
4/05/2013

1

1

Learning Classifier Systems:
Introducing the User-friendly Textbook

Will Browne1 & Ryan Urbanowicz2

1. Evolutionary Computation Research Group,
Victoria University of Wellington, NZ

Will.Browne@vuw.ac.nz
2. Dartmouth College, USA
RyanUrbanowicz@gmail.com

http://www.sigevo.org/gecco-2013/

Copyright is held by the author/owner(s).
GECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
ACM 978-1-4503-1964-5/13/07.

2

Guides
Will N. Browne's main area of research is Artificial

Cognitive Systems. He has served as Co-track chair for
Genetics-Based Machine Learning in GECCO 2011 and 2012
[plus organizing committee of the International Workshop on
Learning Classifier Systems (IWLCS) from 2009-2010].
Editor in chief for the Australasian Conference on Robotics
and Automation 2012 and organized the Cognitive Robotics
Intelligence and Control COGRIC, EPSRC (UK)/NSF (USA)

 Ryan Urbanowicz holds a Ph.D in genetics from
Dartmouth College, and both a M.Eng. and B.Eng. in
agricultural and biological engineering from Cornell
University. His current research focuses on the development
of machine learning strategies for feature selection, modeling,
classification, and data mining in studies of common complex
human disease. He served on the IWLCS organizing
committee from 2010-2012 and is returning as an organizer
from 2012-2014.

3

Course Agenda
 Introduction
 How LCSs map a problem

• Demo of 'Classifiers'
 How LCS learn a better map

• Demo of the main LCSs evolutionary cycle
Organisation of a LCS

• Demo of different concepts within LCSs
 Applications of LCSs

• Demo of different types of LCSs

Overview, Questions & Discussion

4

Introduction

 This tutorial will introduce the concept of
Learning Classifier Systems (LCS)

 User-friendly in order to allow
• Graduate students,
• EC researchers and
• Industry/business practitioners

who want to get up to speed with the field an easy path
into using LCS to solve their complex problems.

439

4/05/2013

2

5

Introduction

“LCS are a quagmire -
a glorious, wondrous and inventing quagmire, but a

quagmire nonetheless” D. Goldberg ’92

Not anymore!

 30+ years research on LCS has clarified understanding,
produced algorithmic descriptions, determined 'sweet
spots' for parameters and delivered understandable 'out
of the box' code

 This tutorial/book offers a boardwalk through the swamp

6

Introduction

Wondrous as:
Learning Classifier Systems combine the global search of

Evolutionary Algorithms with the local optimisation of
Reinforcement Learning to address classification and
regression problems.

 The knowledge extracted though interacting with data or
embedded in an environment is human readable.

 'Inventing' as LCS' flexible nature allows application to
many domains with many types of feedback on solution
progress.

 But 'swampy' as an LCS is not a one line algorithm with
separable methods and easily tuned parameters.

7

Introduction

 Deliverables:
 This tutorial offers a user-friendly guide so that you will be

able to proficiently implement LCS.

 It will be through explanation based on the
• slides accompanying the book,
• examples supported by the Python code and
• insight/narrative from the two authors.

 Tutorial participants will have online access to the
textbook, slides and code to work through the examples.

8

By The Way

 “Learning Classifier Systems” is an odd name!
 There are many Artificial Intelligence systems that learn to

classifier (such as Decision Trees) that are not Learning
Classifier Systems

 Learning Classifier System, abbreviated to LCS, refers to
a singular/specific system, whereas Learning Classifier
Systems (LCSs) refers to multiple systems or the field.

Genetics-Based Machine Learning (GBML) is more
accurate, but still not completely precise (e.g. Artificial
Immune Systems are GBML, but not LCSs).

 Please accept the limitations in the name and let’s explore
the the concepts that underline LCSs.

440

4/05/2013

3

10

LCSs [History 1 of 1]:

 Learning Classifier Systems are one of the earliest
artificial cognitive systems.

 The early work was ambitious and broad. This has led to
many paths being taken to develop the concept over the
next 30 years.

 Coupling this with the fact that replicating cognition in
itself is a difficult problem has led to the field being
affectionately termed ‘a quagmire’ and a lack of
widespread adoption.

 Early 90s simplified and essential ideas, then
understanding and adaption to real-world problems.

11

Why learn using AI:

 Learning is valued by humans as it enhances our abilities
to solve problems and adapt to our environment.

Much work in research fields, such as education,
psychology and neuroscience, has been conducted into
how humans learn.

With the advent of computers, humans have been
interested in seeing how artificial ‘agents’ could learn.
Either learning to
• solve problems of value that humans find difficult to

solve
• for the curiosity of how learning can be achieved.

12

Assumptions for AI:

 In order for artificial learning to occur data containing the
patterns to learn is needed.

 This can be through recorded past experiences or
interactive with current events.

 Learning is often in the harness of a cognitive system as
input data, representation, reasoning, learning and output
are needed to interact with an environment

If there are no clear patterns in the data, then LCSs will not learn.

13

if ... then ...

The ‘if ... then ... ’ statement format
essential to LCSs.

 Similarities to production rules in computer science, so
the name ‘rule’ is used.

 The learned patterns are represented in the form of
‘if <this> then <that>’ rules,

Whether
• <conditions> <action>,
• <state> <action>,
• <features> <class> and many other

For convenience we will refer to conditions and actions

441

4/05/2013

4

14

Worth of a Rule

An ‘if ... then ... ’ rule may be valid syntactically,
but we need to verify its worth

 A valid rule can quite easily encode meaningless
relationships and information.

