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Abstract

This tutorial gives a basic introduction to evolution strategies, a
class of evolutionary algorithms. Key features such as mutation,
recombination and selection operators are explained, and
specifically the concept of self-adaptation of strategy
parameters is introduced.

All algorithmic concepts are explained to a level of detail such
that an implementation of basic evolution strategies is possible.
Some guidelines for utilization as well as some application
examples are given.

Agenda

“*Introduction: Optimization and EAs
“*Evolution Strategies

“*Examples




A True Story ...

During my PhD Now
+“ Ran artificial test ++ Real-world problems
problems % n=150, n=10,000

% n=30 maxim.um % Evaluation can take 20
dimensionality hours

+»+ Evaluation took ,,no*
time
+» No constraints

+ Thought these were
difficult

+» 50 nonlinear constraints
« Tip of the iceberg

Simulation vs. Optimization

what happens if?

\ \
Result
ﬂ

4\

Trial & Error

.. how do | achieve the best result?

\l Optimizer NN Simulat Optimal
p imizer imulator
\ ] Result
@\

-y

Maximization / Minimization
If so, multiple objectives
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Introduction

*»Modelin

1Y e

Input: Will be given |
How is the result for the input? |

“» Simulati

11 o= = 7??

++ Optimization | Model: Already exists |

P27 = e R

Obijective: Will be given

How (with which parameter settings)
to achieve this objective?

Introduction:

Optimization
Evolutionary Algorithms




Optimization
f:M >R, f(X)>min”

« f: objective function
+ High-dimensional
* Non-linear, multimodal
+ Discontinuous, noisy, dynamic
* Mc M, x M, x...x M, heterogeneous

Local, robust

*+ Restrictions possible over M, /(x) optimum

+ Good local, robust optimum desired

0.0

Classification of Optimization Algorithms

« Direct optimization algorithm:

f)
+ First order optimization algorithm:
e.g., gradient method A T
JAX), VT X)
% Second order optimization algorithm:
e.g., Newton method .,
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Dynamic Optimization

+ Dynamic Function
+ 30-dimensional
++ 3D-Projection

Iterative Optimization Methods

«» General ¥, =X +8 -V
description:

< At every lteration:
4 Choose direction

*3 X4l i i
4 Determine step size
AP ‘7: 4 Direction:
— 4 Gradient
X, X, 4 Random
/ 4 Step size:
4 1-dim. optimization
X 4 Random

< Self-adaptive




The Fundamental Challenge

4 Global convergence with probability one:

limPrE € P(1) =1

=00

4 General, but for practical purposes useless
4 Convergence velocity:

P = E(fra (P +1) = £ (P(D)))

4 | ocal analysis only, specific (convex) functions

An Infinite Number of Pathological Cases !

f(x4,%2)
f(x*1,X"2)

><

4 NFL-Theorem: ‘
4 All optimization algorithms perform equally
well iff performance is averaged over all
possible optimization problems.

4 Fortunately: We are not Interested in ,all
possible problems*
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Theoretical Statements
4 Global convergence (with probability 1):

limPrE € P(1) =1

4 General statement (holds for all functions)
4 Useless for practical situations:

4 Time plays a major role in practice

4 Not all objective functions are relevant in
practice

Theoretical Statements

4 Convergence velocity:

9= E(fp (P+1D) = £ (P()))

4 \ery specific statements
4 Convex objective functions
4 Describes convergence in local optima

4 Very extensive analysis for Evolution
Strategies




Evolution Strategies

Evolutionary Algorithms Taxonomy

Evolutionary Algorithms

— N\

Evolution Strategies Genetic Algorithms Other

[ U S

| N N

Mixed-integer capabilities 4 Discrete representations 4 Evolutionary Prog
Emphasis on mutation 4 Emphasis on crossover 4 Differential Evol.
Self-adaptation 4 Constant parameters 4 GP

