Runtime Analysis of Evolutionary Algorithms: Basic Introduction¹

Per Kristian Lehre University of Nottingham Nottingham NG8 1BB, UK PerKristian.Lehre@nottingham.ac.uk

UNITED KINGDOM · CHINA · MALAYSIA

Copyright is held by the author/owner(s). GECCO'13 Companion, July 6–10, 2013, Amsterdam, The Netherlands ACM 978-1-4503-1964-5/13/07.

Pietro S. Oliveto

University of Birmingham

Birmingham B15 2TT, UK

P.S.Oliveto@cs.bham.ac.uk

UNIVERSITYOF

BIRMINGHAM

¹For the latest version of these slides, see http://www.cs.nott.ac.uk/~pkl/gecco2013.

Introduction Motivation Evolutionary Algorithms and Computer Science

Goals of design and analysis of algorithms

correctness

"does the algorithm always output the correct solution?"

e computational complexity

"how many computational resources are required?"

For Evolutionary Algorithms (General purpose)

convergence

"Does the EA find the solution in finite time?"

time complexity

"how long does it take to find the optimum?" (time = n. of fitness function evaluations)

Aims and Goals of this Tutorial

This tutorial will provide an overview of

- the goals of time complexity analysis of Evolutionary Algorithms (EAs)
- the most common and effective techniques

You should attend if you wish to

- theoretically understand the behaviour and performance of the search algorithms you design
- familiarise with the techniques used in the time complexity analysis of EAs
- pursue research in the area

• enable you or enhance your ability to

- understand theoretically the behaviour of EAs on different problems
- erform time complexity analysis of simple EAs on common toy problems
- read and understand research papers on the computational complexity of EAs
- 4 have the basic skills to start independent research in the area
- I follow the other theory tutorials later on today

Introduction	Motivation OOOOOOO	Evolutionary Algorithms 00000000	Tail Inequalities 0000	Artificial Fitness Levels	Drift Analysis 0000000000	
Introduction to	the theory of EAs					
Brief hi	story					

Theoretical studies of Evolutionary Algorithms (EAs), albeit few, have always existed since the seventies [Goldberg, 1989];

- Early studies were concerned with explaining the *behaviour* rather than analysing their performance [Vose, 1999].
- Schema Theory was considered fundamental;
 - First proposed to understand the behaviour of the simple GA [Holland, 1992];
 - It cannot explain the performance or limit behaviour of EAs;
 - Building Block Hypothesis was controversial [Reeves and Rowe, 2002];
- No Free Lunch [Wolpert and Macready, 1997]
 - Over all functions...
- Convergence results appeared in the nineties [Rudolph, 1998];
 - Related to the time limit behaviour of EAs.

Introduction		Evolutionary Algorithms		Drift Analysis Conclusions	Introduction		Evolutionary Algorithms	Tail Inequalities 0000	Artificial Fitness Levels	
Convergence ar	nalysis of EAs				Convergence and Converg	lysis of EAs				
Def	inition				Defi	nition				

- Ideally the EA should find the solution in finite steps with probability 1 (visit the global optimum in finite time);
- If the solution is held forever after, then the algorithm converges to the optimum!

Definition

- Ideally the EA should find the solution in finite steps with probability 1 (visit the global optimum in finite time);
- If the solution is held forever after, then the algorithm converges to the optimum!

Conditions for Convergence ([Rudolph, 1998])

- There is a positive probability to reach any point in the search space from any other point
- 2 The best found solution is never removed from the population (elitism)

0000 Convergence analysis of EAs Convergence

Definition

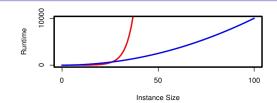
- Ideally the EA should find the solution in finite steps with probability 1 (visit the global optimum in finite time);
- If the solution is held forever after, then the algorithm converges to the optimum!

Conditions for Convergence ([Rudolph, 1998])

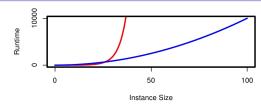
- There is a positive probability to reach any point in the search space from any other point
- **2** The best found solution is never removed from the population (elitism)
- Canonical GAs using mutation, crossover and proportional selection Do Not converge!
- Elitist variants Do converge!

In practice, is it interesting that an algorithm converges to the optimum?

- Most EAs visit the global optimum in finite time (RLS does not!)
- How much time?



Computational Complexity of EAs

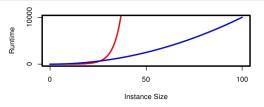


Generally means predicting the resources the algorithm requires:

- Usually the computational time: the number of primitive steps;
- Usually grows with size of the input;
- Usually expressed in asymptotic notation;

Exponential runtime: Inefficient algorithm Polynomial runtime: "Efficient" algorithm

Computational Complexity of EAs

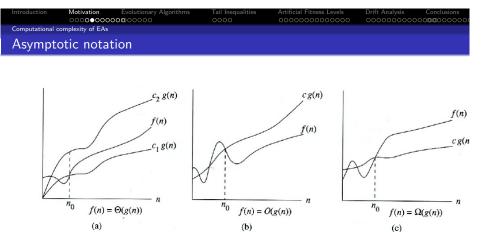


However (EAs):

- In practice the time for a fitness function evaluation is much higher than the rest;
- EAs are randomised algorithms
 - They do not perform the same operations even if the input is the same!
 - They do not output the same result if run twice!

Hence, the runtime of an EA is a random variable T_f . We are interested in:

- Estimating $E(T_f)$, the expected runtime of the EA for f;
- **2** Estimating $p(T_f \le t)$, the success probability of the EA in t steps for f.



 $\begin{array}{ll} f(n) \in O(g(n)) \iff \exists \quad \text{constants} \quad c, n_0 > 0 \quad \text{st.} \quad 0 \leq f(n) \leq cg(n) \quad \forall n \geq n_0 \\ f(n) \in \Omega(g(n)) \iff \exists \quad \text{constants} \quad c, n_0 > 0 \quad \text{st.} \quad 0 \leq cg(n) \leq f(n) \quad \forall n \geq n_0 \\ f(n) \in \Theta(g(n)) \iff f(n) \in O(g(n)) \quad \text{and} \quad f(n) \in \Omega(g(n)) \\ f(n) \in o(g(n)) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \end{array}$

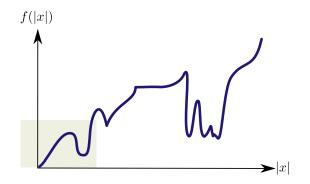
Introduction	Motivation ○○○○○●○○	Evolutionary Algorithms	Tail Inequalities 0000	Artificial Fitness Levels	Conclusions
Computational of	complexity of EAs				
Goals					

Understand how the runtime depends on:

- parameters of the problem
- parameters of the algorithm

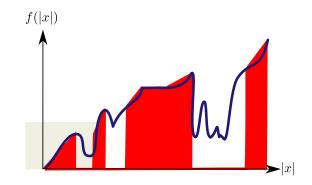
In order to:

- explain the success or the failure of these methods in practical applications,
- understand which problems are optimized (or approximated) efficiently by a given algorithm and which are not
- guide the choice of the best algorithm for the problem at hand,
- determine the optimal parameter settings,
- aid the algorithm design.