 Interestingly, the majority of valid rules are likely to
contain incorrect information

 In LCSs the worth of a rule is termed ‘fitness’, due to
analogies of biological fitness.

15

Fitness

Fitness is central to the operation of LCSs
It can relate to
 External effects
(e.g. the prediction of feedback from the environment)

and/or

 Internal effects
(e.g. overall contribution of the rule to the system)

 Instantaneous, filtered or long-term values may be used.

16

Overview of LCSs' purpose

17

LCS as Parametric Models

 LCS are a family of methods for handling
unsupervised learning, supervised learning and sequential

decision tasks by decomposing larger problem spaces
into easy-to-handle sub-problems.

 Viewpoints
• evolutionary computation,
• probabilistic model-based approach

 Defining question "What is an LCS supposed to learn?"

An underlying probabilistic model
Drugowitsch '08

442

4/05/2013

5

18

LCSs as Map Generators

 The intention is to form a map
of the problem space

Conditions

Conditions

Class
(action)
0 or 1

19

Environmental interaction

.

Supervised learning: The environment
contains a teacher that (directly or indirectly)
provides the correct response for certain
environmental states as a training signal for
the learning signal.

Reinforcement learning: The
environment does not directly indicate what
the correct response should have been.
Instead, it only provides reward or punishment
to indicate the utility of actions that were
actually taken by the system.

Unsupervised learning:
The learning system has an
internally defined teacher
with a prescribed goal that
does not need utility
feedback of any kind.

[Sutton and Barto 98]

20

Environmental interaction

.

Reinforcement learning: reward
Supervised learning: action

21

Tasks

.

Search

Modelling

Knowledge‐Handling

Routing Visualisation

Game‐playing
Data‐mining

Prediction

Optimisation

Scheduling

Design Querying

Learning
Adaptive‐control

Rule‐Induction
Diagnosis

Classification

443

4/05/2013

6

22

Utilisation of LCSs
 Perpetually novel events

accompanied by large amounts of noisy
or irrelevant data.

 Continual, often real - time, requirements for actions.
 Implicitly or inexactly defined goals.
 Sparse payoff or reinforcement obtainable only through

long action sequences.
[Booker 89]

 Main aspects found in problem domains:
• Multimodal
• Lack of Separation
• High Dimensionality
• Epistasis

23

Rule + Statistics = Classifier
 Classifiers are not just rules

as they contain additional information:

‘if < conditions > then < action >’ with statistics

Prediction p Error ε Accuracy κ Fitness F

 Note: high predicting rules may not be fit if they are not
consistent

Many other additional statistics possible:
Experience, Number of offspring, Generality, Numerosity

24

Fitness

 Fitness describes the worth of a rule.
• embody the past success of the rule
• indicate the quality of the knowledge held
• Indicate the utility of the rule to the system

 There are many ways to calculate fitness

Fitness = number of correct classifications
experience

25

Cooperation

One rule models a distinct part of the data
(a rule covers a single niche in the domain).

 If there was only one niche in the domain, then only one
rule would be needed.

 Domains of interest have multiple parts that require
modelling with different rules.

 LCSs must learn a set of rules
 The rules within an LCS are termed the population, which is

given the symbol [P] - the set of all rules in the population.

 The rules within a population cooperate to map the domain

444

4/05/2013

7

26

Competition

 Ideally, there would only be one unique
and correct rule for each niche

 Number of rules would equal number of niches

 No prior knowledge, so each rule must be learnt.
 LCSs allow multiple, slightly different rules per niche
Multiple hypotheses are available to find the optimum rule
 Each rule ‘covers’, i.e. describes, its part of the search

space.

 The rules within a niche compete to map the domain.

27

Cooperation & Competition

Grey
represent
ideal niche.

Which is the
most useful
plausible rule
(stripes)?

28

Learning
 ‘learning’ has a very useful definition

“Learning is constructing or modifying representations of
what is being experienced” Michalski et al., 86.

 LCSs need to experience the domain in order to learn.
• embodied in an actual robot or
• ‘virtual’ as in a software program receiving data

 Noise and dynamics within the data may impact on
learning ability, but LCSs have shown robustness

 LCSs construct rules or modify existing rules in order to
learn

29

Search space
 A major factor in determining the

difficulty/likelihood of success.
 Every valid rule can be thought of a candidate solution,

i.e. rules that satisfy problem constraints and encoding
 Note, we do not yet know if it is a good solution to the

problem or not.
 Each candidate solution is a member of the set of

possible solutions.
 The space of all candidate solutions is termed the

‘search space’ [alternative names, such as feasible set,
feasible region and solution space exist, but are rarely
used in LCS literature].

 The size of the search space is determined by both the
encoding of the LCS itself and the problem itself.

445

4/05/2013

8

30

Representation
 Environment input must be encoded

 LCSs can use multiple representation schemes.
• Suited to binary input or
• Suited to real-valued inputs and so forth...

 Consider representing the hours in a day in four bit
binary

 ... the genotype 000111 is expressed as the phenotype 7

 The distance between similar genotypes (and their
expressed phenotypes) in a search space is an important
consideration when deciding upon the representation

31

Redundancy, irrelevance and
compactness

 A search space has a number of dimensions.

 A single condition encodes a single dimension (feature).
 If the problem has multiple dimensions (features) then the

LCS will need the corresponding number of conditions.

