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1. INTRODUCTION
Mutations occurring in biological DNA sequences are not

completely random but are a result of coevolution between
mutational pressure with selection constraints around the
genetic code [2, 5] and can be optimized to some extent
during evolution ([6]). On one hand, most mutations are
deleterious and generate energetic costs of their repairing,
therefore a tendency to decrease the mutation rate should
exist. On the other hand, mutations are responsible for ge-
netic diversity, which is necessary for adaptation in changing
environment. Therefore, an elevated level of mutation rate
should be also expected in these cases. It indicates that
the real mutational pressure should be subjected to some
optimization in biological systems.

2. METHODS
To find the optimized mutational pressures expressed by

nucleotide substitution matrices we combined classic meth-
ods from probability theory with basic principles of evolu-
tionary strategies [1]. The matrices were described by Gen-
eral Time Reversible (GTR) model that requires six differ-
ent rate parameters and the stationary distribution of four
nucleotides [4, 7]. The matrices were optimized for four ob-
jective functions: the minimum and maximum number of
all mutations, and the minimum and maximum number of
non-synonymous substitutions, i.e. mutations not changing
encoded amino acid in protein coding sequences. The best
solutions were searched among the population of 100 indi-
viduals (rate matrices), which were initially randomly gen-
erated. In every simulation run, an individual was selected
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with probability 0.5 and mutated by random modifications
of its rate parameters. The found solutions obtained very
good convergence and small variation. The matrices were
compared with the empirical replication-associated substi-
tution rate matrix and assumed the fixed stationary distri-
bution of nucleotides as in the real mutational pressure found
for bacteria Borrelia burgdorferi genome [3]. The matrices
were used to generate the process of nucleotide substitu-
tions in protein coding sequences from this genome. Besides
the original protein coding sequences (the gene set), we also
searched the best matrices for two other cases: (i) randomly
generated sequences with the same length and global nu-
cleotide composition as the original protein coding sequences
(the random set) and (ii) sequences with the same length as
the original protein coding sequences but assuming uniform
composition of four nucleotides (the uniform set).

3. RESULTS AND DISCUSSION
In Fig. 1 we compared, as an example, matrices accord-

ing to the number of all mutations that they introduced
into gene sequences. As expected, the distribution of these
numbers for minimizing and maximizing matrices are very
narrow and are located at two extremes in the plot whereas
the distribution for initial randomly generated matrices is
very wide and located between the former ones. The num-
ber of substitutions introduced by minimizing matrices are
about 5.5 times lower than by maximizing one. These re-
sults indicate that the applied algorithm efficiency optimized
the objective function. Interestingly, the expected number
of mutations introduced by the empirical matrix describing
mutational pressure in the bacteria B. burgdorferi genome is
located between the extreme values for optimized matrices
with a slight shift toward the value characteristic of mini-
mizing matrices.

To easy compare the elements of all obtained matrices we
carried out PCA analysis to reduce the number of dimen-
sions from 16 matrix elements to two main variables (Fig. 2).
Based on the PCA visualization we can recognize two main
groups of matrices. The one cluster includes relatively very
similar all matrices that minimized the number of all or non-
synonymous mutations for all types of sequences. These
matrices clearly separate from the second group also rela-
tively very similar matrices that maximized these numbers
of mutations. This group does not comprise the matrix that
maximized the number of non-synonymous substitutions for
sequences with the uniform distribution of four nucleotides.
However, this matrix is separated only by the second prin-
cipal component that explains only about 7% of variance.
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Figure 1: Empirical density function of the number
of all mutations introduced into real protein cod-
ing sequences sequences by hundred best minimiz-
ing (min) and maximizing (max) matrices as well as
hundred initial randomly generated matrices (ini-
tial). The arrows indicates the expected number of
mutations introduced by the empirical mutational
matrix found for B. burgdorferi.

Interestingly, the empirical matrix is situated between the
clusters for matrices minimizing and maximizing mutations
with slightly smaller distance to the former group.

Analyses showed significant differences between rate ma-
trices minimizing and maximizing mutations but very close
similarity between matrices of the same optimization type
and tested on different kinds of sequences. As it should be
expected in biological systems, the empirical matrix located
between these two extremes with some affinity to minimiz-
ing matrices. The applied approach turned out to work ef-
fectively and could be used in searching for the best rate
matrices under other objective functions.
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Figure 2: PCA analysis of the best uniformized rate
matrices optimized according to the minimum (min)
or maximum (max) number of all mutations (all)
or non-synonymous (non-syn) substitutions for real
protein gene sequences (G), the same sequences but
with randomized nucleotide positions (R) and se-
quences with the uniform distribution of four nu-
cleotides (U). The empirical mutational matrix (em-
pirical) found for B. burgdorferi genome was included
for comparison. Two main principal components ex-
plain more than 97% of variance.
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