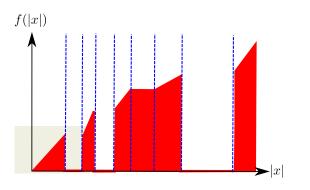
$$g(x) = f\left(\sum_{i=1}^{n} x_i\right)$$
 where $f: \mathbb{R} \to \mathbb{R}$

Introduction	Motivation	Evolutionary Algorithms	Tail Inequalities	Artificial Fitness Levels	Drift Analysis	Conclusions
	00000000	0000000				000000000000000000000000000000000000000
Computational	complexity of EAs					
Running	g Exampl	e - Functions of	f Unitation			



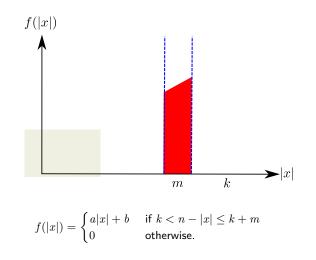
$$g(x) = f\left(\sum_{i=1}^n x_i\right) \quad ext{where} \quad f: \mathbb{R} o \mathbb{R}$$

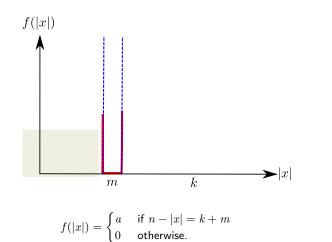
Introduction		Evolutionary Algorithms	Tail Inequalities	Artificial Fitness Levels	Drift Analysis 0000000000		
Computational	complexity of EAs						
Running Example - Functions of Unitation							



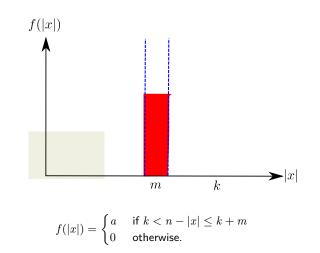
$$f(x) = \sum_{i=1}^{r} f_i(x)$$

Introduction	Motivation	Evolutionary Algorithms	Tail Inequalities 0000	Artificial Fitness Levels	Drift Analysis 00000000000	
Computational co	mplexity of EAs					
Linear U	nitation	Block				





Introduction	Motivation	Evolutionary Algorithms	Tail Inequalities	Artificial Fitness Levels	Drift Analysis	Conclusions
	0000000	0000000				000000000000000000000000000000000000000
Computational of	complexity of EAs					
Toy Pro	blem Fra	mework - Plate	au			



Introduction		0000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Computational of	complexity of EAs			
Upper b	oound on the total runti	me		
f			$f(x) = \sum_{i=1}^{r}$	$\int f_i(x)$

Assumptions

r sub-functions f_1, f_2, \ldots, f_r

 $T_i \,$ time to optimise sub-function f_i

the evolutionary algorithm is elitist

By linearity of expectation, an upper bound on the expected runtime is

$$\mathbb{E}[T] \leq \mathbb{E}\left[\sum_{i=1}^{r} T_i\right] = \sum_{i=1}^{r} \mathbb{E}[T_i].$$

Introduction	Motivation	Evolutionary Algorithms	Tail Inequalities 0000	Artificial Fitness Levels	Drift Analysis 0000000000	
General EAs						
Evolutio	onary Alg	orithms				

$(\mu+\lambda)$ EA
Initialise P_0 with μ individuals chosen uniformly a random from $\{0,1\}^n$ for $t = 0, 1, 2, \ldots$ until stopping condition met do Create λ new individuals by
• choosing $x \in P_t$ uniformly at random
• flipping each bit in x with probability p
Create the new population P_{t+1} by choosing the best μ individuals out of $\mu + \lambda$.

end for

General EAs Evolutionary Algorithms

icial Fitness Levels Drift Analysis Conclusio

$(\mu+\lambda)$ EA

Initialise P_0 with μ individuals chosen uniformly a random from $\{0,1\}^n$ for $t = 0, 1, 2, \ldots$ until stopping condition met do Create λ new individuals by

- choosing $x \in P_t$ uniformly at random
- flipping each bit in x with probability p

```
Create the new population P_{t+1} by
```

```
choosing the best \mu individuals out of \mu + \lambda.
```

end for

• If $\mu = \lambda = 1$, then we get the (1+1) EA;

$(\mu + \lambda)$ EA

Initialise P_0 with μ individuals chosen uniformly a random from $\{0,1\}^n$

for $t = 0, 1, 2, \ldots$ until stopping condition met **do**

Create λ new individuals by

- choosing $x \in P_t$ uniformly at random
- flipping each bit in x with probability p

Create the new population P_{t+1} by

choosing the best μ individuals out of $\mu + \lambda$.

end for

- If $\mu = \lambda = 1$, then we get the (1+1) EA;
- p = 1/n is generally considered a good parameter setting [Bäck, 1993, Droste et al., 1998];

General EAs Evolutionary Algorithms

$(\mu + \lambda)$ EA

Initialise P_0 with μ individuals chosen uniformly a random from $\{0,1\}^n$ for $t = 0, 1, 2, \ldots$ until stopping condition met do Create λ new individuals by

- choosing $x \in P_t$ uniformly at random
- flipping each bit in x with probability p

```
Create the new population P_{t+1} by choosing the best \mu individuals out of \mu+\lambda. end for
```

- If $\mu = \lambda = 1$, then we get the (1+1) EA;
- p = 1/n is generally considered a good parameter setting [Bäck, 1993, Droste et al., 1998];
- By introducing stochastic selection and crossover we obtain a Genetic Algorithm (GA)

(1+1) EA and RLS (1+1) Evolutionary Algorithm

(1+1) EA

```
Initialise x uniformly at random from \{0,1\}^n.

repeat

Create x' by flipping each bit in x with p = 1/n.

if f(x') \ge f(x) then

x \leftarrow x'.

end if

until stopping condition met.
```

If only one bit is flipped per iteration: Random Local Search (RLS).

How does it work?

ial Fitness Levels Drift Analysis Conclu

(1+1) Evolutionary Algorithm

(1+1) EA

Initialise x uniformly at random from $\{0,1\}^n$. repeat Create x' by flipping each bit in x with p = 1/n. if $f(x') \ge f(x)$ then $x \leftarrow x'$. end if until stopping condition met.

If only one bit is flipped per iteration: Random Local Search (RLS).

How does it work?

• Given x, how many bits will flip in expectation?

(1+1) Evolutionary Algorithm

(1+1) EA

```
Initialise x uniformly at random from \{0,1\}^n.

repeat

Create x' by flipping each bit in x with p = 1/n.

if f(x') \ge f(x) then

x \leftarrow x'.

end if

until stopping condition met.
```

If only one bit is flipped per iteration: Random Local Search (RLS).

How does it work?

• Given x, how many bits will flip in expectation?

$$E[X] = E[X_1 + X_2 + \dots + X_n] = E[X_1] + E[X_2] + \dots + E[X_n] =$$

(1+1) EA and RLS

(1+1) Evolutionary Algorithm

(1+1) EA

Initialise x uniformly at random from $\{0,1\}^n$. repeat Create x' by flipping each bit in x with p = 1/n. if $f(x') \ge f(x)$ then $x \leftarrow x'$. end if until stopping condition met.

If only one bit is flipped per iteration: Random Local Search (RLS).

How does it work?

• Given x, how many bits will flip in expectation?

 $E[X] = E[X_1 + X_2 + \dots + X_n] = E[X_1] + E[X_2] + \dots + E[X_n] =$

$$(E[X_i] = 1 \cdot 1/n + 0 \cdot (1 - 1/n) = 1 \cdot 1/n = 1/n \quad E(X) = np)$$

(1+1) EA and RLS (1+1) Evolutionary Algorithm

(1+1) EA

```
Initialise x uniformly at random from \{0,1\}^n.

repeat

Create x' by flipping each bit in x with p = 1/n.

if f(x') \ge f(x) then

x \leftarrow x'.

end if

until stopping condition met.
```

If only one bit is flipped per iteration: Random Local Search (RLS).

How does it work?

• Given x, how many bits will flip in expectation?

$$E[X] = E[X_1 + X_2 + \dots + X_n] = E[X_1] + E[X_2] + \dots + E[X_n] =$$

$$(E[X_i] = 1 \cdot 1/n + 0 \cdot (1 - 1/n) = 1 \cdot 1/n = 1/n \quad E(X) = np)$$

$$=\sum_{i=1}^{n} 1 \cdot 1/n = n/n = 1$$

Introduction	Motivation 00000000	Evolutionary Algorithms	Tail Inequalities 0000	Artificial Fitness Levels	Drift Analysis 0000000000	Conclusions
General propertie	!S					
(1+1) E	A: 2					

How likely is it that exactly one bit flips? $\Pr(X = j) = {n \choose j} p^j (1-p)^{n-j}$

Introduction	Motivation	Evolutionary Algorithms	Tail Inequalities	Artificial Fitness Levels	Drift Analysis	Conclusions
		000000000000000000000000000000000000000				000000000000000000000000000000000000000
General propertie	s					
(1+1) E	A: 2					

How likely is it that exactly one bit flips? $\Pr(X = j) = {n \choose j} p^j (1-p)^{n-j}$ • What is the probability of flipping exactly one bit?

