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Instructor / Presentor
Mark Wineberg is an Associate Professor at the 
Univeristy of Guelph. He has been actively researching the 
field of GEC since 1993 while he was still a graduate 
student. Over the years he has published on various topics 
including: the intersection of GA and GP, enhancing the 
GA for improved behavior in dynamic environments 
through specialized multiple populations, and exploring 
the concept of distances and diversity in GA populations. 
Prof. Wineberg also teaches an undergraduate course on 
computer simulation and modeling of discrete stochastic 
systems with an emphasis on proper statistical analysis, as 
well as a graduate course on experimental design and 
analysis for computer science, which is an outgrowth of 
the statistical analysis tutorial given at GECCO.

What Are We Interested In?

• For most statistical analysis for EC the question is
• Is one way better than another way?
• Statistically this translates into a statement about the 

difference between means:  “Is the difference between ‘my 
mean’ and ‘the other mean’ greater than zero?”

• We will approach this question in 2 steps:
1. What can we say about the true mean of a single distribution?

• Called point estimation
2. How can we compare the true means of two or more 

distributions?

Recompute ‘Average’ with 
different samples

2.4
-50 0 50-100 100

• The system has a true mean ... but where is it?
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Recompute ‘Average’ with 
different samples

2.4
-50 0 50-100 100

18.1

• The system has a true mean ... but where is it?

Recompute ‘Average’ with 
different samples

2.4
-50 0 50-100 100

18.1 27.9-3.1

• The system has a true mean ... but where is it?
• Averages change from sample to sample ... 

 they are samples from a random variable

Confidence Intervals

• Can give a range within which it is very likely the true 
mean lies
• Called the confidence interval

• Also should consider the probability that the true mean 
lies with the range
• Called the confidence level

Confidence Interval 
(Formed Around Average)

-50 0 50-100 100

18.1

• True mean probably with confidence interval

[ ]
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Normal (Gaussian) Distribution
• For now we will assume that we are sampling from 

(the results are distributed as) a normal distribution 
• AKA Bell Curve 
• Most common distribution found in nature thanks to the 

Central Limit Theorem

P(X = x;µ,! ) = 1
! 2"

exp(# (x #µ)
2

2! 2 )

Standard Normal Distribution

~X N(µ, ! 2)

~X N(0, 1)

Distribution of the Average 
(of a normally distributed system)

The original distribution Average of 5 samples

Average of 25 samples Average of 100 samples

the variation of the ‘averages’ around the true mean 
is less than

 the variation of the original values around the true mean 

µX = µ

Confidence Intervals

• Of course, we don’t know the true mean,    , or true standard 
deviation,   

• We do know the mean of the samples,    , the sample size, n, and 
the sample standard deviation, 

• If the source distribution is normally distributed, the shape and 
size of the “finger” is known exactly!
• We can determine the odds that the true mean lies within a 

specified range of

Confidence Intervals

• First since     is normally distributed, we can turn it into a 
standard normal distribution
• subtract off the mean to zero it
• divide by the std deviation to give it a std deviation of 1

• also gives a variance of 1

Z =
X ! µX

" X

=
X ! µX

" X

n
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t Distribution

• Want to find µ the true mean in terms of the average
• But we have not one but two unknowns - ! is also unknown
• One equation - two unknowns - not good!!!
• Trick - divide by the known sample standard deviation s instead of ! 

•  But now we have a normally distributed numerator divided by 
a non-normally distributed denominator
• Denominator has a chi distribution
• A normal distribution over a chi distribution 

has a Student’s t distribution

T =
X ! µX

sX
=
X ! µX

sX
n

t Distribution

• The t “distribution” is really a family of distributions – the 
shape of the distribution changes as the number of samples, n, 
changes
• This parameter is called the 

degrees of freedom of the 
distribution

• In the limit of many d.f.,
t distribution approaches 
a standard normal 
distribution

4 d.f.; n = 5
9 d.f.; n = 10

99 d.f.; n = 100

0

95%

2.01-2.01

0 2.68-2.68

99%

Estimating the Mean:
Confidence Intervals Around the Average

If samples taken from a standard normal distribution (µ = 0, ! = 1), 
the sample average has a t distribution. 

99.9%

0 3.50-3.50

• For CI, we can use cutoff t values
• The wider the cutoff values, the more 

likely the true mean lies between them

Based on n = 50 runs

t0.025, 49 = 2.01

• Cut off            values can be computed 
using Excel:    =TINV(", n - 1)
using R: ! > qt(1-"/2, n - 1)

t!
2 , n"1

t0.005, 49 = 2.68

t0.0005, 49 = 3.50

• " is the probability of 
seeing values outside the cutoffs
• Confidence Level is 1 – "

! = 0.05
n = 50

! = 0.01
n = 50

! = 0.001
n = 50

Estimating the Mean:
Confidence Intervals Around the Average

• We know that 

which can be rewritten as

cutoff t-values we can form a Confidence Interval

that has a 1 - " C.L with n - 1 degrees of freedom

• Substituting the cutoff values from the C.I. into the above equation produces

• Using the

±t!
2 , n"1

= X " µX

sX
n

µX = X ± t!
2 , n"1

sX
n

± t!
2 , n"1
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Estimating the Mean:
Confidence Intervals Around the Average

• Confidence Intervals can be written in 3 equivalent ways

Error Bounds

Confidence Intervals

µX = X ± t!
2 , n"1

sX
n

X ! t"
2 , n!1

sX
n
# µX # X + t"

2 , n!1

sX
n

µX ! X " t#
2 , n"1

sX
n
, X + t#

2 , n"1

sX
n

$
%&

'
()

Estimating the Mean:
Confidence Intervals Around the Average

Example: 
• An experimenter runs a New Evolutionary  Algorithm on a TSP
• At the end of each run, the smallest length tour 

that had been found during the run was recorded
• NEA is run 50 times on the same TSP problem
• On average NEA found solutions with a tour length of 272 
• The standard deviation of these tours is 87
• We want to compute a Confidence Interval using a 99% Confidence level