Small population sizes 4 Larger population sizes 4 PSO
Deterministic selection 4 Probabilistic selection 4 EDA

Developed in Germany 4 Developed in USA 4 Real-coded Gas
Theory focused on 4 Theory focused on schema 4

convergence velocity processing
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Model-Optimization-Action

Function ~ Model from Data
‘f““””’=i weight [L’ukululmlﬂlnsxrml]' o
< scalei ',%
Simulation Experiment  Function(s) Subjective
] ' &
Y R
Business ——> .
Process Model ———} =R
Optimizer —

Generalized Evolutionary Algorithm

initialize population
|

t = 0; Evaﬂualion
initialize(P(t)); /'//;\\\sa.mn .
evaluate(P(t)); (Permnsten) \
while not terminate do | loop > Aecomoination
P‘(t) := mating_selection(P(t)); Sotoction 1 /
P*(t) := variation(P‘(t)); .\\W// “Mutaicn

Evaluafion

evaluate(P*(t));
P(t+1) := environmental_selection(P*(t) U Q);
t:i=t+1;

od

20




Optimization Creating Innovation

“*Illustrative Example: Optimize Efficiency
* Initial: -

Hans-Paul Schwefel
while changing nozzle parts

23
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Nozzle Exper/ment (1)

device for clamping nozzle parts

collection of conical nozzle parts

steam plant / experimental setup

24




Nozzle Experiment (V)

the nozzle in operation ...

... while measuring degree of efficiency

25

Evolution Strategy — Basics

% Mostly real-valued search space IR"
 also mixed-integer, discrete spaces
% Emphasis on mutation
 n-dimensional normal distribution
» expectation zero
+ Different recombination operators
+ Deterministic selection
* (U, A)-selection: Deterioration possible
* (u+A)-selection: Only accepts improvements
“ A >>, i.e.: Creation of offspring surplus

)
0’0

27
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The Simple (1+1)-ES

t:=0;
initialize P(0) :={Z(0)} €I, I = IR", ¥ = (z1,...,2y);
evaluate P(0) : {f(Z(0))}
while not terminate(P(t)) do
mutate: 7'(t) ;= m(Z(t))
where 2} ;= x; 4+ 0o(t) - N;(0,1) Vi € {1,...,n}
evaluate: P'(t) :={&)}: {f(@ ()}
select: P(t+ 1) := sq41)(P(t) U P'(1));

t=t+1;
if (t mod n = 0) then
o(t—n)/c ,ifpe>1/5
o(t)y:=4q o(t—n)-c ,if ps<1/5
o(t—mn) ,if p,=1/5

wherep; is the relative frequency of successful
mutations, measured over intervals of,
say, 10 -n trials;
and 0817<c¢<1;
else
o(t)  =o(t—1);
fi

s ©°d 2

Representation of search points

4 Simple ES with 1/5 success rule:
4 Exogenous adaptation of step size o
4 Mutation: N(0, o)

a=(x,...x,)

4 Self-adaptive ES with single step size:
4 One o controls mutation for all x;
4 Mutation: N(0, o)

a=((x,...,x,),0)

28




Representation of search points

4 Self-adaptive ES with individual step sizes:
4 One individual o, per x;
4 Mutation: N,(0, o))

4 Self-adaptive ES with correlated mutation:
4 |Individual step sizes
4 One correlation angle per coordinate pair
4 Mutation according to covariance matrix: N(0, C)

G = ((X30005%,)5 (G y000s G s (@ yeees U1 12)

29

Operators: Mutation — one s

4 Self-adaptive ES with one step size:
4 One o controls mutation for all x;
4 Mutation: N(0, o)

/ Individual before mutation |
a=((x,.sX,),0) Individual after mutation |

—7 — ,,..., ’ , O_/
@ , ((xl x") ) A/} 1.: Mutation of step sizes |
o’ =0-exp(z,-N(0,1))

x =x,+0"-N,01
2.: Mutation of objective variables
Here the new ¢* is used!