How likely is it that exactly one bit flips? $\Pr(X = j) = {n \choose j} p^j (1-p)^{n-j}$

• What is the probability of flipping exactly one bit?

$$\Pr\left(X=1\right) = \binom{n}{1} \left(\frac{1}{n}\right) \left(1 - \frac{1}{n}\right)^{n-1} = \left(1 - \frac{1}{n}\right)^{n-1} \ge 1/e \approx 0.37$$

Introduction	Motivation 00000000	Evolutionary Algorithms	Tail Inequalities 0000	Artificial Fitness Levels	Drift Analysis Conclusions
General propertie	es				
(1+1) E	A: 2				

How likely is it that exactly one bit flips? $\Pr(X = j) = {n \choose j} p^j (1-p)^{n-j}$

• What is the probability of flipping exactly one bit?

 $\Pr\left(X=1\right) = \binom{n}{1} \left(\frac{1}{n}\right) \left(1 - \frac{1}{n}\right)^{n-1} = \left(1 - \frac{1}{n}\right)^{n-1} \ge 1/e \approx 0.37$

Is flipping two bits more likely than flipping none?

How likely is it that exactly one bit flips? $\Pr(X = j) = {n \choose j} p^j (1 - p)^{n-j}$

• What is the probability of flipping exactly one bit?

$$\Pr(X=1) = \binom{n}{1} \left(\frac{1}{n}\right) \left(1 - \frac{1}{n}\right)^{n-1} = \left(1 - \frac{1}{n}\right)^{n-1} \ge 1/e \approx 0.37$$

Is flipping two bits more likely than flipping none?

$$\Pr(X=2) = {\binom{n}{2}} \left(\frac{1}{n}\right)^2 \left(1-\frac{1}{n}\right)^{n-2}$$
$$= \frac{n(n-1)}{2} \left(\frac{1}{n}\right)^2 \left(1-\frac{1}{n}\right)^{n-2}$$
$$= \frac{1}{2} \left(1-\frac{1}{n}\right)^{n-1} \approx 1/(2e)$$

How likely is it that exactly one bit flips? $\Pr(X = j) = {n \choose j} p^j (1-p)^{n-j}$ • What is the probability of flipping exactly one bit?

$$\Pr\left(X=1\right) = \binom{n}{1} \left(\frac{1}{n}\right) \left(1-\frac{1}{n}\right)^{n-1} = \left(1-\frac{1}{n}\right)^{n-1} \ge 1/e \approx 0.37$$

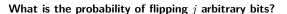
Is flipping two bits more likely than flipping none?

$$\Pr(X=2) = {\binom{n}{2}} \left(\frac{1}{n}\right)^2 \left(1-\frac{1}{n}\right)^{n-2}$$
$$= \frac{n(n-1)}{2} \left(\frac{1}{n}\right)^2 \left(1-\frac{1}{n}\right)^{n-2}$$
$$= \frac{1}{2} \left(1-\frac{1}{n}\right)^{n-1} \approx 1/(2e)$$

While

$$\Pr(X=0) = \binom{n}{0} (1/n)^0 \cdot (1-1/n)^n \approx 1/e$$

Introduction	Motivation 000000000	Evolutionary Algorithms ⊃0©00●00	Tail Inequalities 0000	Artificial Fitness Levels	Drift Analysis Conclusions
General propertie	s				
(1+1) E	A: 3				



$$\binom{n}{j} \left(\frac{1}{n}\right)^{j} \left(1 - \frac{1}{n}\right)^{n-j} \leq \binom{n}{j} \left(\frac{1}{n}\right)^{j} \leq \binom{n^{j}}{j!} \left(\frac{1}{n}\right)^{j} = \frac{1}{j!} \leq \left(\frac{1}{2}\right)^{j-1}$$

What is the probability of flipping $j \ge 1$ bits, conditional on flipping at least j bits?

$$\frac{\binom{n}{j}\left(\frac{1}{n}\right)^{j}\left(1-\frac{1}{n}\right)^{n-j}}{\binom{n}{j}\left(\frac{1}{n}\right)^{j}} \ge \left(1-\frac{1}{n}\right)^{n-1} \ge 1/e$$

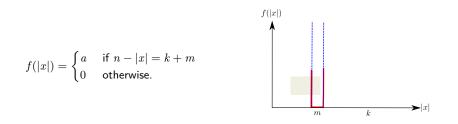
$$f(|x|) = \begin{cases} a & \text{if } n - |x| = k + m \\ 0 & \text{otherwise.} \end{cases}$$

The probability p of optimising a gap block of length m at position k is

$$\binom{m+k}{m} \left(\frac{1}{n}\right)^m \frac{1}{e} \le p \le \binom{m+k}{m} \left(\frac{1}{n}\right)^m$$

The expected time to optimise the gap block is

$$\binom{m+k}{m}^{-1} n^m \leq \mathbb{E}\left[T\right] \leq en^m \binom{m+k}{m}^{-1}$$



The probability p of optimising a gap block of length m at position k is

$$\left(\frac{m+k}{nm}\right)^m \frac{1}{e} \le \binom{m+k}{m} \left(\frac{1}{n}\right)^m \frac{1}{e} \le p \le \binom{m+k}{m} \left(\frac{1}{n}\right)^m \le \left(\frac{(m+k)e}{nm}\right)^m$$

The expected time to optimise the gap block is

$$\left(\frac{nm}{(m+k)e}\right)^m \le \binom{m+k}{m}^{-1} n^m \le \mathbb{E}\left[T\right] \le en^m \binom{m+k}{m}^{-1} \le e\left(\frac{nm}{(m+k)e}\right)^m$$

Introduction	Motivation 00000000	 Tail Inequalities 0000	Artificial Fitness Levels	Drift Analysis 0000000000	Conclusions
The gap sub-pro	oblem				
Initialisa	ation				

How many one-bits in expectation after initialisation?

$$E[X] = n \cdot 1/2 = n/2$$

How likely is it that we get exactly n/2 one-bits?

Introduction	Motivation	Evolutionary Algorithms	Tail Inequalities	Artificial Fitness Levels	Drift Analysis	Conclusions
		00000000				000000000000000000000000000000000000000
The gap sub-pro	oblem					
Initialisa	ation					

How many one-bits in expectation after initialisation?

Introduction	Motivation	Evolutionary Algorithms	Tail Inequalities	Artificial Fitness Levels	Drift Analysis	Conclusions
	0000000	00000000	0000	000000000000000	000000000	000000000000000000000000000000000000000
The gap sub-prol	blem					
Initialisa	tion					

How many one-bits in expectation after initialisation?

$$E[X] = n \cdot 1/2 = n/2$$

How likely is it that we get exactly n/2 one-bits?

$$Pr(X = n/2) = \binom{n}{n/2} \frac{1}{n^{n/2}} \left(1 - \frac{1}{n}\right)^{n/2} \left(n = 100, Pr(X = 50) \approx 0.0796\right)$$

Tail Inequalities help us to deal with these kind of problems.

Introduction		Evolutionary Algorithms ೦೦೦೦೦೦೦೦				Evolutionary Algorithms 00000000		
Tail Inec	qualities				Markov's inequal Markov	у		

Given a random variable \boldsymbol{X} it may assume values that are considerably larger or lower than its expectation;

Tail inequalities:

- Estimate the probability that X deviates from the expectation by a defined amount $\delta;$
- For many intermediate results, expected values are useless;
- May turn expected runtimes into bounds that hold with *overwhelming* probability.

The fundamental	inequality	from	which	many	others	are derived.
-----------------	------------	------	-------	------	--------	--------------

Introduction	Motivation	Evolutionary Algorithms	Tail Inequalities	Artificial Fitness Levels	Drift Analysis	Conclusions
	00000000	0000000	0000	00000000000000	000000000	000000000000000000000000000000000000000
Markov's inequa	lity					
Markov	Inequalit	У				

The fundamental inequality from which many others are derived.

Definition (Markov's Inequality)

Let X be a random variable assuming only non-negative values, and E[X] its expectation. Then for all $t\in R^+,$

$$Pr[X \ge t] \le \frac{E[X]}{t}.$$

Introduction		Evolutionary Algorithms 00000000	Tail Inequalities ●○○○	Artificial Fitness Levels	Drift Analysis 0000000000	Conclusions
Markov's inequal	ity					
Markov	Inequalit	У				

The fundamental inequality from which many others are derived.