Estimating the Mean:
Confidence Intervals Around the Average

• From the problem we know that the average NEA run produced tours of

with a 99% C.L.

so the ±t cutoff value is
using Excel/R we see that TINV(0.01, 49) = qt(0.995, 49) = 2.68

We know that

• Also from the problem n = 50 and " = (1 - 0.99) = 0.01

that had

and so

i.e. there is only a 1% chance 
that the true mean lies outside 
the confidence interval formed 
around average 

µX = X ± t!
2 , n"1

sX
n

t 0.01
2 , 49

µX = 272 ± 2.68 87
50

= 272 ± 33

Basic Statistical Tests

Part 2 - Comparisons: 
 Non-Overlapping Confidence 
 Intervals and the Student’s T Test
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Using Confidence Intervals to 
Determine Whether My Way is Better

If we have two different EC systems how can we tell if one is better 
than the other?

Trivial method:  Find confidence intervals around both means

• If the CIs don't overlap 
• Then it is a rare occurrence when the two systems do have identical means
• The system with the better mean can be said to be better on average with a 

probability better than the Confidence Level
• If the CIs do overlap

• Can't say that the two systems are different with this technique
• Either:

1. The two systems are equivalent
2. We haven't sampled enough to discriminate between the two

Confidence Interval Example

-75 0 7510.5-9.7

µ !
+10 10
-10 10

n X sX Lower Uppe
r100 10.5 10.0 3.3 7.2 13.8

100 -9.7 10.1 3.3 -13.1 -6.4

[ ]
[ ]

95% Confidence Level

Confidence Interval Example

-75 0 757.9-2.5

µ !
+10 50
-10 50

n X sX Lower Uppe
r100 7.9 47.1 9.2 -1.3 17.1

100 -2.5 52.1 10.2 -12.7 7.7

[ ]
[ ]

95% Confidence Level

Improving the Sensitivity: 
The Student t Test

• The Student t Test is the basic test used in statistics
• Idea: Gain sensitivity by looking at the difference between the 

means of the two systems
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The Student t Test
Where the normalized difference falls on the t distribution determines whether 

difference expected if both systems were actually performing the same

99%

0 2.68-2.68

• Normalized difference called the t value

• Distribution again differs for different 
sample sizes

• Degrees of Freedom is now
 = (n – 1) + (n – 1)  = 2n – 2

• t test either succeeds or fails
• t value greater than cutoff for a 

given C.L. or not

Based on 50 runs
! = 0.01

99%

0

99%

0

2.68-2.68

2.68-2.68

The Student t Test: p-values

0

• The cut-off values produces a binary 
decision: true or false

• loses information
• Better to report the probability that two 

systems are different
• This is the complement of the probability 

that they are the same
• 1 – Pr(T < t score)
• Called the p-value

Based on 50 runs

0.5

0.15

0 2.4

0 1.1

0.01

t Test Step by Step

1. Compute the 2 averages X1 and X2

2. Compute standard deviations s1 and s2

3. Compute degrees of freedom: n1 + n2 – 2 = 2n – 2

4. Calculate T statistic:

5. Compute the p-value
• p-value = the area under the t distribution outside [-T, T]
• In Excel:  =TDIST(T, 2*n - 2, 2)

• The final “2” in Excel means “two-sided”

• In R:   > 2*pt(-T, 2*n - 2)

Variance Assumptions
and the T Test

"1 = "2 = "  and n1 = n2 = n

"1 = "2 = "  but n1 " n2

In Excel: =ttest(A1:A50, B1:B50, 2, 2)
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Variance Assumptions
and the T Test

"1  " "2  and n1 " n2

called the Welch’s T test

Approximate variance 
not pooled

In Excel: =ttest(A1:A50, B1:B50, 2, 3)

t.test(): Everything in one 
simple R function

• R comes with a function that produces all of 
the above information in one function
• t.test(X,Y)

> t.test(OEA, NEA)
	 Welch Two Sample t-test
data:  OEA and NEA 
t = -2.2549, 	 df = 152.68, 	 p-value = 0.02556
alternative hypothesis: 
	 	 true difference in means is not equal to 0 
95 percent confidence interval:
 -4.7621535 		 -0.3143734 
 average of OEA  	 	 average of NEA 
5.119665  	 	 	 7.657929 

slightly modified for legibility

n = 80 for both OEA and NEA

t.test(): Welch’s vs Student’s

slightly modified for legibility

n = 80 for both OEA and NEA
> t.test(OEA, NEA, var.equal=TRUE)	
	 Two Sample t-test
data:  OEA and NEA 
t = -2.2549, 	 df = 158, 	 	 p-value = 0.02551
alternative hypothesis: 
	 	 true difference in means is not equal to 0 
95 percent confidence interval:
 -4.7615555 		 -0.3149714 
 average of OEA  	 	 average of NEA 
5.119665  	 	 	 7.657929 

Comparing Variances

• For the T test, we are comparing means
• Difference between averages (after normalization)

• see if it equals 0

• Now we want to compare variances
• Won’t take the difference between variances

• Difference between variances not a nice distribution
• Rather will take the ratio of variances 

•  see if it equals 1
• distribution known: F distribution
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The F Distribution

• The sample variance over the true variance has a #2 
distribution with a n - 1 degrees of freedom
• seen when creating the T distribution (normal / chi)

• But what about the ratio of two variances?
• With degrees of freedom of d1 and d2

• Answer: It has a F(d1,d2) distribution
• F distribution is the ratio of two #2 distribution over their degrees 

of freedom

The F Distribution

From Wikipedia: http://en.wikipedia.org/wiki/F_distribution

The F test

• H0: V(X1) = V(X2)
• Ha: V(X1) " V(X2)

• Test Statistic

F* = V (X1)
V (X2 )

has a F(df1, df2)  
! distribution

The F test

• H0: V(X1) = V(X2)
• Ha: V(X1) " V(X2)