 The division between the conditions is implicit within a
classifier. For example, the condition string: ‘100110’
• 1x6-bit number, 2x3-bit numbers or 6xBoolean state

 Not all conditions are useful in the map

32

Don't Care
 A condition that we don't care

about is given the symbol '#'

For example,
101:1 - the Boolean states 'on off on' has action 'on'
001:1 - the Boolean states 'off off on' has action 'on'

Can be encoded as
#01:1 - the Boolean states ' . off on' has action 'on'

 The ternary alphabet in the Classifier matches binary
input

 In many instances, # acts as an OR function on {0,1}

33

LCS Recap

 A basic LCS consists of
– data is clustered in a population of classifiers,
– a set of classifiers can be interpreted as a model for

the data
– the most appropriate model is selected

[Drugowitsch 08]

446

4/05/2013

9

Steps to Evolution
procedure evolutionary algorithm
begin

t ← 0
initialise P(t)
evaluate P(t)
while (not termination-condition) do
begin

t ← t + 1
select P(t) from P(t - 1)
alter P(t)
evaluate P(t)

end
end

37

LCSs 'Iterative' Cycle

Environment

Initial Rule Base

Training Rule Base

Match

Select

Effect

Credit

Encoding

LCS

Actions

Reward

State

LCSs walk through

States: e.g. 0011:01, 1101:00, …

Reward?

Conditions

Actions

p ε F
#011: 01 43 .01 99
11##: 00 32 .13 9
#0##: 11 14 .05 52
001#: 01 27 .24 3
#0#1: 11 18 .02 99
1#01: 10 24 .17 15

….and so on

0011
[M]

[A]

#011: 01 43 .01 99
#0##: 11 14 .05 52
001#: 01 27 .24 3
#0#1: 11 18 .02 99

A f
00 -
01 42.5
10 -
11 16.6

#011: 01
001#: 01

40

Initialisation of an LCS

 A LCS's initial population can be:
– Empty, Partially Full or Full

 Partially Full or Full can be:
– Seeded (used to domain knowledge)
– Random (avoids human bias)

 Empty
– Utilise environmental messages (cover method)
– Good for sparse domains and unbalanced data
– Nowadays the method of choice, especially supervised

learning.

447

4/05/2013

10

41

Cover method

 Verb 'to Cover', or noun 'Coverage'

 Rule creation:
– Condition: Generalisation of the environmental

instance
– Action: Known (supervised learning) or

Random (reinforcement learning)

Environmental input: 101101 with corresponding action 1
with probability of generalisation (P#) of 0.33

Rulea 1##101:1 + statistics

42

Match

 Do any of the rules match the input?
Match method: for example, new input 111101 also action 1.

– Specific: rule conditions exactly match the input
1----- matches Rulea 1##101:1

– General: 'don't care' matches all input
-1---- matches Rulea 1##101:1

Environmental input: 111101 with corresponding action 1
Matches the previously generated rule

Rulea 1##101:1 + statistics
All matching rules placed in the match set [M]

43

Match

Special cases in the match method:
 No matching classifiers then invoke cover method
 Not sufficient matching classifiers then invoke cover

method
 Not sufficient matching classifiers with all possible actions

then invoke cover method (useful for a complete map)

 Partial match of a Classifier acceptable (e.g. 5/6 states)?
– Low dimensional problems, this obscures class

boundaries, so no.
– May be necessary in Big Data

Explore vs. Exploit

One of the biggest problems in evolutionary computation
• When to exploit the knowledge that is being learnt?
• When to explore to learn new knowledge?

 Annealing schemes must be set a priori without
knowledge of the optimum scheme

Often just a fixed ratio!

448

4/05/2013

11

45

Select

Rules in [M] advocate for different actions!
 Consider the statistics of the rules

Rulea 1##101:1 p = 1000, ε = 0.1, F = 0.8,
Ruleb 1#0##1:0 p = 800 , ε = 0.4, F = 0.3

 Exploit
– Greedy (winner takes all) of p
– Best average for each action: either p or pxF

 Explore
– Random action

46

Evaluate (supervised)

Experience is increased

Accuracy is calculated
acc = number of correct classifications

experience

 Fitness is computed as a function of accuracy:

F = (acc)ν

Mu ν used to separate similar fitness classifiers (e.g. = 10)

47

Evaluate (reinforcement)
 Recency weighted update

Widrow-Hoff update: learning rate β
valuenew = value + β x (signal - value)

 Filters the 'noise' in the reward signal
β = 1 the new value is signal, β = 0 then old value kept

48

Evaluate (reinforcement)
 Classifier considered accurate

if error < tolerance, otherwise scaled.
 Accuracy relative to action set
 Fitness based on relative accuracy

 FFF

pR
pRpp

Ax
x

v

'

,'

,
otherwise/

 if1

,
,

0

0

449

4/05/2013

12

50

Select

 Rules differentiated based on fitness value

 In roulette wheel selection often raise to a power (which
needs setting)

 Setting the power too high leads to local optimum at the
start of training

1 0 1 0

Action:

51

Select

 Rules differentiated based on fitness rank

 Rank each action in order of ‘prediction’
 Chosen number of actions selected randomly
 Best action is effected
 This is rarely used to select for effect
 Often used for select for reproduction

Action Rank
1 2
2 3
4 4
6 1

Rule discovery

When to learn
• Too frequent: unsettled [P]
• Too infrequent: inefficient training

rank based or relative rating

What to learn
• Most frequent niches or
• Underrepresented niches

 How much to learn
• How many good rules to keep (elitism)
• Size of niche

52

Set-based Niching

 Update and creation of classifiers may
occur in one of three ways:

1. Panmictic [P] ‘throughout the population’
[SCS Goldberg 89]

2. Match Set [M] restricted to the match set only
[ZCS Wilson 94]

3. Action Set [A] restricted to the action set only
[XCS Wilson 95]

53

450

4/05/2013

13

Rule Discovery
Needed to create hypothesised better rules
from existing rules & genetic material:

 Genetic algorithm
• Original and most common method
• Similar to the niched GAs method
• Well studied (if not well understood theory)
• Stochastic process

 Estimation of distribution algorithms
• Sample the probability distribution, rather than mutation or

crossover to create new rules
• Exploits genetic material

 Bayesian optimisation algorithm
• Use Bayesian networks
• Model-based learning

Use any directed method to find new rules! 54

Mating – Crossover

55

GA: r1 = 00010001
r2 = 01110001

Set crossover point
GA: r1 = 00010001

r2 = 01110001

Applying single crossover point
GA: r1 = 00010001

r2 = 01110001

GA: c1 = 01010001
c2 = 00110001

Crossover Complete

Many variations of
crossover possible:
• two point crossover
• multipoint crossover
• x-dimensional crossover

Mating – Mutation

56

GA: j1 = 00010001

GA: j1 = 10010101
Randomly select bit to mutate

Mutation

Mutation complete
GA: j1 = 10010001

 No deletion
• Population grows without bound, which reduces set

pressure
• Waste memory and takes time so not often used

 Panmictic deletion
• Most common technique based on inverse fitness

roulette wheel
• Complements set pressure

Genotypic deletion based on generality
• Adds bias, hard to set up and control

Advanced deletion schemes – see later

Deletion

57

451

4/05/2013

14

Learning Classifier Systems

Environment

Initial Rule Base

Training Rule
Base

Match

Select

Effect

Credit

Encoding

Conditions

ActionsRule Discovery

Decoding Final Rule Base

Plausibly
Better Rules
Generated

Major LCS-Styles

• Entire population is the
solution

• Learns iteratively

• GA operates globally

• Single rule-set is the
solution

• Learns batch-wise

• GA operates between
rule-sets

Michigan Approach

 Individual is a classifier

 Cooperation and Competition between every classifier

 Population holds all individuals including incorrect,
overgenerals, too specific rules

e.g. 3-bit MUX
C A F …..
##1 1 50
1#1 1 100
11# 1 10
000 0 89
00# 0 100
… 62

Selection based on fitness
and / or prediction of individual

Pittsburgh Approach
 Individual is a rule set, i.e. multiple rules

 Competition between every rule set to breed
(Cooperation is explicit within individual)

 Population holds each unique rule set

e.g. 3-bit MUX
CA CA CA F …..
##1:1, 1#1:1, 00#:0 89
11#:1, 000:0, 1#1:1 45
…
 Selection based on fitness and / or prediction of set and

then match of rule

Much debate on best approach!
63

452

4/05/2013

15

Rights + Wrongs
 Accuracy measures the inverse of predictive error

What happens if you are always wrong?

 If you can predict this accurately, then you are 100%
accurate!

 In some cases, e.g. MUX, this doubles the rule base
C A P F …..
01# 1 100 100
00# 0 100 100
1#1 1 100 100
1#0 0 100 100
01# 0 0 100
00# 1 0 100
1#1 0 0 100
1#0 1 0 100 64

Deferred reward
 Prediction p is updated as follows:

p ← p + β[r+γ maxP(s’,a’) - p]

where γ is the discount factor
r is reward, β is learning rate
s is state, a is action

 Compare this with Q-learning

Q(s,a)←Q(s,a)+α[r+γQ*(s’,a’)-Q(s,a)]
where α is learning rate

65

Path Habits
 Delayed rewords cause problems

Move NW strengthened early

 Becomes basin of attraction

 Explore does not find E move!

* * F
* * *
* * *

66

Messy Coding

 Useful for big data, i.e. many features

 Derived from Messy GAs

 Instead of using a don’t care symbol can remove the
feature from the condition

11##0:1 shorten to 110:1 with encoding

 Improves transparency, reduces memory and speeds
processing

 Used in bio-informatics based LCS, e.g. BioHEL and
GAssist by J.Bacardit, and scalable LCS, e.g. XCSCFC

67

453

4/05/2013

16

Choice of Encoding

Euclidean and Hamming distances alter search space

Integer Binary Gray Enumerated
0 000 000 0000000
1 :1 001:1 001 :1 0000001 :1
2 :1 010:2 011 :1 0000011 :1
3 :1 011:1 010 :1 0000111 :1
4 :1 100:3 110 :1 0001111 :1
5 :1 101:1 111 :1 0011111 :1
6 :1 110:2 101 :1 0111111 :1
7 :1 111:1 100 :1 1111111 :1

How to encode the range: 0 → 3 and 0 → 4 ? 68

Encoding
:Hamming distance

Integer and Real Encodings

Alphabet Rule Match
Integer 111001 u : 0

110000 l
11#00#

Real 1.0 1.0 1.0 0.2 0.3 0.9 u : 0.0

0.5 0.0 0.7 0.0 0.0 0.0 l
1#1000

 Encoding suited to the environmental message
• using upper and lower bounds:

[could use centre and spread, but this assumes a Gaussian
distribution and recombination more difficult to implement]

 For each allele a, lb ≤ x ≤ ub, to give match.