31
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Evolution Strategy:

Algorithms
Mutation

30

Operators: Mutation — one o

4 Thereby 1, is the so-called learning rate
4 Affects the speed of the o-Adaptation
4 7, bigger: faster but more imprecise
4 7, smaller: slower but more precise
4 How to choose 1,7
< According to recommendation of Schwefel*:

1
Ty=—

\n
*H.-P. Schwefel: Evolution and Optimum Seeking, Wiley, NY, 1995.

32




Operators: Mutation — one o

O equal probability tc place en offspring

- Tﬁ Position of parents (here: 5)

Contour lines of
objective function

.| Offspring of parent lies on
| the hyper sphere (for n > 10);
Position is uniformly distributed

33

Operators: Mutation — individual o;

4 Self-adaptive ES with individual step sizes:
< One o, per x;

4 Mutation: N,(0, o,) / Individual before Mutation
_ Individual after Mutation
a=((x,...,x,),(0,...,0,))

T e ((xl',...,x;),(df,-.-,d;)l/ 1.: Mutation of

, , individual step sizes
o, =0, exp(t -N(0,)+7-N,(0,1))

X =x+0;:N,(0,])
2.: Mutation of object variables

The new individual c;* are used here!

35
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Pros and Cons: One o

4 Advantages:

4 Simple adaptation mechanism

4 Self-adaptation usually fast and precise
4 Disadvantages:

4 Bad adaptation in case of complicated
contour lines

4 Bad adaptation in case of very differently
scaled object variables
4-100<x;<100 ande.g. -1 <x; < 1

34

Operators: Mutation — individual o;

4 7 7' are learning rates, again
4 7. Global learning rate
4 N(0,1): Only one realisation
4 7: local learning rate
4 N,(0,1): n realisations
4 Suggested by Schwefel*:

*H.-P. Schwefel: Evolution and Optimum Seeking, Wiley, NY, 1995.
36




Operators: Mutation — individual o;

() oqua prebabiliy to plac an ofispring

e ‘ T

P
C (Y it
/ S L
| / /

X! Offspring are located on the
hyperellipsoid (fur n > 10);
:| position equally distributed.
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Operators: Correlated Mutations

4 Self-adaptive ES with correlated mutations:
4 Individual step sizes
4 One rotation angle for each pair of coordinates

4 Mutation according to covariance matrix: N(0, C)
Individual beforg

a = (X505 %,), (0150450, )5 (Q 505 1y 12))

+— | mutation
1.: Mutation of

Individual after | |

a' = (X000 %,),(071000s O (O] Oy 1))

Individual step sizes

o, =0, exp(7’ - N(0,1)+ - N,(0,1))
= aj v '8 N J (O’l) 3.:.Mutation of object variables

’
7
X =x+ N(,C’ New convariance matrix C* used here!
39
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Pros and Cons: Individual o;

4 Advantages:
4 [ndividual scaling of object variables

4 Increased global convergence reliability
4 Disadvantages:
4 Slower convergence due to increased

learning effort
4 No rotation of coordinate system possible
4 Required for badly conditioned objective function

38

Operators: Correlated Mutations

4 Interpretation of rotation angles o
4 Mapping onto convariances according to

1 2 2
Ciitins) = 2 (o7 —0o;)tan(2e;)
AX4

Oy
04

40




Operators: Correlated Mutation
4 ¢ 1 B are again learning rates
4 1,1 as before

4 3 =0,0873 (corresponds to 5 degree)
4 Qut of boundary correction:

|a’|>7r:a’ea’—27r ign(a’)
i AN SIgna;

41

Operators: Correlated Mutations

4 How to create N(0,C")?
4 Multiplication of uncorrelated mutation vector
with  n(n-1)/2 rotational matrices

i=l j=it+l

4 Generates only feasible (positiv definite)
correlation matrices

43
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Correlated Mutations for ES

O equal probability to place an offspring

JTHITT ' Position of parents (hier: 5)

/ [ o |
/ N A | J Contour lines
S 1

Offspring is located on the
Rotatable hyperellipsoid

| (for n > 10); position equally
S distributed.