• Test Statistic

has a F(n1 – 1, n2 – 1) 
! distribution

F* =
sX1
2

sX2
2
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The F Test

From Wikipedia: http://en.wikipedia.org/wiki/F_distribution

p-valueF*

var.test(): 
 Comparing variances in R

slightly modified for legibility

> var.test(OEA, NEA)	
	 F test to compare two variances
data:  OEA and NEA 
F = 1.28, 	num df = 79, 	denom df = 79, 	p-value = 0.2747
alternative hypothesis: 
	 	 true ratio of variances is not equal to 1 
95 percent confidence interval:
 0.8209112 	 	 1.9959280  
ratio of variances 
          1.280031 

Excel: =ftest(array1,array2)
n = 80 for both OEA and NEA

var.test(): 
 Comparing variances in R

slightly modified for legibility

> var.test(OEA, NEA)	
	 F test to compare two variances
data:  OEA and NEA 
F = 1.28, 	num df = 79, 	denom df = 79, 	p-value = 0.2747
alternative hypothesis: 
	 	 true ratio of variances is not equal to 1 
95 percent confidence interval:
 0.8209112 	 	 1.9959280  
ratio of variances 
          1.280031 

Note:
• F Test is used “backwards”

• Null Hypothesis should be “variances are different”
• default should be to use Welch’s T test

• F test null hypothesis is “variances are the same”
• default uses Student’s T test

n = 80 for both OEA and NEA

var.test(): 
 Comparing variances in R

slightly modified for legibility

> var.test(OEA, NEA)	
	 F test to compare two variances
data:  OEA and NEA 
F = 1.28, 	num df = 79, 	denom df = 79, 	p-value = 0.2747
alternative hypothesis: 
	 	 true ratio of variances is not equal to 1 
95 percent confidence interval:
 0.8209112 	 	 1.9959280  
ratio of variances 
          1.280031 

Note:
• Consequently 

• look for higher p-values, not lower 
• Using var.test() should be thought of as only a guide, 

not a true statistical test
• F test used as intended inside other statistical test

• ANOVA
• Chi Square test

n = 80 for both OEA and NEA
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When The Normality Fails

• Everything so far has depended on the assumption of normality 
which in turn depends on the Central Limit Theorem holding
• But this is not always true
• In in many areas of CS it rarely holds

• Problems occur when
• …you have a non-zero probability of obtaining infinity

• Mean and standard deviation are infinite!
• …the sample average depends highly on a few scores

• When the mean of your distribution is not measuring what you want, 
consider using the median instead (rank-based statistics)

• …you don’t know how fast your sample series converges to normal
• if your sample average distribution converges very slowly than the number 

of samples may be insufficient to  assume normality

So what should we do?

First test for normality
• Many such tests
• Recommended

• Normal Probability Plot 
(QQ plot: sorted data vs Normal quantiles)

• Lilliefors test (variant of the KS test)

So what should we do?

There are 3 basic remedial measures:
1. Transforming data to make them normally distributed

• also called data re-expression
• traditional approach (required before the advent of fast computers)

2. Resampling techniques
3. Non-parametric statistics

Non-Parametric Statistics

• Basic Idea
• Sort the data and then rank them
• Use Ranks instead of actual values to perform statstics

• Also known as 
• order statistics, 
• ordinal statistics 
• rank statistics

• Measures how interspersed the samples are from the 2 treatments
• If the result is “alternating” it is assumed that there is no difference

• Can’t be affected by outliers (extrememly large or small values)
• Just the highest or lowest rank 
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Non-Parametric Tests

• Reason behind the appropriateness of non-parametric tests
• Both the sum of ranks and average of ranks will be approximately 

normally distributed 
• because of the Central Limit Theorem, 
• as long as we have 5 or more samples 

• result is independent of the underlying distribution
• Ranked T-test

• Perform a t test on the ranks of the values 
• instead of the values themselves

• 2 other techniques with similar results are commonly seen
• Wilcoxon’s Rank-Sum test
• Mann-Whitney U test
• All are effectively equivalent

A 0.03

A 0.91

A 0.64

A 0.99

A 0.64

A 0.16

A 0.16

A 0.91

A 0.16

A 0.27

B 0.64

B 0.08

B 0.16

B 0.27

B 0.02

B 0.01

B 0.16

B 0.03

B 0.03

B 0.64
Ranked Example

Two data sets
combined 

into a single
array

A 0.99 1

A 0.91 2

A 0.91 3

A 0.64 4

A 0.64 5

B 0.64 6

B 0.64 7

A 0.27 8

B 0.27 9

A 0.16 10

A 0.16 11

A 0.16 12

B 0.16 13

B 0.16 14

B 0.08 15

A 0.03 16

B 0.03 17

B 0.03 18

B 0.02 19

B 0.01 20

Give each data element 
its corresponding rank

ranks

Sort

Ranked Example

Replace tied ranks 
with average tied ranks

ranks

t1 2.5

t2 5.5

t3 8.5

t4 12

t5 17

Average tied ranks
together

A 0.99 1

A 0.91 2.5

A 0.91 2.5

A 0.64 5.5

A 0.64 5.5

B 0.64 5.5

B 0.64 5.5

A 0.27 8.5

B 0.27 8.5

A 0.16 12

A 0.16 12

A 0.16 12

B 0.16 12

B 0.16 12

B 0.08 15

A 0.03 17

B 0.03 17

B 0.03 17

B 0.02 19

B 0.01 20

t1

t1

t2

t2

t2

t2

t3

t3

t4

t4

t4

t4

t4

t5

t5

t5

Ranked Example

Perform t test on Ranks

ranks

Arank Brank

avg 7.85 13.15

stdDev 5.28 5.33

Ranked t Test

2.37

2.23 
p-value 0.038

n = 10

tR score

A 0.99 1

A 0.91 2.5

A 0.91 2.5

A 0.64 5.5

A 0.64 5.5

A 0.27 8.5

A 0.16 12

A 0.16 12

A 0.16 12

A 0.03 17

B 0.64 5.5

B 0.64 5.5

B 0.27 8.5

B 0.16 12

B 0.16 12

B 0.08 15

B 0.03 17

B 0.03 17

B 0.02 19

B 0.01 20

Resort by treatment
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A Non-Parametric ‘Mean’: 
The Median