 Could use ‘<’ instead of ‘≤’ but LCSs determine the correct
bound automatically
e.g. 0 ≤ x ≤ 5 is equivalent to 0 ≤ x < 5.01

How to Match
Consider the message: 110001

70

Alphabet Rule Match
Ternary 1#1000 : 0 1#1000
Ternary 11#00# : 0 11#00#
Integer 111000 u : 0

101000 l
1#1000

Integer 111001 u : 0
110000 l

11#00#

Real 1.0 1.0 1.0 0.2 0.3 0.9 u : 0.0

0.5 0.0 0.7 0.0 0.0 0.0 l
1#1000

Real 1.0 1.0 1.0 0.2 0.3 1.0 u : 0.0

0.5 0.0 0.0 0.0 0.0 0.9 l
11#00#

Mutating at the Limits
 Crossover point can either be

• between alleles or in the middle of an allele.

Mutation increases/decreases either or both bounds.
 Repair is occasionally needed to check that: lb < ub

 Note that most bounds have a limit, e.g. WBC: 0 ≤ a ≤ 10
• We decide to mutate the lower bound of a '#' 0 ≤ x ≤ 10
• If decrease by 10% of range to -1, repair back to 0.
• If increase by 10% of range to 1, do not repair as valid!

Thus some alphabets have a specificity bias

454

4/05/2013

17

Hyper Partitioning

We have a sparse search space with two classes to identify [0,1]
It’s real numbered so we decide to use bounds: e.g. 0 ≤ x ≤ 10,
which works fine in this case...

We form Hypercubes with the number of dimensions = the
number of conditions
Approximates actual niches, so Classes 2 & 3 difficult to
separate with this encoding, so use Hyperellipsoids

. 1

. 0

N(x) S

. 1

. 0

N(x) S

.2

.3

Oblique domains

We have a search space with only two classes to identify: 0 & 1
It’s real numbered so we decide to use bounds: e.g. 0 ≤ x ≤ 10

We form Hypercubes / Hyperrectangles, but these are not often
suited to oblique domains
Imagine sine wave domains…..

Alternative representations

Lisp like expressions:
Many other representations available

 Artificial neural networks

 Fuzzy logic/sets

 Horn clauses and logic

 S-expressions, GP-like trees and code fragments.
• Is a LCS with S-expressions not just GP? NO!
• How to tailor functions without introducing bias?
• How to identify building blocks of Subexpressions?
• When are two Subexpressions equivalent?

 Is trade-off between reduced problem search space to
increased alphabet search space worth it?

Gracefulness
 Need to introduce new rules into population
 Zero fitness: never selected
 Full fitness: always selected destabilising existing

rules (especially if new rule is poor)
 Parents average: often unrepresentative

Moyenne Adaptive Modifee followed by Widrow-Hoff
update

MAM: Simple time average from start [1/β iterations]
WH: Recency weighted average

[Have to set when recency becomes important
and how many times steps is recent?]

75

455

4/05/2013

18

Overgenerals
[undesired inaccurate classifiers]

When additional reward offsets any additional penalty

 Strength-based fitness is more prone to overgenerals

 Accuracy-based fitness is less prediction orientated

Want 10011###1:1 get 10011####:1, where 10011###0:0

 Can occur in unbalanced datasets or
 where the error tolerance ε0 is set too high.

77

Subsumption deletion

 In sparse environments over-specific rules can take over
population
Want 10011###1:1 get 10011#011:1, 100111111:1, …

 Starvation of generals, so delete specific ‘sub-copies’

 Need accurate rules first: how to set level of accuracy
(often not 100%)

GA or action set [A] subsumption?

 Effect of numerosity?

78

LCSs Pressures

79

set pressure – occur more often

A
cc

ur
ac

y 1

0

General Specific
Overgeneral Overly-specific

Fitness
pressure

mutation pressure – search
Subsumption pressure

Accurate
Maximally general

Adapted from Butz '10

Fitness Pressure
 Fitness pressure is fundamental to evolutionary

computation: “survival of the fittest”

 Fitter rules assumed to include better genetic material,
 Fitter rules are proportionately more likely to be selected

for mating,
Genetic material hypothesised to improve each

generation.

 Fitness measures based on error or accuracy drive the
population to rules that don’t make mistakes

 Favours specific rules (cover less domain)

 Fitness measures based on reward trade mistakes for
more reward

 Favours general rules (cover more domain)
80

456

4/05/2013

19

Set Pressure
 Set pressure is related to the opportunity to breed,
 Does not occur in panmictic rule selection
 Need Niching through [M] or [A] rule discovery
 Class imbalance affects set pressure

 Set pressure is more effective when replacing ‘weaker’
rules

Often panmictic deletion, thus one action can replace a
different action

 To prevent an action type disappearing, relative fitness is
used (rare rules have high relative fitness and so breed)

 Rules that occur in more sets have more opportunity to
be selected from mating

 Favours general rules 81

Mutation pressure
Genotypically change the specificity-generality balance

Mutation can

Randomise:
0 ← 1 or #
1 ← 0 or #
← 0 or 1

82

Accuracy based systems often use
generalise only to balance strong
fitness pressure

Generalise:
0 ← #
1 ← #
←

Specialise:
0 ← 0
1 ← 1
← 0 or 1

Subsumption Pressure
Subsumption occurs where one rule subsumes another, i.e:

Rule A subsumes Rule B when they both have the same
action, but rule A covers rule B completely

For example:
Rule A: 11###1:1 Rule B: 1101#1:1

If rule A is completely accurate (ε < ε0)
Then can delete rule B from the population without loss of
performance

Favours general, but not over general, rules

Subsumption Pressure
Subsumption deletion may occur in two places:

 In the action set
• Small number of rules to check
• Check is run often
• Subsumed rules in population until they occur in an [A]

 In the Rule discovery
• Large number of rules to check
• Check is run infrequently
• Subsumed rules never enter population

 Rules that subsume other rules
• including copies of themselves (children can be exact

copies of their parents)
• have their numerosity increased.