42

Operators: Correlated Mutations

4 Structur of rotation matrix

1

1 0
cos(a;) —sin(e;)
R(a;) = 1

sin(e;) cos(a;)

0 1

44




Operators: Correlated Mutations

4 |mplementation of correlated mutations

nq := n(n-1)/2;
for i:=1 to n do

Generation of the uncorrelated
ouli] :=oli] = N;(0,1); mutation vector

for k:=1 to n-1 do

nl = n-k;
n2 = n;
for i:=1 to k do
d1 := ou[nl]; d2:= ouln2];
ouln2] := dl*sin(alngl)+ d2*cos(alnql):
ou[nl] := dl*cos(alng]l)- d2#¢sin(alngl);
n2 1= n2-1;
nq = ng-1;
od
od _

45

Operators: Mutation — Addendum

4 Generating N(0,1)-distributed rnd numbers?

u=2-U[0,))—1
v=2-U[0,])~1
B
Wy X, % ~ N(O,D)
5 =a /M
W Ifw> 1
" —2log(w)
w

47
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Pros and Cons: Correlated
Mutations

4 Advantages:
4 |Individual scaling of object variables
4 Rotation of coordinate system possible
4 Increased global convergence reliability
4 Disadvantages:
4 Much slower convergence
4 Effort for mutations scales quadratically
4 Self-adaptation very inefficient

46

Evolution Strategy:

Algorithms
Recombination

48




Operators: Recombination

4 Only forpu > 1
4 Directly after Selection
4 [teratively generates A offspring:

for i:=1 to A do
choose recombinant rl uniformly at random
from parent_population;
choose recombinant r2 <> rl uniformly at random
from parent population;
offspring := recombine(rl,r2);
add offspring to offspring_population;
od

49

Operators: Recombination

4 |ntermediate recombination:
4 Variable at position i is arithmetic mean of

Parent 1 and Parent 2, position i.
-J

\

(x,l,1 +x,2,1)/2

7,1
xrz,l

51
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Operators: Recombination

4 How does recombination work?
4 Discrete recombination:

4 Variable at position i will be copied at
random (uniformly distr.) from parent 1 or
parent 2, position i.

L

50

Operators: Recombination

4 Global discrete recombination:

4 Considers all parents m

|




Operators: Recombination
4 Global intermediary recombination:

T 4 Considers all parents

b,

1
/e =

Operators: (u+1)-Selection

\q = New solution candidate }J

4 (u+))-Selection
4 L parents produce A offspring by

4 (Recombination +)
4 Mutation

Recombination may be left out
Mutation always exists!

4 These p+A individuals will be considered together

4 The u best out of u+A will be selected (,survive®)
4 Deterministic selection

4 This method guarantees monotony
4 Deteriorations will never be accepted

55
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Evolution Strategy

Algorithms
Selection

54

Operators: (u,A)-Selection

4 (u,A)-Selection means:

4 1 parents produce A >> u offspring by
4 (Recombination +)
4 Mutation

2\ offspring will be considered alone

4 The p best out of A offspring will be selected
4 Deterministic selection

4 The method doesn‘t guarantee monotony
4 Deteriorations are possible

4 The best objective function value in generation r+1
may be worse than the best in generation r.

56




Operators: Selection

Parents don‘t survive ...
arents dqn't surviver |

[}
ol Examp|e: (2,3)_Se|ectioa7 ... but a worse offspring.