• Average of a data set that is not normally distributed 
produces a value that behaves non-intuitively
• Especially if the probability distribution is skewed

• Large values in ‘tail’ can dominate
• Average tends to reflect the typical value of the “worst” data

not the typical value of the data in general

• Instead use the Median
• 50th percentile
• Counting from 1, it is the value in the 

• If n is even, (n+1)/2 will be between 2 positions, 
average the values at that position

A Confidence Interval Around 
the Median: Thompson-Savur

• Find the b the binomial value that has a cumulative 
upper tail probability of !/2
• b will have a value near n/2

• The lower percentile l =

• The upper percentile u = 1 – l
  
• Confidence Interval is [valuel,valueu]

• i.e. 
• With a confidence level of 

A Confidence Interval Around 
the Median: Thompson-Savur

• Find the b the binomial value that has a cumulative 
upper tail probability of !/2
• b will have a value near n/2

• The lower percentile l =

• The upper percentile u = 1 – l
  
• Confidence Interval is [valuel,valueu]

• i.e. 
• With a confidence level of 

However: Thompson-Savur is not common

Usually a Box-Plot is used to show where the “mass” 
of the data points are (based on interquartile range)

Box-Plot has the advantage of finding potential 
outliers

n = 19! ! CL = 99%
$ $ $ $ !  $ = 0.01

Thompson-Savur: Example
18 0.99

17 0.91

16 0.91

15 0.64

14 0.64

13 0.64

12 0.64

11 0.27

10 0.27

9 0.16

8 0.16

7 0.16

6 0.16

5 0.16

4 0.08

3 0.03

2 0.03

1 0.03

0 0.02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0
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0.
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0

0.
0
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2
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4
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6

0.
8
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0

0.03

0.91

0.64

0.99

0.64

0.16

0.16

0.91

0.16

0.27

0.64

0.08

0.16

0.27

0.02

0.16

0.03

0.03

0.64

Sort
Data

(n – 1) – b

b
(n – 1)/2

rank
upper

lower
median

In Excel: b = CRITBINOM(n,1/2,!/2)

b = qbinom(!/2 ,  n, 1/2)
 = qbinom(0.005, 19, 0.5)
 = 4
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n = 19! ! CL = 99%
$ $ $ $ !  $ = 0.01

b = qbinom(!/2 ,  n, 1/2)
 = qbinom(0.005, 19, 0.5)
 = 4

Thompson-Savur: Example
18 0.99

17 0.91

16 0.91

15 0.64

14 0.64

13 0.64

12 0.64

11 0.27

10 0.27

9 0.16

8 0.16

7 0.16

6 0.16

5 0.16

4 0.08
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In Excel: b = CRITBINOM(n,1/2,!/2)
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n = 19! ! CL = 99%
$ $ $ $ !  $ = 0.01

b = qbinom(!/2 ,  n, 1/2)
 = qbinom(0.005, 19, 0.5)
 = 4
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In Excel: b = CRITBINOM(n,1/2,!/2)
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Thompson-Savur: Example

R:> boxplot(NEA)
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# 75 %tile + 1.5*IQR

# 25 %tile - 1.5*IQR
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n = 19! ! CL = 99%
$ $ $ $ !  $ = 0.01

b = qbinom(!/2 ,  n, 1/2)
 = qbinom(0.005, 19, 0.5)
 = 4
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In Excel: b = CRITBINOM(n,1/2,!/2)
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Thompson-Savur: Example

R:> boxplot(NEA)
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Box Plot

# 75 %tile + 1.5*IQR

# 25 %tile - 1.5*IQR

> 75 %tile + 1.5*IQR
Outliers

R:> boxplot(OEA)

Part 3

Regression 
by means of Least Squares
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Linear Regression
Fitness (F)

60

150

120

90

3 Fi = 72 + !F

Simple model of F

E(!F ) = 0
V(!F ) = " F

2

Linear Regression

Population Size (p)
250 500 750 1000

Fitness (F)

60

150

120

90

3 Fi = 0.12pi + !

Factor in  Population Size

E(!) = 0
V(!) = " 2V(!) = " 2

18

Modeling Response Behavior: 
Treating X as a factor

• Simplest model - linear relationship

Yi = !0 +!1xi +"
f (xi ) = !0 + !1xiYi = f (xi )+ ! with

Two parameters %0 and %1 
define the function

0

0.5000

1.0000

1.5000

2.0000

0 0.2500 0.5000 0.7500 1.0000

Linear Regression 
by Means of Least Squares

• Idea: 
• From sample pairs {(Y1, x1), (Y2, x2), … , (Yn, xn)} 

determine b0, b1
• Estimates of the two unknowns %0, %1

Ŷi = b0 + b1xiYi = !0 +!1xi +"

• chosen such that the sum of squared errors is minimized
• i.e. find the model that has 

 the smallest (least) total squared error
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Linear Regression 
by Means of Least Squares

• Idea: 
• From sample pairs {(Y1, x1), (Y2, x2), … , (Yn, xn)} 

determine b0, b1
• Estimates of the two unknowns !0, !1

Ŷi = b0 + b1xiYi = !0 +!1xi +"

• chosen such that the sum of squared errors is minimized
• i.e. find the model that has 

 the smallest (least) total squared error

ei
2 = (Yi ! b0 ! b1xi )

2
Sum of Squared Errors

Squared Error
SSE = ei

2!