Definition (Markov's Inequality)

Let X be a random variable assuming only non-negative values, and E[X] its expectation. Then for all $t\in R^+,$

$$\Pr[X \ge t] \le \frac{E[X]}{t}$$

•
$$E[X] = 1$$
; then: $Pr[X \ge 2] \le \frac{E[X]}{2} \le \frac{1}{2}$ (Number of bits that flip)

Markov	Inequalit	У			
Markov's inequali	ty				
Introduction		00000000	● ○ ○ ○	OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	00000000000000000000000000000000000000

The fundamental inequality from which many others are derived.

Definition (Markov's Inequality)

Let X be a random variable assuming only non-negative values, and E[X] its expectation. Then for all $t\in R^+,$

 $Pr[X \ge t] \le \frac{E[X]}{t}.$

- E[X] = 1; then: $Pr[X \ge 2] \le \frac{E[X]}{2} \le \frac{1}{2}$ (Number of bits that flip)
- E[X] = n/2; then $Pr[X \ge (2/3)n] \le \frac{E[X]}{(2/3)n} = \frac{n/2}{(2/3)n} \le \frac{3}{4}$ (Number of one-bits after initialisation)

The fundamental inequality from which many others are derived.

Definition (Markov's Inequality)

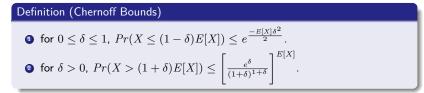
Let X be a random variable assuming only non-negative values, and E[X] its expectation. Then for all $t\in R^+,$

 $Pr[X \ge t] \le \frac{E[X]}{t}.$

- E[X] = 1; then: $Pr[X \ge 2] \le \frac{E[X]}{2} \le \frac{1}{2}$ (Number of bits that flip)
- E[X] = n/2; then $Pr[X \ge (2/3)n] \le \frac{E[X]}{(2/3)n} = \frac{n/2}{(2/3)n} \le \frac{3}{4}$ (Number of one-bits after initialisation)

Introduction		Evolutionary Algorithms	Tail Inequalities ○●○○	Artificial Fitness Levels	Drift Analysis 0000000000	Conclusions
Chernoff bounds						
Chernof	f Bounds					

Let $X_1, X_2, ..., X_n$ be independent Poisson trials each with probability p_i ; For $X = \sum_{i=1}^n X_i$ the expectation is $E(X) = \sum_{i=1}^n p_i$.



Introduction		Evolutionary Algorithms 00©00000	Tail Inequalities ○●○○	Artificial Fitness Levels	Drift Analysis 0000000000	Conclusions
Chernoff bounds						
Chernof	f Bounds					

Let $X_1, X_2, ..., X_n$ be independent Poisson trials each with probability p_i ; For $X = \sum_{i=1}^{n} X_i$ the expectation is $E(X) = \sum_{i=1}^{n} p_i$.

Definition (Chernoff Bounds)
• for $0 \le \delta \le 1$, $Pr(X \le (1-\delta)E[X]) \le e^{\frac{-E[X]\delta^2}{2}}$.
• for $\delta > 0$, $Pr(X > (1 + \delta)E[X]) \le \left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right]^{E[X]}$.

What is the probability that we have more than (2/3)n one-bits at initialisation?

Let X_1, X_2, \ldots, X_n be independent Poisson trials each with probability p_i ; For $X = \sum_{i=1}^n X_i$ the expectation is $E(X) = \sum_{i=1}^n p_i$.

Definition (Chernoff Bounds)
• for
$$0 \le \delta \le 1$$
, $Pr(X \le (1 - \delta)E[X]) \le e^{\frac{-E[X]\delta^2}{2}}$.
• for $\delta > 0$, $Pr(X > (1 + \delta)E[X]) \le \left[\frac{e^{\delta}}{(1 + \delta)^{1 + \delta}}\right]^{E[X]}$.

What is the probability that we have more than (2/3)n one-bits at initialisation?

• $p_i = 1/2$, $E[X] = n \cdot 1/2 = n/2$,

Let X_1, X_2, \ldots, X_n be independent Poisson trials each with probability p_i ; For $X = \sum_{i=1}^n X_i$ the expectation is $E(X) = \sum_{i=1}^n p_i$.

Definition (Chernoff Bounds)
• for $0 \le \delta \le 1$, $Pr(X \le (1-\delta)E[X]) \le e^{\frac{-E[X]\delta^2}{2}}$.
• for $\delta > 0$, $Pr(X > (1 + \delta)E[X]) \le \left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right]^{E[X]}$.

What is the probability that we have more than (2/3)n one-bits at initialisation?

•
$$p_i = 1/2$$
, $E[X] = n \cdot 1/2 = n/2$,
(we fix $\delta = 1/3 \rightarrow (1+\delta)E[X] = (2/3)n$); then:
• $Pr[X > (2/3)n] \le \left(\frac{e^{1/3}}{(4/3)^{4/3}}\right)^{n/2} = c^{-n/2}$

Introduction		Evolutionary Algorithms	Tail Inequalities ○○●○	Artificial Fitness Levels	Drift Analysis 0000000000	Introduction	
Chernoff bounds						Chernoff bounds	
Chernof	Bound	Simple Applicat	tion			Chernof	f

Bitstring of length n = 100

 $Pr(X_i) = 1/2$ and E(X) = np = 100/2 = 50.

Bitstring of length n = 100

 $Pr(X_i) = 1/2$ and E(X) = np = 100/2 = 50. What is the probability to have at least 75 1-bits?

00			0000000	0000		000000000000000000000000000000000000000
	Chernoff bounds					
	OneMa	X				

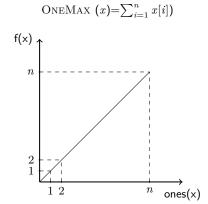
Bitstring of length n = 100

 $Pr(X_i) = 1/2$ and E(X) = np = 100/2 = 50. What is the probability to have at least 75 1-bits?

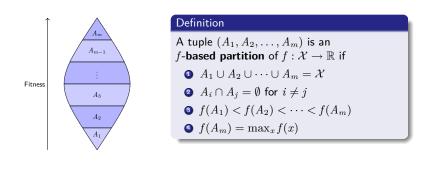
• Markov: $Pr(X \ge 75) \le \frac{50}{75} = \frac{2}{3}$

• Chernoff:
$$Pr(X \ge (1+1/2)50) \le \left(\frac{\sqrt{e}}{(3/2)^{3/2}}\right)^{50} < 0.0045$$

• Truth: $Pr(X \geq 75) = \sum_{i=75}^{100} {100 \choose i} 2^{-100} < 0.00000282$



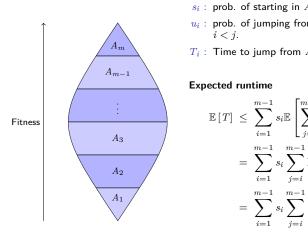
Introduction	Motivation 00000000	Evolutionary Algorithms 00000000	Tail Inequalities 0000	Artificial Fitness Levels	Conclusions
AFL method for	upper bounds				
Fitness-l	based Pa	rtitions			

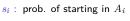


Example Parti

tion of LEADINGONES $(x) = \sum_{i=1}^{n} \prod_{j=1}^{i} x_j$ into $n+1$ levels	
$A_j := \{x \in \{0,1\}^n \mid x_1 = x_2 = \dots = x_{j-1} = 1 \land x_j = 0\}$	

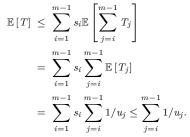
Introduction		Evolutionary Algorithms	Tail Inequalities 0000	Artificial Fitness Levels	Drift Analysis 0000000000	Conclusions
AFL method for	r upper bounds					
Artificia	I Fitness	Levels - Upper	bounds			





 u_i : prob. of jumping from A_i to any A_j ,

 T_i : Time to jump from A_i to any A_j , i < j.



Theorem

The expected runtime of the (1+1)-EA for ONEMAX is $O(n \ln n)$.

Proof

Introduction		Evolutionary Algorithms	Tail Inequalities 0000	Artificial Fitness Levels 00●0000000000000000000000000000000000	Drift Analysis 0000000000	Conclusions
AFL method fo	r upper bounds					
(1+1)-	EA for O	neMax				

Theorem

The expected runtime of the (1+1)-EA for ONEMAX is $O(n \ln n)$.

Proof

• The current solution is in level A_i if it has *i* zeroes (hence n - i ones)

AFL method for upper bounds (1+1)-EA for ONEMAX

Theorem

The expected runtime of the (1+1)-EA for ONEMAX is $O(n \ln n)$.

