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ABSTRACT 
This paper deals with the formal parametric analysis of an 
evolutionary paradigm inspired in natural evolution, the 
distributed Embodied Evolution (EE). The main drawback of this 
approach is in the high parametric sensitivity it presents, being in 
addition highly task-dependent. With the aim of understanding the 
parameter relevance in different fitness landscapes, in this work 
we present a canonical version of a distributed EE algorithm, 
propose a set of intrinsic parameters that define its response and 
analyze them in eight collective problem landscapes.      

Categories and Subject Descriptors 
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence 
– Multiagent systems 

General Terms 
Algorithms 

Keywords 
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1. INTRODUCTION 
Embodied Evolution (EE) is an evolutionary paradigm 

inspired by Darwinian evolution in terms of the use of 
decentralized and asynchronous open-ended evolution that has 
been developed to solve collective problems [4]. In EE, the 
individuals that make up the population are embodied and 
situated, that is, all of them ”live” in an environment (real or 
simulated) as in the case of ALife and ecology simulations [4]. 

The most active field in the development of EE algorithms 
has been that of robotics [1][2][3], mainly due to the self-
organization and adaptation properties this type of algorithm 
intrinsically presents, which makes it highly suitable for real time 
autonomous systems. Two main approaches have arisen in EE 
algorithms [2]. In one hand, we have encapsulated EE, where 
each individual carries a whole population of controllers and an 
independent evolutionary algorithm runs over it. In the other, the 
distributed EE algorithms follow the original idea from Watson 
[4], and each individual in the population carries only its own 
genotype. Distributed EE algorithms have received less attention 
due to the fact that they require larger populations of robots or 
agents to converge. Nevertheless, they present a high potential 
coming from the dynamics of the complex interactions that occur 
within the population, which lead to the emergence of self-
adaptive cooperative behaviors. Distributed EE algorithms are 
highly sensitive to the configuration parameters [1][2], which 

must be carefully regulated for obtaining valid solutions, and such 
a regulation is highly task-dependent. To face this problem, here 
we present a canonical version of a distributed EE algorithm and a 
set of intrinsic parameters that define its operation.   

2. CANONICAL ALGORITHM  
The canonical distributed EE used here is based in the AsiCo 

(Asynchronous Situated Coevolution) algorithm developed by 
Prieto et al [3]. This algorithm has been reduced to its 
“barebones”, isolating the processes that guide individual 
evolution from the specific scenario. The pseudo-code of the 
resulting canonical distributed EE is the following: 

 

3. INTRINSIC PARAMETERS 
From the analysis of general EE algorithms we have 

extracted that their operation can be decomposed in two 
fundamental processes, mating and replacement. Mating involves 
the sub-processes of evaluating candidates, selecting them and 
combining their genetic codes, and replacement implies the 
creation of a new individual and the elimination of its preceding 
one. As so the following intrinsic parameters has been defined: 

Mating frequency: it is modeled with a uniform probability 
(Pmating) that represents the probability for an individual to find a 
mating candidate in every time step. It is calculated as the inverse 
of the average time between mating, based on the maximum 
lifetime 𝑇!"#  and the maximum number of matings (𝑆!"#): 

𝑃!"#$%& =
1

𝑇!"#$%&
=
𝑆!"#
𝑇!"#

 

Mating selection criteria: in this work the selection criterion 
is based on the relative fitness of the candidates (the individual 
with the best fitness is selected). 
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Genotypic recombination: it is performed as a combination 
of two recombination strategies, a local search operator and a 
bipolar crossover (see [3] for details). It has been defined here as 
the probability of using the local search (Pls). Therefore, the 
crossover probability can be defined as Pcr = 1- Pls. This parameter 
can also be considered as a balance between the exploration 
(crossover) and exploitation (local search) of the recombination.  

Replacement: after a certain number of mating replacement 
occurs and that event is triggered based on a probability Prep based 
on the expected lifetime (Texp): 𝑃!"# =

!
!!"#

 

With Texp being defined as a piecewise function based on the 
current fitness of the individual (Qi) using a linear model. It 
introduces two new parameters, the minimum lifetime (maturity 
time Tmat) and a 2/3 lifetime coefficient (C2/3) which represents the 
Texp for individuals with a fitness value equal to 2/3 of the 
maximum current fitness (Qmax).  

 
Figure 1: Individual fitness functions. The x-axis represents 

the genotype and the y-axis the fitness value 

4. RESULTS 
The effect of four intrinsic parameters, Tmat, C2/3, Smax and 

Pls, has been studied in detail (Tmax is a time scale parameter and it 
has been fixed to 10000 time steps). A set of random values of 
these four parameters within a predefined range has been 
considered. Tmat was set to be up to 10% of Tmax. Smax ranges 
between 1 and 20 (being 20 the population size in this case). C2/3 
ranges for its whole domain, from 0 to 1. Finally, Pls ranges from 
0 to 1 too, but in the result’s discussion will be presented as a 
percentage. The canonical algorithm has been executed during 
100.000 iterations and repeated five times, up to a total number of 
2000 different parameter configurations. The global fitness is 
calculated as the average of the individual fitness of individuals 
along the whole simulation. 

Figure 1 displays the eight different individual fitness 
functions that were considered, corresponding to tasks requiring 
one species (functions 1 and 2), two (functions 3 and 4), three 
(functions 5 and 6) and three with a sub-optimal one (functions 7 
and 8). In each case, the second function is defined with a narrow 
peak in the optima, making it more complex. The lines displayed 
in Figure 1 represent the individual fitness for different 
configurations of the rest of genotypes: the solid line is obtained 
when the rest of the population is optimally distributed, the dotted 
line corresponds to a randomly created population and the dashed 
line is for a situation in between.  

In Figure 2 we present the overall results obtained for each 
intrinsic parameter in the eight functions. For the sake of clarity, 
only the parameter configurations that produced a fitness value 
greater than the 90th percentile of the whole set of the 2000 runs 
were depicted. As it can be observed, C2/3 must be fixed to a 
higher value as the complexity of the problem is increased 
(functions 2, 4, 6 and 8), leading to a more explorative strategy 
that maintains the worse individuals during a longer period of 
time. Tmat presents an optimal value in its lowest one (Tmat=1), 
being this low sensitivity a very interesting conclusion for us. Pls 
results confirm that, in general, a pure local search strategy 
(Pls>90%) provides better overall results, being crossover highly 
destructive when dealing with species. Finally, Smax is remarkably 
stable in its highest value (Smax=20) meaning that a exploitative 
strategy is better in general, although as the complexity increases 
exploration is beneficial (in the same line as C2/3 behavior). 

 

 

 
Figure 2. C2/3, Tmat, Pls and Smax variation for the eight 
functions of Figure 1 in the configurations with best fitness 

5. CONCLUSIONS 
A canonical version of a distributed Embodied Evolution 

algorithm has been presented together with a set of four intrinsic 
parameters that characterize its response. It has provided formal 
and general conclusions about the parameter influence in this type 
of algorithm over different types of fitness landscapes.  
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