84

457

4/05/2013

20

Numerosity
Numerosity is a useful concept (trick):

 Reduces memory usage
• Instead of population carrying multiple copies of the

same classifier it just carries one copy.
• Each rule has a numerosity value (initialised as 1)

 Protects rule from deletion
• Stabilises rule population

 Numerosity is increased by 1
• When subsumes another rule
• When RD makes a copy

 Numerosity is decreased by 1
• Rule is selected for deletion

85

Numerosity
 Numerosity affects select and update procedures:

When calculating the fitness of an action in the select for
effect procedure:

 The fitness used assumes all the classifiers in the
population:

Where n is the numerosity

Macroclassifiers: all unique classifiers n ≥ 1

Microclassifiers: all individual classifiers
(n copies of macroclassifiers)

 Ratio of macroclassifiers to microclassifiers often used as
a measure of training progress 86

nF

npF
f

Deletion pressure
1. Every classifier keeps an estimate of the size

of the match sets in which it occurs.

The estimate is updated every time the classifier takes part in an [M]

A classifier’s deletion probability is set proportional to the match set size
estimate, which tends to make all match sets have about the same size,
so that classifier resources are allocated more or less equally to all
niches (match sets).

2. A classifier's deletion probability is as in (1), except if its fitness is
less than a small fraction δ of the population mean fitness.

Then the probability from (1) is multiplied by the mean fitness divided by
the classifier's fitness."

87

Deletion pressure
 The stronger the deletion bias against low fit classifiers, the

more the system will tend to delete useful new classifiers
before it realises how good they are.

3. A hybrid in which (1) is used until a classifier has been used on n
trials, after which (2) is used.

Kovacs
n is called the delay for t3 as it controls how long we delay the
application of the low fitness penalty.

 Alternatively, classifiers may be prevented from reproduction
until they have experienced a set number of trials.

• This allows a higher initial fitness to be used, enabling simpler
deletion methods to be considered.

• However, each classifier must record number of its trials and
the parent selection method becomes slightly more complex.

89

458

4/05/2013

21

XCS
Arguably the most adopted LCS:
Wilson 1995: Evolutionary Computation v3n2. pp1-44

 Not an acronym!
• Although rumoured to be eXtended Classifier System

 Extends basic ZCS
 Niche based fitness to add set pressure
 Accuracy based LCS
 Complete and accurate mapping from inputs and actions

to pay off predictions
Maximally general subject to an accuracy criterion (aided

by subsumption)
93

Complete map
 Should LCS discover:

• The most optimum action in a niche or
• The predicted payoff for all actions in a niche

X x A => P (cf Q-Learning)

 The danger with optimum action only:
• If a suboptimal rule is converged upon … difficult to

discover and switch policy (CF path habits)

 The problem with predicting all actions:
• Memory and time intensive
• Identifies and keeps consistently incorrect action

(100% accurate prediction) rules
• Harder to interpret rule base

94

Classifier parameters
Symbol Meaning

p Prediction p
Estimates (keeps average of) the payoff expected if the classifier matches and its action is
taken by the system

ε Prediction error
Estimates the errors made in the predictions

F Fitness
Denotes the classifier’s fitness

exp Experience
Counts the number of times since its creation that the classifier has belong to an action set

ts Time stamp
Denotes the time‐step of the last occurrence of a GA in an action set to which this classifier
belonged

as Action set size
Estimates the average size of the action sets this classifier has belonged to

n Numerosity
Reflects the number of micro‐classifiers (ordinary classifiers) this classifier – which is
technically called a macroclassifier ‐ represents

96

Learning parameters
Symbol Meaning

N Maximum size of the population
(In micro‐classifiers, N is the number sum of the classifier numerosities)

β Learning rate for p, ε, f, and as

α, ε0, v Used in calculating the fitness of a classifier

γ Discount factor used (in multi‐step problems) in updating classifier predictions

θGA GA threshold
The GA is applied when the average time since the last GA in the lest is greater than the
threshold.

χ Probability of applying crossover in GA

μ Probability of mutating an allele in the offspring

θdel Deletion threshold
If the experience of a classifier is greater than θdel, its fitness may be considered in its
probability of deletion

δ Mean fitness in [P] below which the fitness of a classifier may be considered in its probability
of deletion

θsub Subsumption threshold – the experience of a classifier must be greater than θsub in order to
be able to subsume another classifier

98

459

4/05/2013

22

Learning parameters
Symbol Meaning

P# Probability of using a # in one attribute in C when covering

pI εI FI Initial Values in new classifiers

pexplr Probability during action selection of choosing the action uniform randomly

θmna Minimal number of actions that must be present in a match set [M] or else covering will
occur

doGASumpution is a Boolean parameter that specifies if offspring are to be tested for possible logical
subsumption by parents.

doActionSetSubsumption is a boolean parameter that specifies if action sets are to be tested for subsuming
classifiers.