Proof

- The current solution is in level A_i if it has *i* zeroes (hence n i ones)
- To reach a higher fitness level it is sufficient to flip a zero into a one and leave the other bits unchanged

Artificial Fitness Level

0000

AFL method for upper bounds (1+1)-EA for ONEMAX

Theorem

The expected runtime of the (1+1)-EA for ONEMAX is $O(n \ln n)$.

Proof

- The current solution is in level A_i if it has *i* zeroes (hence n i ones)
- To reach a higher fitness level it is sufficient to flip a zero into a one and leave the other bits unchanged

Artificial Fitness Level

• The probability is
$$s_i \ge i \cdot \frac{1}{n} \left(1 - \frac{1}{n}\right)^{n-1} \ge \frac{i}{er}$$

AFL method for upper bounds

(1+1)-EA for ONEMAX

Theorem

The expected runtime of the (1+1)-EA for ONEMAX is $O(n \ln n)$.

Proof

- The current solution is in level A_i if it has *i* zeroes (hence n i ones)
- To reach a higher fitness level it is sufficient to flip a zero into a one and leave the other bits unchanged
- The probability is $s_i \geq i \cdot rac{1}{n} \left(1 rac{1}{n}\right)^{n-1} \geq rac{i}{en}$

• Hence,
$$\frac{1}{s_i} \leq \frac{en}{i}$$

Theorem

The expected runtime of the (1+1)-EA for ONEMAX is $O(n \ln n)$.

Proof

- The current solution is in level A_i if it has *i* zeroes (hence n i ones)
- To reach a higher fitness level it is sufficient to flip a zero into a one and leave the other bits unchanged

• The probability is
$$s_i \ge i \cdot \frac{1}{n} \left(1 - \frac{1}{n}\right)^{n-1} \ge \frac{i}{en}$$

- Hence, $\frac{1}{s_i} \leq \frac{en}{i}$
- Then (Artificial Fitness Levels):

Linear Unitation Block: Upper bound

$$E(T) \le \sum_{i=1}^{m-1} s_i^{-1} \le \sum_{i=1}^n \frac{en}{i} \le e \cdot n \sum_{i=1}^{m-1} \frac{1}{i} \le e \cdot n \cdot (\ln n + 1) = O(n \ln n)$$

Artificial Fitness Le

Linear Unitation Block: Upper bound

Theorem

The expected runtime of the (1+1)-EA for ONEMAX is $O(n \ln((m+k)/k))$.

Proof

Theorem

AFL method for upper bounds

The expected runtime of the (1+1)-EA for ONEMAX is $O(n \ln((m+k)/k))$.

Proof

• The probability is
$$s_i \ge i \cdot \frac{1}{n} \left(1 - \frac{1}{n}\right)^{n-1} \ge \left(\frac{i}{en}\right)^{n-1}$$

Theorem

The expected runtime of the (1+1)-EA for ONEMAX is $O(n \ln((m+k)/k))$.

Proof

• The probability is $s_i \ge i \cdot \frac{1}{n} \left(1 - \frac{1}{n}\right)^{n-1} \ge \left(\frac{i}{en}\right)$ • Hence, $\left(\frac{1}{s_i}\right) \le \left(\frac{en}{i}\right)$

Theorem

The expected runtime of the (1+1)-EA for ONEMAX is $O(n \ln((m+k)/k))$.

Proof

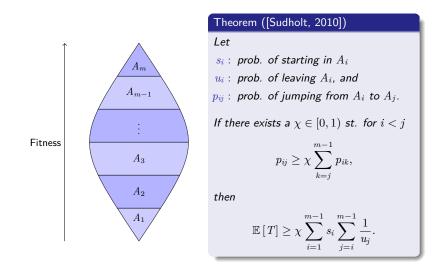
• The probability is
$$s_i \ge i \cdot \frac{1}{n} \left(1 - \frac{1}{n}\right)^{n-1} \ge \left(\frac{i}{en}\right)$$

• Hence, $\left(\frac{1}{s_i}\right) \le \left(\frac{en}{i}\right)$

• Then (Artificial Fitness Levels):

$$E(T) \leq \sum_{i=k+1}^{k+m} \frac{en}{i} \leq e \cdot n \sum_{i=k+1}^{k+m} \frac{1}{i} \leq e \cdot n \cdot \left(\sum_{i=1}^{k+m} \frac{1}{i} - \sum_{i=1}^{k} \frac{1}{i}\right) \leq e \cdot n \cdot \ln\left(\frac{m+k}{k}\right)$$

Introduction Motivation Evolutionary Algorithms Tail Inequalities occo AFL for lower bounds Artificial Fitness Levels - Lower bounds²



AFL for lower bound for ONEMAX

Probability p_{ij} of jumping to level j > i and beyond

$$p_{ij} = {n-i \choose j-i} \left(rac{1}{n}
ight)^{j-i} \left(1-rac{1}{n}
ight)^{n-(j-i)}$$
 $\sum_{k=j}^{n-1} p_{ik} \le {n-i \choose j-i} \left(rac{1}{n}
ight)^{j-i}$

Hence, for $\chi = 1/e$

$$p_{ij} \ge \left(1 - \frac{1}{n}\right)^{n-(j-i)} \sum_{k=j}^{n-1} p_{ik} \ge \chi \sum_{k=j}^{n-1} p_{ik}$$

²A different version of the theorem is presented.

Theorem

The expected runtime of the (1+1) EA for ONEMAX is $\Omega(n \ln(n))$.

Probability u_i of any improvement

 $u_i \leq rac{n-i}{n}$

Assuming that $s_0 = 1$, we get

$$\mathbb{E}[T] \ge \left(\frac{1}{e}\right) \sum_{i=0}^{n-1} \frac{1}{u_i}$$
$$\ge \left(\frac{1}{e}\right) \sum_{i=0}^{n-1} \frac{n}{n-i} = \left(\frac{n}{e}\right) \sum_{i=1}^n \frac{1}{i}$$

For
$$0 \le i \le m$$
, define $A_i := \{x : n - |x| = k + m - i\}$. Note that

$$p_{ij} = \binom{k+m-i}{j-i} \left(\frac{1}{n}\right)^{j-i} \left(1-\frac{1}{n}\right)^{n-(j-i)}$$
$$\sum_{k=j}^{m-1} p_{ik} \le \binom{k+m-i}{j-i} \left(\frac{1}{n}\right)^{j-i}$$

Therefore,

$$p_{ij} \ge \left(1 - \frac{1}{n}\right)^{n - (j-i)} \sum_{k=j}^{m-1} p_{ik} \ge \left(\frac{1}{e}\right) \sum_{k=j}^{m-1} p_{ik}$$

and assuming that $s_0 = 1$, we get

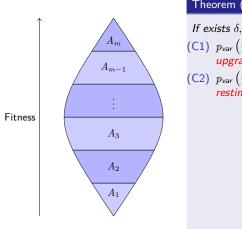
$$\mathbb{E}\left[T\right] \ge \left(\frac{1}{e}\right) \sum_{i=0}^{m-1} \frac{1}{u_i} \ge \left(\frac{1}{e}\right) \sum_{i=0}^{m-1} \frac{n}{m+k-i} = \left(\frac{n}{e}\right) \left(\sum_{i=1}^{m+k} \frac{1}{i} - \sum_{i=1}^{k} \frac{1}{i}\right)$$

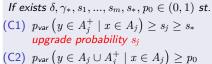
for t = 0, 1, 2, ... until termination condition do for i = 1 to λ do Sample *i*-th parent *x* according to $p_{sel}(P_t, f)$ Sample *i*-th offspring $P_{t+1}(i)$ according to $p_{var}(x)$ end for end for

A general algorithmic scheme for non-elitistic EAs

- $f: \mathcal{X} \to \mathbb{R}$ fitness function over arbitrary finite search space \mathcal{X}
- p_{sel} selection mechanism (e.g. (μ, λ) -selection)
- p_{var} variation operator (e.g. mutation)

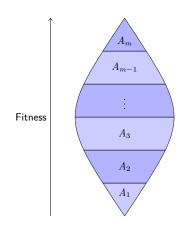
Introduction		Evolutionary Algorithms	Tail Inequalities 0000	Artificial Fitness Levels	Drift Analysis 0000000000	
AFL for non-elit	ist EAs					
Advance	ed: Fitne	ss Levels for no	n-Elitist Po	pulations		