o - , 7&' ~a) )
g / g+1 g+2 s

° Xy o -
RS X o

v

... now this offspring survives

“*Example: (2+3)-Sele)J4mK

T o/ e
’ o/’4 9! o} > 9+ o Ter
Evolution Strategy:
Self adaptation of
step sizes

59
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Operators: Selection

% Possible occurre of selection
» (1+1)-ES: One parent, one offspring, 1/5-Rule
* (1,A)-ES: One Parent, A offspring
— Example: (1,10)-Strategy
— One step size / n self-adaptive step sizes
— Mutative step size control
— Derandomized strategy
* (WA)-ES: u > 1 parents, A > u offspring
— Example: (2,15)-Strategy
— Includes recombination
— Can overcome local optima
* (u+A)-strategies: elitist strategies

58

Self-adaptation

4 No deterministic step size control!
4 Rather: Evolution of step sizes
4 Biology: Repair enzymes, mutator-genes
4 Why should this work at all?
4 Indirect coupling: step sizes — progress
4 Good step sizes improve individuals
4 Bad ones make them worse
4 This yields an indirect step size selection

60




Self-adaptation: Example

4 How can we test this at all?

4 Need to know optimal step size ...
4 Only for very simple, convex objective functions

4 Here: Sphere model

f@=Y (-5

4 Dynamic sphere model
4 Optimum locations changes occasionally

61

Self-adaptation

4 Self-adaptation of one step size
4 Perfect adaptation
4 |_earning time for back adaptation

proportional n

4 Proofs only for convex functions

4 |ndividual step sizes
4 Experiments by Schwefel

4 Correlated mutations

4 Adaptation much slower

280

‘ Objective function value

Self-adaptation: Example

According to theory
/ of optimal step sizes

L Wb LR R ol | %
‘ .: ;\' 4 \LI ; “‘l‘ ' \\.\- \ ) k;l\ V|2 \-
( N [ W A\ b A X
L H ) R \ M !

... and smallest step size
"~ | measured in the population|

62

Evolution Strategy:

Derandomization

64




Derandomization Derandomzed (1,4)-ES

4 Goals: 4 Current parent: ¥¢ in generation g
4 Fast convergence speed 4 Mutation (k=1,...,4): Offspring k
4 Fast step size adaptation Global step size in generation g ‘
4 Precise step size adaptation Xy =x*+0°- 0L Z
“C - : locit Z=(z2) 5= NOD
ompromise convergence velocity —
convergence reliability \ Individual step sizes in generation g ‘

4 |dea: Realizations of N(0, 6) are important!

4 Step sizes and realizations can be much
different from each other coH

4 Accumulates information over time

4 Selection: Choice of best offspring

« —— Best of A offspring
in generation g

_'xN

65 66

Derandomized (1,1)-ES Derandomized (1,4)-ES

4 Accumulation of selected mutations: 4 Step size adaptatlon/I:
B

- - The particular mutation vector.
g _ g-1 — ’
Zi=(1-0c)Z; +c- Zsel which created the parent!

4 Also: weighted history of good mutation vectors!

4 |nitialization:

20 =0

. 1
4 Weight factor: c =ﬁ

67 68
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Derandomized (1,4)-ES

4 Explanations:

4 Normalization of average variations in case of
missing selection (no bias):

c
2—c

4 Correction for small n: 1/5n)

A i .
Learning rates: ,B=\/m
ﬁscalzl/n

69

Some Theory Highlights

A Convergence veIocity: Problem dimensionality
o~1/n

Speedup by A is just logarithmic —
more processors are only to a
limited extend useful to increase

Q.

4 For (1,A)-strategies:

¢o~Ind

4 For (u,A)-strategis (discrete and intermediary

recomblnatlon) Genetic Repair Effect

of recombination!