99

Learning parameters
N large enough so coverage only occurs initially
β learning rate in the range 0.1-0.2
α is normally 0.1
ε0 is 1% of max reward prediction, i.e. 10 will reward is 1000
ν is typically 5
γ Discount factor is 0.71
θRD Rule discovery threshold is 25-50
χ Crossover probabilities is not 0.5-1.0
μ Mutation probability is 0.01-0.05
θdel Deletion of threshold approximately 20
δ Deletion fraction often with 0.1
θsub Subsumption threshold approximately 20
P# Approximately 0.33
i Initialisation parameters are very small, Pi εi Fi
Pexp Exploration/Exploitation probability 0.5
Θmna Minimal number of actions equal to the number of actions

100

Results Interpretation

Note: 2, 3, 5, 7, 11, 14, 15 incorrect, but accurate, so fit

No. Condition Action n F e p exp
1 0010##0############# 0 24 0.81 0 1000 455
2 00001############### 0 23 0.92 0 0 7281
3 0010##0############# 1 22 0.79 0 0 7007
4 0101#####1########## 1 19 0.62 0 1000 7542
5 0111#######0######## 1 18 0.66 0 0 7358
6 0110######1######### 1 17 0.69 0 1000 7324
7 0111#######1######## 0 15 0.53 0 0 6013
8 1010##########1##### 1 14 0.64 0 1000 3841
9 00000############### 0 11 0.54 0 1000 74
10 00#01#1############# 1 8 0.22 0 1000 1131
11 011#######00######## 1 8 0.23 0 0 1810
12 11#0############0#0# 0 8 0.27 0 1000 2483
13 0#000###0########### 0 8 0.29 0 1000 6435
14 00#1#1#1############ 0 8 0.23 0 0 7170
15 000#00############## 1 7 0.21 0 0 193

XCSF
 Real valued encoding:
Concatenation of “interval predicates”

 Crossover: Two-point crossover point can be between
predicates within an interval predicates

Mutation: addition of an amount ±rand(m0)
returns value from (0, m0] for lower bound
Bounded random amount proved better than fixed amount

 Repair used as normal
 Covering: lower bound
Returns value from [0, r0]

iii uxl

 01 rrandxl ii

460

4/05/2013

23

XCSF: Piecewise-Linear Approximation
 Linear approximation:
The action is flexible for each condition range
(every time classifier matches it has the same action)

 Need to approximate the function y = f(x)
With h(x)

 Prediction is linear polynomial of the input components
Initially approximate a 1-D function:

• w1 slope of a straight line
• w0 with its intercept

Hyperplane approximation to f(x)

 110 xwwxh

Cognitive LCS
Induction: Processes of Inference, Learning and
Discovery (Computational Models of Cognition and
Perception)
J. H. Holland, K. J. Holyoak, R. E. Nisbett and P. Thagard
Two psychologists, a computer scientist, and a
philosopher have collaborated to present a framework for
understanding processes of inductive reasoning and
learning in organisms and machines. Theirs is the first
major effort to bring the ideas of several disciplines to
bear on a subject that has been a topic of investigation
since the time of Socrates. The result is an integrated
account that treats problem solving and induction in terms
of rulebased mental models.

MIT Press (1 Jan 1986) ISBN: 0262081601

Cognitive Systems definition

Current robots are poor cognitive systems. Need to
improve devices that we use every day and investigate
medical benefits.

"Cognitive systems are natural or artificial
information processing systems, including those
responsible for perception, learning, reasoning
and decision-making and for communication and
action"

DTI Foresight initiative.

Anticipatory LCS
 Anticipations influence cognitive systems and illustrates the

use of anticipations for
1. Faster reactivity
2. Adaptive behavior beyond reinforcement learning
3. Attentional mechanisms
4. Simulation of other agents
5. The implementation of a motivational module.

 A particular evolutionary model learning mechanism, a
combination of

• a directed specializing mechanism and
• a genetic generalizing mechanism.

 Experiments show that anticipatory adaptive behavior can be
simulated by exploiting the evolving anticipatory model for
even faster model learning, planning applications, and
adaptive behavior beyond reinforcement learning.

461

4/05/2013

24

LCS generates accurate and general
rules covering states, together with a

utility of the rules

Abstraction algorithm generates meta-
rules covering the discovered

accurate rules

ALL POSSIBLE

STATES

LCS LEARNT

RULES

ABSTRACTED

RULES

Abstraction

Abstracted Rules
e.g. 'if side guide setting < width, then poor quality product

Base rules
e.g. if side-guide-setting = 80, width = 82 then poor quality product
if side-guide-setting = 79, width = 80 then poor quality product

Abstraction checks for patterns in the base
rules and crates and abstracted rules for
each discovered pattern

Abstracted Rules

Learning system
Raw Data
e.g. Features

‘side-guide setting’, ‘ width’ : ‘product quality’
78 81 : poor
79 80 : poor
78 76 : good
…

Connect4 is a noiseless domain so the fitness update can be
simplified:

p p + 2 win
p p draw
p p - 2 lose

k k + 2 if prediction is correct,
k k – 2 otherwise

Abstraction

Min 0 Max 100

Solid Line - Q-Learning Algorithm,
Square Line - XCS Algorithm,
Circle Line – Abstraction Algorithm.

Abstraction

462

4/05/2013

25

o Q-learning learns the step prior to the goal first:

o Abstraction learns the building block first

Staged learning

Affective learning

Explore efficiency
Non-emotional Emotional

Knowledge Discovery:
Manual Rule Inspection

Michigan-Style
Large rule-population
How to rank rules in order to identify best?
Imprecise rules in noisy data.
Statistical confidence for selecting attributes or rules as being important.

Pittsburgh-Style
Imprecise rules in noisy data.
Statistical confidence for selecting attributes or rules as being important.