(2) $p_{var} (y \in A_j \cup A_j' \mid x \in A_j) \ge$ resting probability p_0

Advanced: Fitness Levels for non-Elitist Populations



Theorem ([Lehre, 2011a])

- If exists $\delta, \gamma_*, s_1, ..., s_m, s_*, p_0 \in (0, 1)$ st. (C1) $p_{\text{var}} \left(y \in A_j^+ \mid x \in A_j \right) \ge s_j \ge s_*$ upgrade probability s_j
- (C2) $p_{\text{var}} \left(y \in A_j \cup A_j^+ \mid x \in A_j \right) \ge p_0$ resting probability p_0
- (C3) $\beta(\gamma) > \gamma(1+\delta)/p_0$ for all $\gamma < \gamma_*$ "high" selective pressure
- (C4) $\lambda > c' \ln(m/s_*)$ for some const. c'"large" population size

then for a constant c > 0

$$\mathbb{E}\left[T
ight] \leq c\left(m\lambda^2 + \sum_{j=1}^{m-1}rac{1}{s_j}
ight)$$

Artifical Fitness Levels occoorde occ

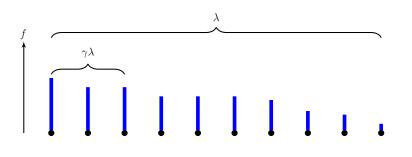
Definition

Let $x^{(1)}, x^{(2)}, \ldots, x^{(\lambda)}$ be the individuals in a population $P \in \mathcal{X}^{\lambda}$, sorted according to a fitness function $f : \mathcal{X} \to \mathbb{R}$, i.e.

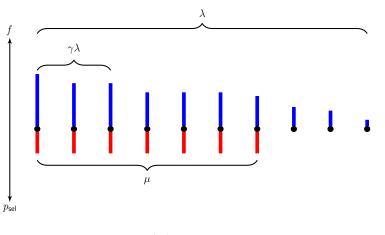
$$f(x^{(1)}) \ge f(x^{(2)}) \ge \cdots \ge f(x^{(\lambda)}).$$

For any $\gamma \in (0,1),$ the cumulative selection probability of $p_{\rm sel}$ is

$$eta(\gamma) := \Pr\left(\, f(y) \geq f\left(x^{(\gamma\lambda)}
ight) \, \mid \, y ext{ is sampled from } p_{\mathsf{sel}}(P,f) \,
ight)$$



$$\beta(\gamma) = \Pr\left(f(y) \ge f\left(x^{(\gamma\lambda)}\right) \mid y \text{ is sampled from } p_{\mathsf{sel}}(P, f)\right)$$



$$eta(\gamma) = \Pr\left(f(y) \ge f\left(x^{(\gamma\lambda)}\right) \mid y \text{ is sampled from } p_{\mathsf{sel}}(P, f)
ight)$$

 $\ge \frac{\gamma\lambda}{\mu} \quad \text{if } \gamma\lambda \le \mu$

 (μ, λ) EA with bit-wise mutation rate χ/n on LEADINGONES

Partition of fitness function into m := n + 1 levels

$$A_j := \{ x \in \{0, 1\}^n \mid x_1 = x_2 = \dots = x_{j-1} = 1 \land x_j = 0 \}$$

If $\lambda/\mu > e^{\chi}$ and $\lambda > c'' \ln(n)$ then

(C1)
$$p_{var}\left(y \in A_j^+ \mid x \in A_j\right) = \Omega(1/n)$$

(C2)
$$p_{\text{var}}\left(y \in A_j \cup A_j^+ \mid x \in A_j\right) \approx e^{-\chi}$$

(C3)
$$\beta(\gamma) \ge \gamma \lambda/\mu > \gamma e^{\lambda}$$

(C4) $\lambda > c'' \ln(n)$

 (μ, λ) EA with bit-wise mutation rate χ/n on LEADINGONES

Partition of fitness function into m := n + 1 levels

$$A_j := \{ x \in \{0,1\}^n \mid x_1 = x_2 = \dots = x_{j-1} = 1 \land x_j = 0 \}$$

If $\lambda/\mu > e^{\chi}$ and $\lambda > c'' \ln(n)$ then

(C1)	$p_{var}\left(y\in A_j^+\mid x\in A_j ight)=\Omega(1/n)$	=:	$s_j =: s_*$
(C2)	$p_{var}\left(y\in A_j\cup A_j^+\mid x\in A_j ight)pprox e^{-\chi}$	=:	p_0
(C3)	$\beta(\gamma) \geq \gamma \lambda/\mu > \gamma e^{\chi}$	=	γ/p_0
(C4)	$\lambda > c'' \ln(n)$	>	$c\ln(m/s^*)$

then $\mathbb{E}\left[T\right]=O(m\lambda^2+\sum_{j=1}^m s_j^{-1})=O(n\lambda^2+n^2)$

 $^{3}\mbox{Calculations}$ on this slide are approximate. See [Lehre, 2011a] for exact calculations.

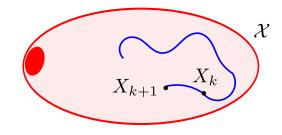
Artifici	al Fitness	Levels: Conclus	sions			
AFL for non-e	litist EAs					
	0000000	00000000	0000	00000000000000	0000000000	000000000000000000000000000000000000000
Introduction	Motivation	Evolutionary Algorithms	Tail Inequalities	Artificial Fitness Levels	Drift Analysis	Conclusions

• It's a powerful general method to obtain (often) tight upper bounds on the runtime of simple EAs;

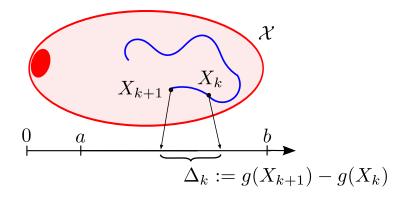
- For offspring populations tight bounds can often be achieved with the general method;
- For parent populations takeover times have to be introduced [Witt, 2006];
- A recent method has been presented to deal with population and non-elitism [Lehre, 2011a].

³Calculations on this slide are approximate. See [Lehre, 2011a] for exact calculations.

What is Drift⁴ Analysis?



What is Drift⁴ Analysis?



- $\bullet\,$ Prediction of the long term behaviour of a process X
 - hitting time, stability, occupancy time etc.

from properties of Δ .

⁴NB! (Stochastic) drift is a different concept than genetic drift in population genetics.

Theorem (Additive Drift Theorem for Upper Bounds [He and Yao, 2001])

Let $\{X_t\}_{t\geq 0}$ be a Markov process over a set of states S, and $d: S \to \mathbb{R}_0^+$ a function that assigns a non-negative real number to every state. Let the time to reach the optimum be $T := \min\{t \geq 0 : d(X_t) = 0\}$. If there exists $\delta > 0$ such that at any time step $t \geq 0$ and at any state $X_t > 0$ the following condition holds:

$$E(\Delta(t)|d(X_t) > 0) = E(d(X_t) - d(X_{t+1}) | d(X_t) > 0) \ge \delta$$
(1)

then

and

$$E(T \mid X_0 > 0) \leq \frac{d(X_0)}{\delta}$$
⁽²⁾

$$E(T) \leq \frac{E(d(X_0))}{\delta}.$$
 (3)

Additive Drift Theorem Plateau Block Function: Upper Bound

Let $k + m > n/2 + \epsilon n$.

$$PlateauBlock_{\ell}(|x|) = \begin{cases} a & \text{ if } k \leq n - |x| \leq k + m \\ 0 & \text{ otherwise.} \end{cases}$$

Theorem

The expected time for the (1+1)-EA to optimise the Plateau function is O(m).