A
¢~ uin”
U

71
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Evolution Strategy:

Rules of thumb

70

4 For strategies with global intermediary
recombination:

" 2 n
A=4+ |_3 log I’IJ 10 1091 5.45
20 1299 6.49
M= |_ﬂ'/2J 30 1420 7.10
40 15.07 7.53
4 Good heuristic for (1,A): 5 Il
70 1675 837
80 17.15 857
%0 17.50 875
ﬂ =10 100 17.82 891
110 18.10 9.05
B General: 120 1836 9.18
130 18.60 9.30
140 18.82 9.41
A= 7/'1 150 19.03 9.52

72




And beyond CMA-ES ...

“*Many strategy variations since 1996

1996 (jwr, \-CMA-FS
LS-CMA-ES

LR-CMA-ES
- Y

@ 1)-Cholesky-CM. \rrg ( Active-OM \,]{Sj Imm-CMA-ES
sep-CMA-ES

NES

C <NES J@ I)-Amve-C\IA-ESj ( (1J_r)\}’n)'ES ) (ulnnn—CI\'IA—ES )

SPO-CMA-TIS C(“".‘ Xiid + Am )—FS) @—s(‘p—lmul—CM;\—ES)

2012 73

(11, A)-CMSA-ES

Mixed-Integer Evolution Strategy
“*Generalized optimization problem:

fCri, .o e 21,000y 20, de, oy dpy) — man
subject to:
i € [P rMTI C R, i =1,...,np
z € [ 2N C Ly, i =1,...,n;

diEDiz{di,la"'adi,|D7¢[}ai= 1,...,n4

75
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Mixed-Integer
Evolution Strategies

74
Mixed-Integer ES: Mutation
fori=1,...,n do
s; — sjexp(TsNg H 7iN{0, 1))
=+ N(0, 37)
end for
fori=1,...,n: do
a < arexplryMNg | 7N(D, 1))
zi «€ z; + G{0, g}
end for
phi= 1/[1 + 222w exp(—7 * N(0, 1))]
g forie {1,...,ng} do
if U(0.1) < p; then
dj « uniformly randomly value from I,
end if
end for 76




Some Application Examples

Mostly Engineering Problems

77

IKB: Previous Designs

# Variables Characteristics Left foot load Right foot load P compined

Unconstrained

576,324 44,880

Unconstrained 384,389 41,460 4707 4704 8,758
Unconstrained 292,354 38,298 5573 5498 6,951
Constrained 305,900 39,042 6815 6850 7,289

79
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Examples I:

Inflatable Knee Bolster Optimization
T o maxe <>
slelel el Blo =L Initial position of knee bag model deployed knee bag (unit only)

~ Tether FEM #5 Tether
Wz Volume of 14L ; y

Load distribution
Support plate plate FEM #3

FEM #4
\

Support —

Knee bag plate ;

FEM #2
Straps are defined in knee bag(FEM #2)

N

Load distribution
\ plate

| Vent hole

78
IKB: Problem Statement
.
< Objective: Min Ptotal Subject to: Left Femur load <= 7000
Right Femur load <= 7000

Design Variable Description Base Design 1  Base Design2  GA (Yan Fu)

dx IKB center offset x 0 0 0,01
dz IKB center offset y 0 0 -0,01
redex KB venting area ratio 1 1 2
massrat KB mass inflow ratio 1 1 15
redexd DB venting area ratio 1 1 25
Dmassratf DB high output mass inflow ratio 1 1 1,1
Dmassrat! DB low output mass inflow ratio 1 1 1
dbfire DB firing time 0 0 -0,003
dstraprat DB strap length ratio 1 1 15
emr Load of load limiter (N) 3000 3000 2000

Response ipti
NCAP_HIC_50 HIC 590 555.711 305.9
NCAP_CG_50 CG 47 47.133 39,04
NCAP_FMLL_50 Left foot load 760 6079 6815
NCAP_FMRL_50 Right foot load 900 5766 6850
P combined (Quality) 13.693 13.276 7.289
80




IKB Results |I: Hooke-Jeeves

0,105

0,1

0,095

P combined

o
[=3
o

0,085 -

0,08

- A MO ¥ D O N OO - N O T 0
- A O ¥ 1 © ~N ® O - N O T 0

Simulator Calls

Quality: 8.888  Simulations: 160

81

Engineering Optimization

83
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IKB Results II: (1+1)-ES

Simulator Calls

Quality: 7.142  Simulations: 122

82

Safety Optimization — Pilot Study @

< Aim: Identification of most appropriate
Optimization Algorithm for realistic example!

