time
to execute
– Change the language for

expressions
» C, Java

– Pre-compile the
expressions, PDGP
(Poli)

– Store one big tree and
mark each pop member
as part of it

» Compute subtrees for
different inputs, store
and reuse

• Bloat: Solutions are full of
sub-expressions that may
never execute or that
execute and make no
difference

• Operator and operand sets
are so large, population is
so big, takes too long to run

• Runs “converge” to a non-
changing best fitness
– No progress in solution

improvement before a good
enough solution is found

Time Permitting
61

Runs “converge”: Evolvability
• Is an expression tree ideal for evolvability?
• Trees do not align, not mixing likes with likes as we

would do in genetic algorithm
• Biologically this is called “non-homologous”
• One-point crossover

– By Poli & Langdon
– Theoretically a bit more tractable
– Not commonly used
– Still not same kind of genetic material being swapped

Time Permitting

62

Evolvability: are there building
blocks?

• Does a tree or expression
have building blocks?
– Context sensitivity of sub-

expressions
– What is the “gene” or unit

of genetic transmission?
– Building blocks may come

and go depending on the
context in which they are
found

• Where does the Good Stuff
Go and Why?
– Goldberg and O’Reilly

• The semantics of the
operators influences the
shape of the expressed part
of the tree

• A look at two extremes:
– (iflte x a) -ORDER

» Context sensitive
– (+ a b) - MAJORITY

» Aggregation
• Even with this

simplification, predicting
the dynamics is difficult

• Will an imperative
expression language offer
better building blocks?

• Will a linear genome
provide less complicated
genome dynamics?

Time Permitting
63

Evolvability - modularity and reuse
• Expression tree must be big

to express reuse and
modularity

• Is there a better way to
design the genome to allow
modularity to more easily
evolve?

Time Permitting

262

64

Evolvability: modularity and reuse

Time Permitting
65

Register Machine Genotype
• linear genotype, varying length, direct data

Time Permitting

CPU Registers

A B C
12288 56

genotypeb = b+c
a = a xor c
c = b*c
c = c-a

P1

P2

b=…

a=…

c=…

c=…

b=…

a=…

c=…

c=…

1
2
3

5
4

6
7
8

3

4
5
6

1
2

7
8

C1 C2

Crossover

66

Register Machine Advantages
• Easier on memory and crossover handling
• Supports aligned “homologous” crossover
• Registers can act as poor-man’s modules
• The primitive level of expressions allows for

– Potentially more easily identifiable building blocks
– Potentially less context dependent building blocks

• The register level instructions can be further
represented as machine instructions (bits) and run
native on the processor
– AIM-GP (Auto Induction of Machine Code GP)
– Intel or PPC or PIC, java byte code,
– Experience with RISC or CISC architectures
– Patent number: 5946673, DISCIPLUS system

Time Permitting
67

Cartesian Genetic Programming

Time Permitting

• Developer: Julian Miller
• operators and operands are

nodes and data flow is
described by genome

• Fixed length genome but
variable length phenome
– Integers in blocks
– For each block, integers to

name inputs and operator
• Unexpressed genetic

material can be turned on
later

• No bloat observed (plus
nodes are upper bounded

263

68

Dealing with Bloat
• Why does it occur?

– Crossover is destructive
– Effective fitness is selected for

• Effective fitness
– Not just my fitness but the

fitness of my offspring
• Approaches

– Avoid - change genome
structure

– Remove: Koza’s edit operation
– Pareto GP
– Penalize: parsimony pressure

» Fitness =
A(perf) + (1-a)(complexity

• “Operator equalisation for bloat free genetic
programming and a survey of bloat control
methods”, by Sara Silva and Stephen Dignum
and Leonardo Vanneschi

– GPEM Vol 13, #2, 2012

Examples:
• (not (not x))
• (+ x 0)
• (* x 1)
• (Move left move-right)
• If (2=1) action

No difference to fitness (defn
by Banzhaf, Nordin and
Keller)

Can be local or global

Time Permitting
69

Agenda
Context: Evolutionary Computation and Evolutionary

Algorithms
1. GP is the genetic evolution of executable

expressions
2. Nuts and Bolts Descriptions of Algorithm

Components
3. Resources and reference material
4. Examples
5. Deeper discussion (time permitting)

Agenda

70

The End

71

Notes for Instructor
To do
• MUST: Fix slide animation throughout
• MUST: Select and Prepare demos to motivate the

talk
– Eureqa I of 2 on youtube
– http://www.cs.northwestern.edu/~fjs750/netlogo/final/gpde

mo.html
– Truck Demo applet by Tobias Blickle

» http://www.handshake.de/user/blickle/Truck/index.html

• Optionally add another example using Pagie 2d
which shows some expressions, their errors, the
next gen, etc

264