Proof

Let X_t be the number of 0-bits at time t. Then the drift is

$$E(\Delta(t) \ge \frac{X_t}{n} - \frac{n - X_t}{n} = \frac{2X_t}{n} - 1 \ge \frac{2k}{n} - 1$$

Hence, by drift analysis

$$E[T] \le \frac{m}{(2k)/n - 1} = \frac{mn}{2k - n} = O(m)$$

where the last equality holds as long as $k > n/2 + \epsilon n$

Additive Drift Theorem: Lower Bounds

Theorem (Additive Drift Theorem for Lower Bounds [He and Yao, 2004])

Let $\{X_t\}_{t\geq 0}$ be a Markov process over a set of states S, and $d: S \to \mathbb{R}_0^+$ a function that assigns a non-negative real number to every state. Let the time to reach the optimum be $T := \min\{t \geq 0 : d(X_t) = 0\}$. If there exists $\delta > 0$ such that at any time step $t \geq 0$ and at any state $X_t > 0$ the following condition holds:

 $E(T) \ge \frac{E(d(X_0))}{\delta}.$

$$E(\Delta(t)|d(X_t) > 0) = E(d(X_t) - d(X_{t+1}) | d(X_t) > 0) \le \delta$$
(4)

then

$$E(T \mid X_0 > 0) \ge \frac{d(X_0)}{\delta}$$
(5)

(6)

and

Let $k + m > n/2 + \epsilon n$.

$$PlateauBlock_{\ell}(|x|) = \begin{cases} a & \text{ if } k \leq n - |x| \leq k + m \\ 0 & \text{ otherwise.} \end{cases}$$

Theorem

The expected time for the (1+1)-EA to optimise the Plateau function is $\Omega(m)$.

Proof

Let X_t be the number of 0-bits at time t. Then the drift is

$$E(\Delta(t) = \frac{X_t}{n} - \frac{n - X_t}{n} = \frac{2X_t}{n} - 1 \le \frac{2(m+k)}{n} - 1$$

Hence, by drift analysis

$$E[T]\geq \frac{m}{2(m+k)/n-1}=\frac{mn}{2(m+k)-n}=\Theta(m)$$

where the last equality holds as long as $(k+m) > n/2 + \epsilon n$

Introduction		Evolutionary Algorithms	Tail Inequalities 0000	Artificial Fitness Levels	Drift Analysis	Conclusions
Multiplicative D	rift Theorem					
Drift Ar	nalysis foi	r OneMax				

Lets calculate the runtime of the (1+1)-EA using the additive Drift Theorem.

- Let $g(X_t) = i$ where *i* is the number of zeroes in the bitstring;
- The negative drift is 0 since solution with less one-bits will not be accepted;

Introduction		Evolutionary Algorithms	Tail Inequalities 0000	Artificial Fitness Levels	Drift Analysis	Conclusions
Multiplicative D	rift Theorem					
Drift Ar	nalysis fo	r OneMax				

Lets calculate the runtime of the (1+1)-EA using the additive Drift Theorem.

• Let $g(X_t) = i$ where *i* is the number of zeroes in the bitstring;

Lets calculate the runtime of the (1+1)-EA using the additive Drift Theorem.

- Let $g(X_t) = i$ where *i* is the number of zeroes in the bitstring;
- The negative drift is 0 since solution with less one-bits will not be accepted;
- A positive drift is achieved as long as a 0 is flipped and the ones remain unchanged:

$$E(\Delta^{+}(t)) = E[d(X_{t}) - d(X_{t+1})] \ge 1 \cdot \frac{i}{n} \left(1 - \frac{1}{n}\right)^{n-1} \ge \frac{i}{en} \ge \frac{1}{en}$$

Drift Analysis for ONEMAX

Multiplicative Drift Theorem

Lets calculate the runtime of the (1+1)-EA using the additive Drift Theorem.

.

- Let $g(X_t) = i$ where *i* is the number of zeroes in the bitstring;
- The negative drift is 0 since solution with less one-bits will not be accepted;
- A positive drift is achieved as long as a 0 is flipped and the ones remain unchanged:

$$E(\Delta^{+}(t)) = E[d(X_{t}) - d(X_{t+1})] \ge 1 \cdot \frac{i}{n} \left(1 - \frac{1}{n}\right)^{n-1} \ge \frac{i}{en} \ge \frac{1}{en}$$

• Hence,
$$E[\Delta(t)] = E(\Delta^+(t)) - E(\Delta^-(t)) \ge 1/(en) = \delta$$

Drift Analysis for ONEMAX

Multiplicative Drift Theorem

Lets calculate the runtime of the (1+1)-EA using the additive Drift Theorem.

- Let $g(X_t) = i$ where *i* is the number of zeroes in the bitstring;
- The negative drift is 0 since solution with less one-bits will not be accepted;
- A positive drift is achieved as long as a 0 is flipped and the ones remain unchanged:

$$E(\Delta^{+}(t)) = E[d(X_{t}) - d(X_{t+1})] \ge 1 \cdot \frac{i}{n} \left(1 - \frac{1}{n}\right)^{n-1} \ge \frac{i}{en} \ge \frac{1}{en}$$

• Hence,
$$E[\Delta(t)] = E(\Delta^+(t)) - E(\Delta^-(t)) \ge 1/(en) = \delta$$

• The expected initial distance is $E(d(X_0)) = n/2$

The expected runtime is (i.e. Eq. (6)):

$$E(T \mid d(X_0) > 0) \le \frac{E[(d(X_0)]]}{\delta} \le \frac{n/2}{1/(en)} = e/2 \cdot n^2 = O(n^2)$$

We need a different distance function!

Introduction		Evolutionary Algorithms 00000000	Tail Inequalities 0000	Artificial Fitness Levels	Drift Analysis ○○○○○●○○○○	Conclusions
Multiplicative D	rift Theorem					
Drift Ar	nalysis for	• OneMax				

• Let $g(X_t) = \ln(i+1)$ where *i* is the number of zeroes in the bitstring;

Multiplicative Drift Theorem
Drift Analysis for ONEMAX

- Let $g(X_t) = \ln(i+1)$ where *i* is the number of zeroes in the bitstring;
- O The negative drift is 0 since solution with less one-bits will not be accepted;

Multiplicative Drift Theorem Drift Analysis for ONEMAX

- Let $g(X_t) = \ln(i+1)$ where *i* is the number of zeroes in the bitstring;
- Phe negative drift is 0 since solution with less one-bits will not be accepted;
- A positive drift is achieved as long as a 0 is flipped and the ones remain unchanged:

$$E(\Delta^+(t)) = E[d(X_t) - d(X_{t+1})] \ge \ln(i+1) \cdot \frac{i}{n} \left(1 - \frac{1}{n}\right)^{n-1} \ge \frac{\ln(i+1)}{en} \ge \frac{\ln(2)}{en}$$

- Let $g(X_t) = \ln(i+1)$ where *i* is the number of zeroes in the bitstring;
- The negative drift is 0 since solution with less one-bits will not be accepted;
- A positive drift is achieved as long as a 0 is flipped and the ones remain unchanged:

$$E(\Delta^+(t)) = E[d(X_t) - d(X_{t+1})] \ge \ln(i+1) \cdot \frac{i}{n} \left(1 - \frac{1}{n}\right)^{n-1} \ge \frac{\ln(i+1)}{en} \ge \frac{\ln(2)}{en}$$

• Hence,
$$\Delta(t) = E(\Delta^+(t)) - E(\Delta^-(t)) \ge \ln(2)/(en) = \delta$$

Drift Analysis for ONEMAX

- Let $g(X_t) = \ln(i+1)$ where *i* is the number of zeroes in the bitstring;
- The negative drift is 0 since solution with less one-bits will not be accepted;
- A positive drift is achieved as long as a 0 is flipped and the ones remain unchanged:

$$E(\Delta^{+}(t)) = E[d(X_{t}) - d(X_{t+1})] \ge \ln(i+1) \cdot \frac{i}{n} \left(1 - \frac{1}{n}\right)^{n-1} \ge \frac{\ln(i+1)}{en} \ge \frac{\ln(2)}{en}$$

- The distance is $d(X_0) \leq \ln(n+1)$

The expected runtime is (i.e. Eq. (6)):

$$E(T \mid d(X_0) > 0) \le \frac{d(X_0)}{\delta} \le \frac{\ln(n+1)}{\ln(2)/(en)} = O(n \ln n)$$

If the amount of progress is proportional to the distance from the optimum we need to use a logarithmic distance!

Theorem (Multiplicative Drift, [Doerr et al., 2010a])

Let $\{X_t\}_{t\in\mathbb{N}_0}$ be random variables describing a Markov process over a finite state space $S\subseteq\mathbb{R}$. Let T be the random variable that denotes the earliest point in time $t\in\mathbb{N}_0$ such that $X_t=0$.

