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1. INTRODUCTION 
Amino acid composition of proteins in a given microorganisms is 
its characteristic feature and results from selectional constraints 
on protein structure and function as well as mutations introduced 
into the genome sequences. It was shown that the composition is 
related with the taxonomic affiliation of microorganisms and their 
environmental conditions. The most characteristic usage of amino 
acid was found in hyperthermophiles and thermophiles, organisms 
that prefer habitats with high temperature; halophiles, which live 
in environments with very high concentrations of salt; aerobes, 
which require oxygen to optimal grow; and intracellular microbes 
(parasites and endosymbionts) living inside the cell of their hosts.  

The former analyses of amino acid composition of proteomes 
(sets of proteins in a given organism) were based on simple 
calculations of global or averaged amino acid frequencies and 
standard multidimensional approaches, i.e. Principal Component 
Analysis or Correspondence Analysis to reduce the number of 
parameters and dimensions [5]. Therefore, it led to generalizations 
and loss of important information included in the data. Here we 
proposed an alternative approach using Self-Organizing Maps 
(SOM) [3] and evolutionary algorithm (EA) [1] to describe 
differences in amino acid composition of proteomes in various 
ecological groups of prokaryotic organisms. The combination of 
these methods turned out very useful and sensitive to extract even 
small differences in amino acid composition of studied 
proteomes. 

2. METHODS 
Self-Organizing Maps were used to classify 434,000 proteins 
from 194 prokaryotic proteomes according to their amino acid 

composition and calculate a distance between the proteomes on 
the map [4]. In the studies we selected five representatives of all 
three ecological groups of microorganisms: aerobes, anaerobes, 
hyperthermophiles, psychrophiles and intracellular micro-
organisms. We have also included artificial proteomes that 
consisted of amino acid sequences with the same length as real 
sequences but with the amino acid composition generated based 
on the global nucleotide composition of corresponding genomes. 
The distances were related to differences in amino acid 
compositions between studied proteomes and measured by: 
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where: 
1Bkn and 

2Bkn are numbers of proteins classified to neuron 

k and belonging to the proteome set B1 and B2, respectively, m 
and N-m are total numbers of proteins in the B1 and B2, 
respectively. The distance d(B1, B2) ranges from 0 to 1. The 
teaching vector xi represented the percentage composition of 20 
amino acids in protein i belonging to one of two compared 
proteomes. We tested all possible 190 rectangular topologies of 
SOM with dimension ranged from 2 × 2 to 20 × 20 neurons. 
Finally, we selected the topology that minimized the three 
criteria: Bayesian Information Criterion, topological error and 
spatial autocorrelation. 

Next, using SOM as a classifier, the evolutionary algorithm was 
applied to identify subsets of the most distinctive amino acids that 
discriminated maximally two sets of proteins, i.e. maximized the 
distance (fitness function) between the proteomes. The population 
of chromosomes (potential solutions) were subjected to mutations 
with the probability pmut = 0.02 and recombinations with the 
probability pcross = 0.75 in subsequent generations. Every 
chromosome was the binary vector of the length 20, in which 
particular elements vnj corresponded to an appropriate amino acid: chn= [vn1,vn2,...,vn19,vn20], 
where vnj = 1 when jth amino acid was included in the calculation 
of the distance between proteomes and vnj = 0, when it was not 
considered. We used deterministic tournament selection with two 
chromosomes per tournament to create parental population. In the 
applied elitist strategy the best fitted chromosome passed to the 
next generation. 
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3. RESULTS AND DISCUSSION 
Tab. 1 presents original and optimized distances calculated 
between sets of proteins coming from different ecological groups 
of microorganisms. The largest distances, i.e. the most distinctive 
proteomes according the amino acid composition had 
hyperthermophilies and microorganisms living inside their host 
cells. The application of evolutionary algorithm enlarged 
significantly differences calculated on SOM between the real 
proteomes. The maximized distance increased significantly 2.3 
times on average in proteomes of psychrophiles, 2.0 times in 
proteomes of anaerobes, 1.6 times in proteomes of 
hyperthermophiles, 1.5 times in proteomes of aerobes and 1.4 
times in proteomes of intracellular microorganisms. In contrast to 
the results obtained for the real proteomes, we did not observe 
such significant increase in maximized distances calculated for 
artificial proteomes. The distance calculated for these proteomes 
grew on average only 1.22 times in the best cases, i.e. for 
proteomes of anaerobes. 

Table 1. Original (orig) and mean maximized (max) distances 
on SOM calculated in 300 independent runs for real and 
artificial microbial proteomes of given ecological groups. 

Ecological group 
Real Artificial 

orig max orig max 

hyperthermophiles 0.446 0.723 0.256 0.290 

psychrophiles 0.165 0.387 0.434 0.448 

aerobes 0.260 0.390 0.349 0.413 

anaerobes 0.201 0.411 0.239 0.292 

intracellular 0.371 0.510 0.448 0.518 

 

Analyzing elements of chromosomes evolving in the applied 
algorithm we selected amino acids that maximized differences 
between proteomes calculated on SOM. As an example, Fig. 1 
shows average frequencies of amino acids selected by the best 
chromosomes for proteomes of hyperthermophiles. The uneven 
distribution of these frequencies for real proteomes is clearly 
visible in contrast to the artificial ones, for which the frequencies 
oscillate close to 0.5 (dashed line) when all amino acids have the 
same discriminative power. The most distinctive amino acid 
selected by EA in comparisons of hypertherthmophilic proteomes 
vs. others was glutamine (Q), which  appeared in all solutions. 
Valine (V), tyrosine (Y) and asparagine (N) were present very 
often, with frequency above 0.8. On the other side, leucine (L) 
appeared only in 9% of the best results. In solutions for 
psychrophilic proteomes dominated arginine (R) with 0.94 
frequency whereas with frequency higher than 0.70 occurred 
amino acids with amide in their side-chain: glutamine (Q) and 
asparagine (N). Proteomes of aerobes were the best differentiated 
from others by basic amino acids: arginine (R) and lysine (K), 
selected in almost 80% chromosomes. Quite often (> 70%) 
appeared also alanine (A) and glutamic acid (E). In the case of 
anaerobic proteomes, only glutamine (Q) appeared diagnostic, 
with very high frequency 0.97. Two amino acids, serine (S) with 
frequency 0.90 and phenylalanine (F) with frequency 0.71 
differentiated intracellular proteomes. 

The obtained results indicate that, in contrast to real proteomes, 
amino acids in artificial sequences have the same power to 

discriminate proteomes consisted of such sequences although the 
absolute distances on SOM for artificial proteomes were 
sometimes even larger than for real proteomes. It suggests that 
differences between real proteomes can to some extent result from 
different nucleotide biases characteristic of particular genomes 
[2]. However, the identification of amino acids by the 
evolutionary algorithm, significantly differentiating the real 
proteomes suggests that the unique amino acid usage can also be 
modeled by selection, e.g. on higher stability and functional 
effectiveness of proteins in specific environmental conditions. 
The combination of SOM and AE methods seems to be successful 
approach in analyses of huge biological data and selection of the 
most discriminating variables from a noise. 
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Figure 1. Average frequencies of amino acids calculated in 300 
independent runs for the best chromosomes discriminating 

real and artificial proteomes of hyperthermophiles. 
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