X0 X1 X2 X3

.50 .50

463

4/05/2013

26

Improving Interpretability and Characterization
of Heterogeneity

Rule Compaction Algorithm – Testing Accuracy Based
Retain a non-redundant, maximally general subset of the rule population.

Custom Fitness Calculation
Based a rule’s accuracy, generality, with and strength (age restricted)

Visualization Strategies – Interpreting the Black Box

Visualizing the Rule Population:
Interpreting the Black Box – Original UCS

Functionality

Interpretability Flexibility

Efficacy

ScalabilityEase of Use

Speed

Individual Attributes Pairs

Attributes: 20
Predictive: 4
Non-Predictive: 16
Heritability = 0.4
MAF = 0.2
Sample Size = 1600

Testing Accuracy = 0.70 (p
= 0.001)

X0 X1 X2 X3

.50 .50

464

4/05/2013

27

Rules in Population

A
ttr

ib
ut

es

#
0,1,2

Pairs

Conclusions
Significant Testing Accuracy =
0.7 (p = 0.001)

Our 4 modeled predictive
attributes, significantly
overrepresented

Our separate epistatic model
pairs individually have the
largest and most significant
CoS’s.

X0 X1 X2 X3

.50 .50

Attribute Tracking
Training Instance

[M]

[C]

[P]

Dataset

Attribute Tracking

[(0.6), (1.4), (0), (0.6), (1.7)]

02120 ~ 1

Contribution
of Each
Attribute

#2### ~ 1 ~ 0.5
0##20 ~ 1 ~ 0.6

#2##0 ~ 1 ~ 0.9

465

4/05/2013

28

Attribute Tracking Scores
Subjects in Dataset

A
ttr

ib
ut

es
Bladder Cancer Analysis

 Bladder Cancer
 4th Men (50,000), 9th Women (16,000)

 355 Cases, 559 Controls
 10 Attributes

 Smoking, Age, Sex
 7 DNA Repair Gene SNPs

 Xeroderma pigmentosum D (XPD)
 Nucleotide excision repair (NER)
 XPD 312, XPD 751

 Clinical Variables
 Age of Diagnosis
 Survivorship
 Time to First Recurrence
 Tumor Stage/Grade

Testing Accuracy = 0.60 (p = 0.001)

Bladder Cancer Analysis: 10 Attributes

Individual Attributes Pairs

Rule
Population:
10 Attributes

466

4/05/2013

29

Bladder Cancer Analysis:
3 Significant Attributes
XPD 312 & XPD 751 & Pack-Years

Testing Accuracy = 0.70 (p = 0.001)

 Characterizing Heterogeneity with Attribute Tracking
 Identify Patient Subsets Characterized by Patterns of

Association
 pvclust – Identifies significant, stable clusters via multi-scale

bootstrap re-sampling (1000)
 7 Significant Clusters (A-G)
 2 Particularly Large Clusters (B and D)
 B – XPD SNPs yield higher tracking scores
 D – Pack-years yield higher tracking scores

Clinical Variable Analysis:
CASES: Age at Diagnosis

Not Significant

B

D

B
AD

Clinical Variable Analysis:
CASES: Age of Recurrence

D

B

p = 0.051

B
AD

Clinical Variable Analysis:
CASES: Survivorship

B

D

p < 0.05

B
AD

467

4/05/2013

30

Smoking Bad

Age of Diagnosis
B – Tends to be diagnosed earlier
D – Tends be diagnosed later

Marginally Significant Difference in Recurrence
B - Later recurrence
D – Earlier recurrence

Survivorship
B – Survived longer
D – Shorter survival

Tumor Stage/Grade – Too sparse – Not Significant

Replicated Previously Implicated Risk Factors
Potential Novel Pattern of Heterogeneity

Bladder Cancer Summary

LCSs Applications

 Reinforcement Learning Problems
Find an optimal behavioral policy represented by
a compact set of rules.

 Function Approximation Problems
Find an accurate function approximation
represented by a partially overlapping set of
approximation rules.

 Classification / Data Mining Problems
Find a compact set of rules that classify all
problem instances with maximal accuracy.

138

LCS Summary

 Rule-based, multifaceted, machine learning algorithms

Global search and learning through evolution mechanism

 Local search and adaption through reinforcement learning
techniques – competition with cooperation

Multitude of flexible implementations and representations

 Practical applications as now paths through the swamp.

139

References
 Bacardit, J., and Butz, M. V. “Data Mining in Learning Classifier

Systems: Comparing XCS with Gassist”, in Advances at the frontier of
Learning Classifier Systems 276 - 290, 2007

 Booker, L. B., “Triggered Rule Discovery in Classifier Systems” Proc.
3rd Int. Conf. on Genetic Algorithms, page 265-274, 1989

 Butz, M., and Wilson, S. W. “An algorithmic description of XCS.” in
Soft Computing: a fusion of foundations, methodologies and
applications, 162-170, 2002

 Drugowitsch, J., “Design and Analysis of Learning Classifier Systems
- A Probabilistic Approach. in Studies in Computational Intelligence,
Springer 1-239, 2008

 Goldberg, D. E., et al. “What Makes a Problem Hard for a Classifier
System?” First International Workshop on Learning Classifier
Systems (IWLCS92), NASA Johnson Space 1992

 Kovacs, T., “Learning classifier systems resources” in Soft Computing
6(3-4): 240-243, 2002

 Michalski, R. S., et al., “Machine learning: A multistrategy approach”
Morgan Kaufmann, 1986

 Sutton, R. S., and Barto, A. G. “Reinforcement learning: An
introduction”. MA: MIT Press, 1998.

468