Error
ei = Yi ! b0 ! b1xi

ei = Yi ! Ŷ
Error

Find the linear function

Linear Regression 
by Means of Least Squares

0

0.8

1.6

0 0.45 0.90

Linear Regression 
by Means of Least Squares

Fn

0

0.8

1.6

0 0.45 0.90

error

e1
e3

e7

e8

e9
e10

Linear Regression 
by Means of Least Squares

Poor choice

Fn

Sum of squared error
is large

0

0.8

1.6

0 0.45 0.90

420



Linear Regression 
by Means of Least Squares

0

0.8

1.6

0 0.45 0.90

Sum of squared error
reduced

Fn

Better

Linear Regression 
by Means of Least Squares

0

0.8

1.6

0 0.45 0.90

Fn

Best

Minimized
Sum of squared error

• Determine 

•  Find b0, b1 such that

• Use calculus (minimum finding)
• Take partial derivatives wrt b0 and b1

• set to zero
• two equations, two unknowns ... solve

Ŷi = b0 + b1Xi

min ei
2

i=1

n

! =min (Yi "b0 "b1xi )
2

i=1

n

!

Linear Regression 
by Means of Least Squares

Ŷi = b0 + b1Xi• Determine 

•  Solution

Linear Regression 
by Means of Least Squares

b1 =
(xi ! x )(Y !Yi )

i=1

n

"

(xi ! x )
2

i=1

n

"
= cov(x,Y )

var(x)
=
Sxy
Sx
2

b0 =Y !b1x
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Different Samples ...

x

Y

x

Y
Different Regression Line
• Slope (b1) and Y intercept (b0) are random 

variables, each with a probability distribution

• linear combinations of normally distributed 
 random variables are normally distributed

• so ... 35

What are the distributions 
of b1 and b0?

b1 can be rewritten as

b1 = kiYi
i=1

n

!

• since the xi are constant 
b1 is a linear combination of Yi’s

ki =
(xi ! x )
(xi ! x )

2"where

if Y is normally distributed,  b1 is too (as is b0)

b0 =Y !b1xand

37

Expectation of b1 and b0

E(b0 ) = !0

b1 and b0 can be thought of as sample means

E(b1) = !1

sb1
2 = MSerror

nSx
2V (b1) =

!Y
2

nSx
2 &

V (b0 ) = 1+ x
2

Sx
2

!
"#

$
%&
'Y
2

n
& sb0

2 = 1+ x
2

Sx
2

!
"#

$
%&
MSerror
n

and they have associated variances

Confidence Bands

x

Y

x

Y

k! ,n,X = 2F! /2,2,n"2
MSE
nSX

2

#

$
%

&

'
(

1/2

Ŷ = b1x + b0 ± k! ,n,X SX
2 + (x " X)2#$ %&

1/2
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43

T test to see if a the slope is 
statistically significant

• To see if the slope b1 is statistically different from 0 
• use the T test

• and find the corresponding p-value
• because we we originally estimated 2 parameters use

 
 df = n – 2 – 1 = n – 3

T = (b1 ! 0)
Sb1

= b1
Sb1

43

T test to see if a y intercept is 
statistically significant

• To see if the regression line goes through the origin
check if b0 is statistically different from 0

• use the T test

• and find the corresponding p-value
• again because we originally estimated 2 parameters use

 
 df = n – 2 – 1 = n – 3

T = (b0 ! 0)
Sb0

= b0
Sb0

43

T test to see if a y intercept is 
statistically significant

• To see if the regression line goes through the origin
check if b0 is statistically different from 0

• use the T test

• and find the corresponding p-value
• again because we originally estimated 2 parameters use

 
 df = n – 2 – 1 = n – 3

T = (b0 ! 0)
Sb0

= b0
Sb0

These confidence intervals and tests 
are very important to perform. 

Yet they are not commonly done!

• General model for one factor

• General model for multiple factors
• Note: still not a multivariate analysis – error term still additive to the 

(now multiple) factors – factors themselves not stochastic

Yi = f (xi )+ !
random variable

random variable
where E(') = 0

represents the true 
distribution of Y

non-random variable

Multifactor Regression

 Yi = f (x1, i , x2, i ,!, xk , i )+ !
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Multifactor Regression
• Assume linear combination of factors … simplest fn 

• Just 
• take the partial derivative of the squared error function for 

each parameter
• Set each derivative to zero to find the maximum
• Solve the set of linear equations

• k unknown parameters, k equations

 Yi = !0 + !1x1, i + !2x2, i +!+ !k xk , i + "

 Ŷi = b0 + b1x1, i + b2x2, i +!+ bkxk , i&

43

T test to see if a factor is 
statistically significant

• Each factor bi has known estimated variance
• Found analogously to b1 and b0

• To see if the factor is meaningful, 
see if bi is statistically different from 0 
• using the T test

• find the corresponding p-value
• because we are estimating k parameters use df = n – k – 1

T = (bi ! 0)
Sbi

= bi
Sbi

This is very important to compute!!! Yet not commonly provided.

44

Polynomial Regression
• One trick is to set x2 = x2, x3 = x3, etc.

• This can be done since each factor is not a random variable, 
just a regular variable

• Since it is known that any function can be formed through a 
linear combination of polynomial variables (a power series), 
we can now regress against any function!!
• We must know the function to regress against

• Again called the model
• Must check to see if each term is statistically significant

• Use T test from previous slide
• If a term is not significant, eliminate it from the model and apply least 

squares again on simpler model

Polynomial Regression E.g.

0

0.3750

0.7500

1.1250

1.5000

0 0.2500 0.5000 0.7500 1.0000

Use multiple factor least squares 
using const, x, x2, x3, x4 as factors
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R squared = 70.2%     R squared (adjusted) = 70.1%
s =  0.1466  with  1000 - 5 = 995  degrees of freedom 

Source! ! Sum of Squares! df! Mean Square! F-ratio
Regression! 50.4708! ! 4! 12.6177! ! 587
Residual! 21.3783! ! 995!  0.0215!
! ! ! !
Variable!! Coefficient! s.e. of Coeff! t-ratio! p-value
Constant!  0.515460! 0.0236! !  21.9!  " 0.0001
X! ! -2.27114!! 0.3210! ! -7.07!  " 0.0001
X^2! !  8.87396!! 1.303! !  6.81!  " 0.0001
X^3! ! -6.94563!! 1.968! ! -3.53!  0.0004
X^4! !  0.331472! 0.9828! !  0.337!  0.7360

Polynomial Regression E.g.

