
High Resilience in Robotics
with a Multi-Objective Evolutionary Algorithm

Sylvain Koos
syvlain.koos@gmail.com

Antoine Cully
cully@isir.upmc.fr

Jean-Baptiste Mouret
mouret@isir.upmc.fr

ISIR, Université Pierre et Marie Curie-Paris 6, CNRS UMR 7222
4 place Jussieu, F-75252, Paris Cedex 05, France

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Artificial Intelligence—
Learning ; I.2.9 [Computing Methodologies]: Artificial
Intelligence—Robotics

General Terms
Algorithms

Keywords
Evolutionary Robotics; Resilience; Legged robot; Recovery

1. INTRODUCTION
Damage recovery is critical for autonomous robots that

need to operate for a long time without assistance. Most
current methods are complex and costly because they re-
quire anticipating each potential damage in order to have a
contingency plan ready.

An alternative line of thought is to let the robot learn on
its own the best behavior for the current situation. If the
learning process is open enough, then the robot should be
able to discover new compensatory behaviors in situations
that have not been foreseen by its designers. Classic rein-
forcement learning algorithms are hard to apply to low-level
robotic problems [11], but evolutionary algorithms (EAs) are
good candidates to find original solutions because they can
optimize in the continuous domain and work on the struc-
ture of controllers, for instance by evolving neural networks.

When evolving controllers for robots, EAs are reported to
require many hundreds of trials on the robot and to last from
two to tens of hours (e.g. [5, 12]). These EAs spend most
of their running time in evaluating the quality of controllers
by testing them on the target robot. Since, contrary to
simulation, reality cannot be sped up, their running time
can only be improved by finding strategies to evaluate fewer
candidate solutions on the robot.

By first learning learning a self-model for the robot, then
evolving a controller with this simulation, Bongard et al. [1]
designed an algorithm for resilience that makes an impor-
tant step in this direction. Nevertheless, this algorithm has
a few important shortcomings. First, actions and models are
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Figure 1: (A) The hexapod robot is not damaged.
(B) The left middle leg is no longer powered. (C)
The terminal part of the front right leg is shortened
by half.

undirected: the algorithm can “waste” a lot of time to im-
prove parts of the self-model that are irrelevant for the task.
Second, it is computationally expensive because it includes
a full learning algorithm (the second stage, in simulation)
and an expensive process to select each action that is tested
on the robot. Third, there is often a “reality gap” between a
behavior learned in simulation and the same behavior on the
target robot [6], but nothing is included in Bongard’s algo-
rithm to prevent such gap to happen: the controller learned
in the simulation stage may not work well on the real robot,
even if the self-model is accurate. Last, one can challenge
the relevance of calling into question the full self-model each
time an adaptation is required, for instance if an adaptation
is only temporarily useful.

Our algorithm is inspired by the“transferability approach”
[9], whose original purpose is to cross the “reality gap” that
separates behaviors optimized in simulation to those ob-
served on the target robot[6]. The main proposition of this
approach is to make the optimization algorithm aware of
the limits of the simulation. To this end, a few controllers
are transferred during the optimization and a regression al-
gorithm (here a SVM) is used to approximate the function
that maps behaviors in simulation to the difference of perfor-
mance between simulation and reality. To use this approxi-
mated transferability function, the single-objective optimiza-
tion problem is transformed into a multi-objective optimiza-
tion in which both performance in simulation and transfer-
ability are maximized. This optimization is performed with
a a multi-objective evolutionary algorithm (NSGA-II, [2]).

The same concepts can be applied to design a fast adap-
tation algorithm for resilient robotics, leading to a new al-
gorithm that we called “T-Resilience” (for Transferability-
based resilience). If a damaged robot embeds a simulation
of itself, then behaviors that rely on damaged parts will not
be transferable: they will perform very differently in the
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Figure 2: Performances (distance covered in 3 sec-
onds) obtained in case B (top) and C (bottom). On
each box, the central mark is the median, the edges
of the box are the 25th percentile and the 75th per-
centile. The whiskers extend to the most extreme
data point which is no more than 1.5 times the
length of the box away from the box. Each algorithm
has been run 5 times and distances are measured
using the external motion capture system. Except
for the T-Resilience, the performance of the con-
trollers found after about 25 transfers (tests) and
after about 20 minutes (time) are depicted (all T-
Resilience experiments last about 20 minutes and
use 25 transfers). The horizontal lines denote the
performances of the reference gait, according to the
CODA scanner (dashed line) and according to the
SLAM algorithm (solid line).

self-model and in reality. During the adaptation process,
the robot will thus create an approximated transferability
function that classifies behaviors as “working as expected”
and “not working as expected”. Hence the robot will pos-
sess an “intuition” of the damages but it will not explicitly
represent or identify them. By optimizing both the trans-
ferability and the performance, the algorithm will look for
the most efficient behaviors among those that only use the
reliable parts of the robots. The robot will thus be able
to sustain a functioning behavior when damage occurs by
learning to avoid behaviors that it is unable to achieve in
the real world. Besides this damage recovery scenario, the
T-Resilience algorithm opens a new class of adaptation al-
gorithms that benefit from Moore’s law by transferring most
of the adaptation time from real experiments to simulations
of a self-model.

2. EXPERIMENTS
We evaluate the T-Resilience algorithm on an 18-DOFs

hexapod robot that needs to adapt to motor failures and

broken legs (figure 1); we compare it to stochastic local
search [4], policy gradient [7] and Bongard’s algorithm [1].
The algorithms are implemented in the Sferesv2 framework [10].
The behavior on the real robot is assessed on-board thanks
to a RGB-D sensor coupled with a state-of-the-art SLAM
algorithm [3]. For each experiment, a population of 100
controllers is optimized for 1000 generations. Every 40 gen-
erations, a controller is randomly selected in the population
and transferred on the robot.

Using only 25 tests on the robot and an overall running
time of less than one hour on a recent laptop, T-Resilience
consistently leads to substantially better results than the
other approaches (figure 2).

Videos: http://youtu.be/xbizdSB00Fs

http://pages.isir.upmc.fr/~mouret/t_resilience/
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