% Optimizations for 3 test cases and 14 algorithms
were performed (28 x 10 = 280 shots)
* Body MDO Crash / Statics / Dynamics
+ MCO B-Pillar
*  MCO Shape of Engine Mount

% NuTech’s ES performed significantly better than
Monte-Carlo-scheme, GA, and Simulated
Annealing

< Results confirmed by statistical hypothesis
testing

84




MDO Crash / Statics / Dynamics

+« Minimization of body mass

+» Finite element mesh
» Crash ~ 130.000 elements
~ 90.000 elements

“ Independent parameters:
Thickness of each unit: 10¢

* NVH

«» Constraints: 18

Algorithm | Avg. reduction (kg) | Max. reduction (kg) | Min. reduction (kg)
Best so far -8.3 -3.3
Our ES -9.0 -13.4

85

MCO B-Pillar — Side Crash

+ Minimization of mass &
displacement
++ Finite element mesh
+ ~300.000 elements

“ Independent parameters:
Thickness of 10 units

«+ Constraints: 0 i““za; .
2] T
< ES successfully =1 "R
developed Pareto front : ha

T
Mass

86

MCO Shape of Engine Mount

% Mass minimal shape with
axial load > 90 kN

+ Finite element mesh
* ~ 5000 elements
“ Independent parameters:
9 geometry variables
“ Dependent parameters: 7
% Constraints: 3
% ES optimized mount

+ less weight than mount optimized
with best so far method

+ geometrically better deformation

87

Safety Optimization — Example

¢ Production Run !

+ Minimization of body mass 33‘*’"“3*¢ ﬁ E

¢ Finite element mesh

........

- Crash ~ 1.000.000 elements S @ ﬂ

lowspeed

« NVH ~ 300.000 elements
+ Independent parameters:
» Thickness of each unit: 136
+ Constraints: 47, resulting from various loading
cases
+ 180 (10 x 18) shots ~ 12 days

++ No statistical evaluation due to problem
complexity

eeeeee
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Safety Optimization — Example of use
Our Evolution Strategy

Initial Value

Mass

Am =-13.5 kg

Generations

% 13,5 kg weight reduction by NuTech’s ES

+ Beats best so far method significantly

% Typically faster convergence velocity of ES
~ 45% less time (~ 3 days saving) for comparable quality
needed

+ Still potential of improvements after 180 shots.

+“ Reduction of development time from 5 to 2 weeks allows for
process integration

89

Dielectric Filter Design Problem

h

Dielectric filter design.
CORNING .. 4 n=40 layers assumed.
Layer thicknesses xi in [0.01,
Comi 10.0].
orning, Inc., . . .
Coming,NY 4 Quality function: Sum of quadratic
penalty terms.

A

Client:

P . 2
calculated—desired .
—— | > min

>
I TR ot
quality= E weight -

= \ scale

A

Penalty terms = 0 iff constraints
satisfied.
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Optical Coatings:
Design Optimization

< Minimizé deviation from desired reffection
+“ Excellent synthesis method; robust and reliable results.
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Results: Overview of Runs
« Factor 2 in quality.
« Factor 10 in effort.
+ Reliable, repeatable
results. i e e —

| 131 ES- BT -
: 5 25 EE B iy ——

arror

Benchmark

0o

L . . . L . .
O o7 PaslF 2as07 da07 Se0T Bo407 TeuOT Saw0T
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Problem Topology Analysis:
An Attempt