X^4 is not statistically significant 
… reduce the number of terms by one

R squared = 70.2%     R squared (adjusted) = 70.2%
s =  0.1465  with  1000 - 4 = 996  degrees of freedom 

Source! ! Sum of Squares! df! Mean Square! F-ratio
Regression! 50.4684! ! 3! 16.8228! ! 784
Residual! 21.3807! ! 996! 0.021467!
! ! ! !
Variable!! Coefficient! s.e. of Coeff! t-ratio! p-value
Constant!  0.510755! 0.0190! !  26.9!  " 0.0001
X! ! -2.17801!! 0.1636! ! -13.3!  " 0.0001
X^2! !  8.45358!! 0.3813! !  22.2!  " 0.0001
X^3! ! -6.28741!! 0.2515! ! -25.0!  " 0.0001

Polynomial Regression E.g.

All factors statistically significant 
… regression function is a cubic polynomial

0

0.3750

0.7500

1.1250

1.5000

0 0.2500 0.5000 0.7500 1.0000

Polynomial Regression E.g.
Y = !6.29x3 + 8.45x2 ! 2.18x + 0.51

Actual model used to generate the data: Y = !6.x3 + 8x2 ! 2x + 0.5 + "

ANOVA: Analysis of Variance

Part 1a: Multi-Level Analysis
 Basic Concept
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More Than 2 Treatments
• Preceding stats to be used for simple experiment designs
• More sophisticated stats needs to be done if:

• Comparing multiple systems instead of just 2 treatments
• E.g. comparing the effect on a Genetic Algorithm of using 

no mutation, low, medium and high levels of mutation

• We say there are 4 levels of the mutation variable

• Need                 possible comparisons to test all pairs of treatments

• Called a ‘multi-level’ analysis

4
2

!
"#

$
%&
= 6

no xover xover = 1pt xover = 2pt xover = 3pt xover = 4pt
4.3 8.8 5.0 6.3 5.4
3.7 7.7 5.3 6.6 5.9
4.7 8.3 5.1 7.2 5.4
3.7 8.1 5.2 7.4 5.4
4.2 8.1 5.5 7.4 6.2
3.6 8.0 4.9 7.3 6.7

avg fitness 4.02 8.13 5.09 7.02 5.76
std dev 0.451 0.313 0.424 0.478 0.471

Analysis of Variance (ANOVA)

avg fitness 4.02 8.13 5.09 7.02 5.76

Fitness
Values

all pairwise T test

Question:
Do crossover settings make a difference at all?

Comparing Variances

• Up to now we have been comparing means
• Student’s T test (difference between means)

• From here on we will be comparing variances
• This is why it is called “Analysis of Variance”
• Remember - compare the ratio of variances 

•  see if it equals 1
• distribution known: F distribution

ANOVA: Graphical Intuition

MStotal

Variance of Y (no model)
represented as a std deviationY

0.6

1.5

1.2

0.9

0.3
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ANOVA: Graphical Intuition

Model: Y = 1.0x + 0.25 + !

MStotal

Add model
in this case linear regression

X0.25 0.50 0.75 1.00

Y

0.6

1.5

1.2

0.9

0.3

ANOVA: Graphical Intuition

Model: Y = 1.0x + 0.25 + !

MStotal

Compute the distances to the model:
the residuals (error terms)

X0.25 0.50 0.75 1.00

Y

0.6

1.5

1.2

0.9

0.3

ANOVA: Graphical Intuition

MStotal

This removes the model from the data
leaving the residuals (errors)

X0.25 0.50 0.75 1.00

Y

0.6

1.5

1.2

0.9

0.3

ANOVA: Graphical Intuition

MStotal

Compute the Variance of the Residuals

X0.25 0.50 0.75 1.00

Y

0.6

1.5

1.2

0.9

0.3
MSerror
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Compare the two Variances

ANOVA: Graphical Intuition

MStotal  !1

X0.25 0.50 0.75 1.00

Y

0.6

1.5

1.2

0.9

0.3 F* = MSerror

is not independent of the scatter of the residuals

ANOVA: Graphical Intuition

Model: Ŷi = 1.0xi + 0.25 X0.25 0.50 0.75 1.00

Y

0.6

1.5

1.2

0.9

0.3 F* =

Scatter within Y 

MStotal
MSerror

ANOVA: Graphical Intuition

Model: Ŷi = 1.0xi + 0.25 X0.25 0.50 0.75 1.00

Y

0.6

1.5

1.2

0.9

0.3 F* =

So remove the variance of the residuals 
from the total variance 

MStotal ! MSerror
MSerror

ANOVA: Graphical Intuition

Model: Ŷi = 1.0xi + 0.25 X0.25 0.50 0.75 1.00

Y

0.6

1.5

1.2

0.9

0.3 F* =

To effectively create independence (and remove bias)
deal with Sum-of-Squares and Degrees-of-Freedom separately

(SSreduced ! SSfull) / (dfreduced ! dffull)
SSfull/dffull

F* =

General Linear Model

(SStotal ! SSerror) / (dftotal ! dferror)
MSerror

428



ANOVA: Graphical Intuition

Model: Ŷi = 1.0xi + 0.25 X0.25 0.50 0.75 1.00

Y

0.6

1.5

1.2

0.9

0.3 F* =

To effectively create independence (and remove bias)
deal with Sum-of-Squares and Degrees-of-Freedom separately

General Linear Model

F* = SSmodel / dfmodel
SSerror / dferror

(SStotal ! SSerror) / (dftotal ! dferror)
MSerror

ANOVA: Graphical Intuition

Model: Ŷi = 1.0xi + 0.25 X0.25 0.50 0.75 1.00

Y

0.6

1.5

1.2

0.9

0.3 F* =
MSregr
MSerror

Mean Square Model    = var(Model) + var(Noice)

