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ABSTRACT
The work presented here is concerned with the evolution
of altruistic behaviour in a population of agents subject
to an open-ended evolutionary process. In this context, it
is well known that genotypic relatedness plays a key role
with respect to the level of altruism that can be observed.
Such relatedness may be enforced through particular selec-
tion mechanism (e.g. kin-recognition) as well as particular
dispersion strategies (e.g. low dispersion favours local in-
teractions). This paper presents results on the importance
of the evolution of particular dispersion strategies whenever
consumption strategies are enforced. A key result from this
paper is that whenever altruism is difficult to display when
consuming food (i.e. being unable to share while eating),
higher dispersion behaviour are evolved, which is a counter-
intuitive result at first sight.
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1. INTRODUCTION
Altruism can be observed whenever a specific individual

in a population deliberately sacrifices part of its own fit-
ness in order to increase the fitness of other individuals [4].
Several theories have been proposed to explain this type of
behaviour and its particular properties with respect to other
kind of cooperative behaviours [6]. The well-accepted the-
ory of inclusive fitness, as proposed in [3, 5] hypothesises
the importance of genotypic relatedness as a key element to
explain self-sacrifice.
In this paper, we are interested in a particular mechanism

that can act on the altruistic level displayed within a pop-
ulation: the evolution of spatial dispersion. Indeed, spatial
behaviours can act indirectly on the level of genotypic relat-
edness, and may be considered as favouring higher levels of
altruism whenever dispersion is low (i.e. leading to local in-
teractions). However, there is a trade-off between favouring

such local interactions and the ability to gather food in the
environment.

The rest of the paper investigates such a trade-off, where
consumption behaviour and dispersion behaviour are consid-
ered. In particular, counter-intuitive results are presented,
where dispersion is increased rather than decreased when-
ever food consumption makes it difficult to share, which is
expected to weaken altruism. That is the evolution of dis-
persion behaviours does not always compensate for selfish or
altruistic consumption behaviour, as one may have hypoth-
esised.

2. EXPERIMENTAL SETUP
The setup used in this work features simulated robotic

agents (equipped with limited batteries) which must har-
vest energy from the environment in order to maintain their
integrity. Each robotic agent consumes a fixed amount of
energy at each iteration. Food items are randomly placed
in the environment. Once a food item has been harvested it
becomes unavailable for a defined time named regrow delay,
linearly proportional to the energy consumed.

Open-ended Evolutionary Algorithm
The mEDEA algorithm was initially introduced in [1]. It
performs as an evolutionary adaptation algorithm that can
be distributed over a population of robotic agents and is
solely driven by environmental pressure (rather an explicit
fitness function). In this setup, each agent may interact only
with neighbouring agents. At the end of pre-determined life-
time, a random selection is performed among the genomes
gathered from other agents, and a gaussian mutation is ap-
plied. As a results, a particular genome is successful only
if it manages to both avoids the pitfalls of the environment
and maximizes the number of encounters with other agents.
Please refer to [2] for a full description.

Measure of Spatial Dispersion
In order to characterize an agent’s behaviour, its dispersion
is monitored by counting the number of locations visited. To
do so, the environment is divided into a grid of cells. At the
end of a generation, an approximation of the area covered
by an agent is computed thanks to Equation 1 (the equation
is applied only on the grid of the concerned agent).

AreaCovered =
#V isitedCells

#Cells ∗ lifetime
(1)
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Modification of Consumption Strategies
It has been show that altruistic behaviours are linked to
strong genotypic relatedness. This relatedness can be en-
forced by low spatial dispersion. In this paper we are investi-
gating how different spatial dispersion strategies are evolved
with regards to enforced consumption strategies.
An agent’s consumption strategy corresponds to the en-

ergy taken from energy point. In this work a consumption
strategy is determined by the cost paid by agents (i.e. the
energy not consumed from an energy point).
The energy taken by agents is computed from the cost

imposed to them by Equation 2.

Etaken = max(0,min(EPeMax , rEmax −rEnow )−Cost) (2)

Where EPeMax is the maximal energy in a food item,
rEmax is the maximal energy level of an agent, rEnow is
the current energy level of the agent, Etaken is the energy
consumed by the agent from the food item. If Cost is equal
to 0 agents will display a selfish behaviour.
If Cost is equal to EPeMax agents will display a maximally

altruist behaviour.

Implementation
A multi-layer perceptron is used to encode the controller of
each robot. The input layer is composed of 12 inputs (8
for distance sensors, 1 for the direction to the closest energy
point, 1 for the distance to the closest energy point, 1 for
the battery level, 1 for the presence of an energy point under
the agent), the hidden layer is composed of 5 neurons, and
the output layer is composed of three neurons (1 for the
rotational speed, 1 for the translational speed, and 1 for the
amount of energy consumed). The weights of the MLP are
decoded from the active genome of the agent.

3. RESULTS
20 runs are performed in environments where the pres-

sure is low (EPLagMax = 25 iterations) until the 400000th

iteration. After this threshold, the environmental pressure
is increased (by a fix amount of 80 iterations) every 4000
iterations (10 theoretical generations) until the extinction
of the population. Two cases are studied: when the cost is
fixed to 5 and when the cost is fixed to 40.
In order to compare the behaviours evolved we measure

the spatial dispersions of agents when they are placed in
the same environment. It features, a cost fixed to 0, a low
environmental pressure (EPLagMax = 25 iterations), and
the absence of genome transmission and selection.
The procedure to measure the spatial dispersion is as fol-

low: 1) Genomes found in one run at iteration 600000 are
randomly sampled to create a new population of 100 indi-
viduals; 2) This population is embodied in 100 robots; 3)
The spatial dispersion is measured during 40000 iterations.
This procedure is used 20 times per run. The median results
for each cost are presented in Figure 1.
Figure 1 provides counter-intuitive results as it would be

expected that an egoistic consumption strategy (cost=5) is
compensated by an altruistic dispersion strategy (i.e. lower
dispersion). As this is not the case, the reason may be found
in the particular setup at hand: the spatial distribution of
energy points may enforce a higher dispersion whenever the
consumption strategy is egoistic as there are fewer energy
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Figure 1: Area coverage for two consumption strate-
gies.

points available at any moment, making the environment
more challenging (i.e. it is more difficult to bump into an
energy point). Indeed, the number of successful runs with
a more altruistic consumption strategy (i.e. cost of 40) is
higher than for other consumption strategies. Thus, pos-
sibly indicating that enforcing a egoist strategy makes the
survival so difficult that it becomes not possible to com-
pletely compensate for the egoistic consumption strategy by
spatial dispersion.
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