+ Grid evaluation for 2 variables.
+ Close to the optimum (from vector of quality 0.0199).
+ Global view (left), VS. Local view (right).
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Bridgman Casting Process

Global Quality

> 100
- 90

> 20 ~ N
> 10
Initial (DoE) GCM(Commercial
Gradient Based Method) Evolution Strategy

~
Turbine Blade

after Casting

Quality Comparison of the Initial and Optimized Configurations
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Bridgman Casting Process

18 Speed Variables
(continuous) for
’ Casting Schedule
Ly

Atatecials+
Processes

Turbine
Blade /
e after Casting

large problem:
- run time varies: 16 h 30 min to 32 h (SGI, Origin, R12000, 400 MHz)
- ateachrun: 38,3 GB of view factors (49 positions) are treated!
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Traffic Light Control

Generates green times for
next switching schedule.
Minimization of total delay /
number of stops.

Better results (3 — 5%) /
higher flexibility than with
traditional controllers.
Dynamic optimization,
depending on actual traffic
(measured by control loops).

4 Client:
Dutch Ministry of Traffic
Rotterdam, NL
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Elevator Control
FUJITEC

4 Minimization of passenger
waiting times.

4 Better results (3 -5%) /
higher flexibility than with
traditional controllers.

4 Dynamic optimization,
depending on actual traffic.

4 Client:
Fujitec Co. Ltd., Osaka, Japan
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Network Routing

4 Minimization of end-to-end-
blockings under service
constraints.

4 Optimization of routing
tables for existing, hard-
wired networks.

4 10%-1000% improvement.

4 Client:
SIEMENS AG, Minchen
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Metal Stamping Process

4 Minimization of defects in the
produced parts.

4 Optimization on geometric
parameters and forces.

4 Fast algorithm; finds very
good results.

4 Client:
AutoForm Engineering GmbH,
Dortmund
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Nuclear Reactor Refueling

4 Minimization of total costs.

4 Creates new fuel assembly
reload patterns.

4 Clear improvements (1%-
5%) of existing expert
solutions.

4 Huge cost saving.

4 Client:
SIEMENS AG, Miinchen
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Business Issues

“*Supply Chain Optimization
“*Scheduling & Timetabling
“*Product Development, R&D

“*Management Decision Making, e.g.,
project portfolio optimization

++Optimization of Marketing Strategies;
Channel allocation

«*Multicriteria Optimization (cost / quality)

... And many others
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Leiden Institute of Advanced Computer
Science (LIACS)

4 See and

4 Masters in
4 Comp. Science
4 |CT in Business
4 Media Technology

4 Elected ,Best Comp. Sci. Study*“ by students.
4 Excellent job opportunities for our students.
4 Research education with an eye on business.
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Exciting Literature ...

Evolutionary
Computation 1

Evolutionary |
Computation 2
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LIACS Research ’a

. Algorithms e

~&  Prof. J.N. Kok, Prof. T. Back

* Novel Algorithms

+ Data Mining

+ Natural Computing

* Applications

L « Drug Design
* Medicine

Technology and « Engineering Core Computer

Innovation Management ollagEilEs Technologies
Prof. B. Katzy + Physics Prof. H. Wijshoff, Prof. E. Deprettere

* Coevolution of Technology and * Embedded Systems
Social Structures « Parallel/ Distributed Computing
« Entrepreneurship « Compiler Technology
* Innovation Management

Synergies &

Collaboration + Data Mining

Foundations of

Software Technology
Prof. F. Arbab, Prof. J.N. Kok

* Software Systems

+ Embedded Systems

« Service Composition

* Multicore Systems

« Formal Methods

« Coordination / Concurrency

Imagery and Media
Dr. M. Lew, Dr. F. Verbeek

* Computer Vision and Audio/Video
« Bioimaging

+ Multimedia Search

« Internet Technology

+ Computer Graphics

e Leiden Institute of Advanced Computer Scient%
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