ANOVA: Graphical Intuition

Model: Ŷi = 1.0xi + 0.25 X0.25 0.50 0.75 1.00

Y

0.6

1.5

1.2

0.9

0.3 F* =
MSregr
MSerror

Mean Square Model    = var(Model) + var(Noice)

F* =
MSregr
MSerror

• H0: variance added by the regression model  is small 
! wrt variance around model 
! (model can’t be seen above the noise)

• Ha: variance (effect) of the regr. model is 
! much larger than variance around the regr. line

• Test Statistic

F Test

has a F(1, n - 2)   
distribution

ANOVA: Graphical Intuition

Model: Ŷi = 1.0xi + 0.25 X0.25 0.50 0.75 1.00

Y

0.6

1.5

1.2

0.9

0.3 F* =
MSregr
MSerror

Mean Square Model    = var(Model) + var(Noice)
F Test

• If there is no effect (H0 holds)
• MSmodel ! MSerror, so ratio would be 1

• If model has an effect (Ha holds)
• MSmodel > MSerror  so ratio is greater than 1

• So test is one sided not two
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R squared = 70.2%     R squared (adjusted) = 70.2%
s =  0.1465  with  1000 - 4 = 996  degrees of freedom 

Source! ! Sum of Squares! df! Mean Square! F-ratio! p-value
Regression! 50.4684! ! 3! 16.8228! ! 784! " 0.0001
Residual! 21.3807! ! 996! 0.021467!
! ! ! !
Variable!! Coefficient! s.e. of Coeff! t-ratio! p-value
Constant!  0.510755! 0.0190! !  26.9!  " 0.0001
X! ! -2.17801!! 0.1636! ! -13.3!  " 0.0001
X^2! !  8.45358!! 0.3813! !  22.2!  " 0.0001
X^3! ! -6.28741!! 0.2515! ! -25.0!  " 0.0001

Polynomial Regression E.g.

Regression model is statistically significant
F-ratio = 784 >> 1

no xover xover = 1pt xover = 2pt xover = 3pt xover = 4pt
4.3 8.8 5.0 6.3 5.4
3.7 7.7 5.3 6.6 5.9
4.7 8.3 5.1 7.2 5.4
3.7 8.1 5.2 7.4 5.4
4.2 8.1 5.5 7.4 6.2
3.6 8.0 4.9 7.3 6.7

avg fitness 4.02 8.13 5.09 7.02 5.76
std dev 0.451 0.313 0.424 0.478 0.471

ANOVA: Discrete Levels

avg fitness 4.02 8.13 5.09 7.02 5.76

Fitness
Values

all pairwise T test

Question:
Do crossover settings make a difference at all?
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Perform the F test
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Perform the F test
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n = 15Level Reps:
r = 5Levels:

F* = MSmodel
MSerror

 !1

If test fail: (advanced technique)
use weighted least squares regression using
- indicator variables for the different levels 

         as the weight as the weight for the ith level
- Generalized ANOVA using regression

Assumption: 
variance for every level is the same and equals

Test for equivalent variances:
modified Levene’s test (more powerful F test)

! 2
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ANOVA table for example

Source df SS  MS F-ratio Prob
const 1 3592.9 3592.9 13967  ! 0.0001
xover 4 210.9 52.7 204.94  ! 0.0001
Error 95 24.4 0.257  
Total 99 235.3   

F test (From Excel)
F* = MSmodel

MSerror
= 52.7
0.257

= 204.94 fdist(204.94, 4, 95) = 8.19E-46

from DataDesk
Non-parametric ANOVA

• Again, what happens if Y (or actually ') is not normally 
distributed?

• Various non-parametric techniques
• Kruskal-Wallis first such test

• However, even simpler technique
• Like Spearman’s correlation coefficient and non-parametric regression, 

replace the Yi values with their corresponding ranks
• Perform ANOVA on ranked values as usual

• A slightly more accurate version is called the Friedman test
• Same as above, except 

• the F distribution is replaced by the Chi-Squared distribution 
(DofF = r – 1) for large n or r (n > 15 or r > 4) 

•  a special purpose distribution for small n or r

ANOVA: Analysis of Variance

Part 1b: Multi-Level Analysis
 Pairwise Comparisons
 Post-Hoc Analysis

Pairwise Comparisons 
between Factor-Level Means

• What if we want to know more detailed information?
• Which of the means is the significantly different one?
• Are there more than one significantly different mean?
• If so, what are the pair-wise differences and are they 

statistically significant?
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Pairwise Comparisons 
between Factor-Level Means

• This is determined by a series of pair-wise T tests

• However, commonly uses pooled information from the 
model for the variance to provide greater accuracy

• Called standard error

t value = X1 ! X2
sX1
2

n1
+
sX2
2

n2

Xi ! Xj

MSE
n1

+ MSE
n2

comparing level i with level j 
across the ANOVA modeloriginal T test comparison

t value =

Assumption: variances for each factor level is the same (     )  
                     which is best estimated  by the MSE 

! 2

Pairwise Comparisons 
between Factor-Level Means

• This is determined by a series of pair-wise T tests

• However, commonly uses pooled information from the 
model for the variance to provide greater accuracy

• Called standard error

t value = X1 ! X2
sX1
2

n1
+
sX2
2

n2

Xi ! Xj

2 "MSE
n

when ni = nj = n

comparing level i with level j 
across the ANOVA modeloriginal T test comparison

t value =

Multiple Levels: 
Post-hoc Analysis

• For 4 levels of mutation there are 6 comparisons possible
• Each one of the comparison holds at a 95% C.L. independent 

of the other comparisons
• If all comparisons are to hold at once the odds are 

0.95 x 0.95 x 0.95 x … x 0.95 = (0.95)6 = 0.735
• So in practice we only have 73.5% C.L

• Wrong 1/4 of the time

• For 7 levels of mutation there are 21 comparisons 
possible
• C.L. =  (0.95)21 = 0.341

• Chances are better than half that at least one of the decisions may be 
wrong!

The Bonferroni Correction
• To correct, choose a smaller !

• Where m is the number of comparisons
• So for 95% CL use " = 0.025/6 = 0.004167
• For a Z test the critical value changes from 1.96 to 2.64

• You should apply the Bonferroni (etc.) correction:
• To t tests (t tests and ranked t tests)
• To Confidence Intervals and Error Bounds
• Whenever you mean "all the significant results we found hold at once"
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Pairwise Comparisons 
between Factor-Level Means

 Diff std. err. t-value df p-value
n - 1 -4.04 0.15 -27.5 18 3.6E-15
n - 3 -3.18 0.16 -20.5 18 6.3E-13
2 - 1 -3.04 0.16 -20.2 18 8.4E-13
3 - 2 2.16 0.17 13.7 18 5.5E-10
4 - 1 -2.09 0.17 -12.7 18 2.0E-09
n - 4 -1.95 0.17 -11.4 18 1.1E-08
4 - 3 -1.22 0.18 -7.1 18 1.3E-05
n - 2 -1.00 0.16 -6.3 18 5.8E-05
4 - 2 0.95 0.16 5.6 18 2.6E-04
3 - 1 -0.86 0.15 -5.6 18 2.6E-04

Regular Pair-wise T test (with Bonf. Correction)

Pairwise Comparisons 
between Factor-Level Means

 Diff std. err. t-value df p-value
n - 1 -4.04 0.16 -25.2 95 7.7E-43
n - 3 -3.18 0.16 -19.8 95 1.7E-34
2 - 1 -3.04 0.16 -19.0 95 4.8E-33
3 - 2 2.16 0.16 13.6 95 6.0E-23
4 - 1 -2.09 0.16 -13.0 95 7.5E-22
n - 4 -1.95 0.16 -12.2 95 4.4E-20
4 - 3 -1.22 0.16 -7.6 95 1.8E-10
n - 2 -1.00 0.16 -6.2 95 1.2E-07
4 - 2 0.95 0.16 5.9 95 4.8E-07
3 - 1 -0.86 0.16 -5.4 95 5.1E-06

ANOVA Pair-wise T test (with Bonf. Correction)

Pairwise Comparisons 
between Factor-Level Means

 Diff std. err. t-value df p-value
n - 1 -4.04 0.16 -25.2 95 7.7E-43
n - 3 -3.18 0.16 -19.8 95 1.7E-34
2 - 1 -3.04 0.16 -19.0 95 4.8E-33
3 - 2 2.16 0.16 13.6 95 6.0E-23
4 - 1 -2.09 0.16 -13.0 95 7.5E-22
n - 4 -1.95 0.16 -12.2 95 4.4E-20
4 - 3 -1.22 0.16 -7.6 95 1.8E-10
n - 2 -1.00 0.16 -6.2 95 1.2E-07
4 - 2 0.95 0.16 5.9 95 4.8E-07
3 - 1 -0.86 0.16 -5.4 95 5.1E-06

ANOVA Pair-wise T test (with Bonf. Correction)

stdError = MSerror
ni

+ MSerror
nj

= 2 !MSerror
n

= 2*0.257
20

= 0.1604

df = nT ! r = rn ! r = 5*20 ! 5
= 95

t - value = Diff
stdError

Diff = Yi• !Yj•

p-value = m * tdist(t-value, df, two-sided)
= 10 * tdist(t-value, 95, 2)

Student-T with Bonf. Correction

Other Post-Hoc Corrections

• Holm -Sidak (really Bonferroni done “right”)
• Order the p-values from smallest to largest
• Compare the smallest p-value to !/k (regular Bonferroni)
• If that p-value is less than !/k, then accept that alternative hypothesis 
• Now look at the next smallest p-value at  ! / (k " 1)
• Continue until the p-value is not smaller than the modified value
• At that point, stop and accept all the rest as null hypotheses
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Other Post-Hoc Corrections

• Tukey 
• Used when comparing all pair-wise differences 

• produces narrower confidence intervals 
than Bonferonni in this situation 

• usual situation when trying to order results
• e.g. comparing 5 different EC systems
• Found out that EC3 > EC2 | EC5 > EC1 > EC4

• Note: Although there are 4 comparison symbols above, 
there are really 6 comparisons 

• actually there are 5C2 = 10 implicit comparisons 
• because we did not know 

how many comparisons there would be apriori

Other Post-Hoc Corrections

• Tukey
• Same as T test except uses the q distribution instead of the t distribution

• q(1 - ", r, nT - r) value is the cut off value 
where the difference observed would be less than this value 
 with a probability of 1 - " 
if r values are sampled from a normal distribution N(0,1) 

• DofF = nT - r 
• q distribution is called the studentized range distribution

• q “broader” than t, 
• q is not as “broad” as t after Bonferroni correction

• q distribution is not in Excel, 
but it is in most other stats packages including R

Other Post-Hoc Corrections

• Many others
• Scheffé 

• used when comparing pairs, and triples and quadruples etc., not just 
pairs

• many many others
• Duncan's multiple range test
• The Nemenyi test
• The Bonferroni–Dunn test 
• Newman-Keuls post-hoc analysis

Important Topics Not Covered 

• Data Modelling
• What is a statistical model
• Correlation, Regression and ANOVA as linear models
• Generalized Linear Models (GLM)

• Regression
• Linear Regression by means of least squares
• Multivariate regression, Polynomial Regression
• Confidence Intervals around model parameters
• Statistical Testing for factor relevance
• Correlation Coefficients: r, r2, adjusted r2

• How to perform ANOVA as a multivariate regression
• Indicator Variables
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Important Topics Not Covered 

• Testing for equality (homogeneity)  of variance 
across different factor-levels / treatments
• Levene’s Test

• Correcting for inequality of variance 
• Convert to multivariate regression using indicator variables
• Perform Weighted Least Squares

• How to perform ANOVA when using different test functions
• Test functions as blocking variables
• Non-parametric blocking

• What if one EC system has parameters the other EC system 
doesn’t?
• Nesting factor analysis
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