If there exist δ , c_{\min} , $c_{\max} > 0$ such that

- $E[X_t X_{t+1} \mid X_t] \ge \delta X_t$ and
- $c_{\min} \leq X_t \leq c_{\max},$

for all t < T, then

$$E[T] \le \frac{2}{\delta} \cdot \ln\left(1 + \frac{c_{\max}}{c_{\min}}\right)$$

Drift Analys 000000

(1+1)-EA Analysis for ONEMAX

Theorem

The expected time for the (1+1)-EA to optimise ONEMAX is $O(n \ln n)$

Proof

Multiplicative Drift Theorem (1+1)-EA Analysis for ONEMAX

Theorem

The expected time for the (1+1)-EA to optimise ONEMAX is $O(n \ln n)$

Proof

• Distance: let *i* be the number of zeroes;

•
$$E[X_{t+1}|X_t=i] \ge i-1 \cdot \frac{i}{en} = i \cdot \left(1-\frac{1}{en}\right) = X_t \cdot \left(1-\frac{1}{en}\right)$$

•
$$E[X_t - X_{t+1} | X_t = i] \le X_t - X_t \cdot \left(1 - \frac{1}{en}\right) = \frac{1}{en} X_t \left(\delta = \frac{1}{en}\right)$$

• $1 = c_{\min} < X_t < c_{\max} = n$

Hence.

$$E[T] \leq \frac{2}{\delta} \cdot \ln\left(1 + \frac{c_{\max}}{c_{\min}}\right) = 2en\ln(1+n) = O(n\ln n)$$

Multiplicative Drift Theorem

Linear Unitation Block: Upper Bound

Theorem

The expected time for the (1+1)-EA to optimise the Linear Unitation Block is $O(n\ln((m+k)/k))$

Proof

Multiplicative Drift Theorem Linear Unitation Block: Upper Bound

Theorem

The expected time for the (1+1)-EA to optimise the Linear Unitation Block is $O(n\ln((m+k)/k))$

Proof

• Distance: let *i* be the number of zeroes;

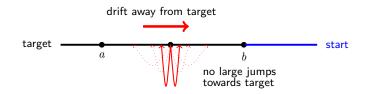
•
$$E[X_{t+1}|X_t=i] \ge i-1 \cdot \frac{i}{en} = i \cdot \left(1-\frac{1}{en}\right) = X_t \cdot \left(1-\frac{1}{en}\right)$$

• $E[X_t - X_{t+1}|X_t=i] \le X_t - X_t \cdot \left(1-\frac{1}{en}\right) = \frac{1}{en}X_t \ (\delta = \frac{1}{en})$
• $k = c_{\min} \le X_t \le c_{\max} = m+k$

•
$$k = c_{\min} \le X_t \le c_{\max} = m$$

Hence,

$$E[T] \le \frac{2}{\delta} \cdot \ln\left(1 + \frac{c_{\max}}{c_{\min}}\right) = 2en\ln(1 + (m+k)/k) = O(n\ln((m+k)/k))$$



Theorem (Simplified Negative-Drift Theorem, [Oliveto and Witt, 2011])

Suppose there exist three constants δ, ϵ, r such that for all $t \ge 0$:

• $E(\Delta_t(i)) \geq \epsilon$ for a < i < b,

2 $\operatorname{Prob}(|\Delta_t(i)| = -j) \leq \frac{1}{(1+\delta)^{j-r}}$ for i > a and $j \geq 1$.

Then

Simplified Negative Drift Theorem Needle in a Haystack

Prob $(T^* < 2^{c^*(b-a)}) = 2^{-\Omega(b-a)}$

Theorem (Oliveto, Witt, Algorithmica 2011)

Let $\eta > 0$ be constant. Then there is a constant c > 0 such that with probability $1 - 2^{-\Omega(n)}$ the (1+1)-EA on NEEDLE creates only search points with at most $n/2 + \eta n$ ones in 2^{cn} steps.

Proof Idea

- By Chernoff bounds the probability that the initial bit string has less than $n/2 \gamma n$ zeroes is $e^{-\Omega(n)}$.
- we set $b := n/2 \gamma n$ and $a := n/2 2\gamma n$ where $\gamma := \eta/2$;

Proof of Condition 1

$$E(\Delta(i)) = \frac{n-i}{n} - \frac{i}{n} = \frac{n-2i}{n} \ge 2\gamma = \epsilon$$

Proof of Condition 2

$$Prob(\Delta(i) \le -j) \le {n \choose j} \left(\frac{1}{n}\right)^j \le \frac{1}{j!} \le \left(\frac{1}{2}\right)^{j-1}$$

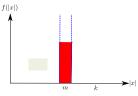
This proves Condition 2 by setting $\delta = r = 1$.

Theorem (Oliveto,Witt, Algorithmica 2011)

Let $\eta > 0$ be constant. Then there is a constant c > 0 such that with probability $1 - 2^{-\Omega(n)}$ the (1+1)-EA on NEEDLE creates only search points with at most $n/2 + \eta n$ ones in 2^{cn} steps.

Introduction		Evolutionary Algorithms 00000000	Tail Inequalities 0000	Artificial Fitness Levels	Drift Analysis	Conclusions
Simplified Negat	ive Drift Theorem:					
Plateau	Block Fi	unction: Lower	Bound			

Let
$$k + m < (1/2 - \epsilon)n$$
.
 $PlateauBlock_r(|x|) = \begin{cases} a & \text{if } k \le n - |x| \le k + m \\ 0 & \text{otherwise.} \end{cases}$



Theorem

The time for the (1+1)-EA to optimise $PlateauBlock_r$ is at least $2^{\Omega(m)}$ with probability at least $1 - 2^{-\Omega(m)}$.

Proof

Let X_t be the number of 0-bits at time t.

$$E(\Delta(t) = \frac{n - X_t}{n} - \frac{X_t}{n} = 1 - \frac{2X_t}{n} \ge \frac{n}{n} - \frac{2(k+m)}{n} = \frac{n - 2(k+m)}{n}$$
 If $2(k+m) < n(1-\epsilon)$ by the simplified drift theorem

$$P(T < 2^{cm}) = 2^{-\Omega(m)}$$

Simplified Negative Drift Theorem

Drift Analysis Conclusio

Plateau Block Function: Upper Bound

Theorem

The expected time for the (1+1)-EA to optimise $PlateauBlock_r$ is at most $e^{O(m)}$.

Proof

We calculate the probability $p \mbox{ of } m$ consecutive steps across the plateau

$$\prod_{i=m+1}^{k+m} p_i \ge \prod_{i=1}^m \frac{k+i}{en} \ge \left(\frac{1}{en}\right)^m \frac{(k+m)!}{k!} \ge \left(\frac{1}{en}\right)^m \left(\frac{k+m}{e}\right)^m = \left(\frac{k+m}{e^2n}\right)^m$$

where

$$\frac{(k+m)!}{k!} = m! \cdot \frac{(k+m)!}{m!k!} = m! \binom{k+m}{m} \ge \left(\frac{m}{e}\right)^m \left(\frac{k+m}{m}\right)^m = \left(\frac{k+m}{e}\right)^m$$

Hence,

$$\mathbb{E}\left[T\right] \le m \cdot 1/p = m \left(\frac{e^2 n}{k+m}\right)^n$$

. Origins

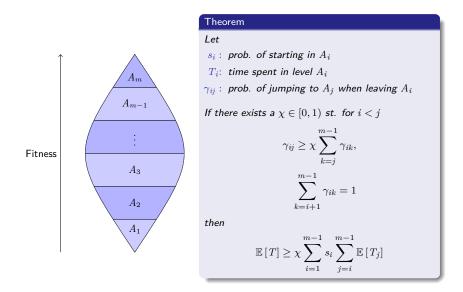
- Stability of equilibria in ODEs (Lyapunov, 1892)
- Stability of Markov Chains (see eg [Meyn and Tweedie, 1993])
- 1982 paper by Hajek [Hajek, 1982]
 - Simulated annealing (1988) [Sasaki and Hajek, 1988]

Drift Analysis of Evolutionary Algorithms

- Introduced to EC in 2001 by He and Yao [He and Yao, 2001, He and Yao, 2004] (additive drift)
 - (1+1) EA on linear functions: $O(n \ln n)$ [He and Yao, 2001]
 - (1+1) EA on maximum matching by Giel and Wegener [Giel and Wegener, 2003]
- Simplified drift in 2008 by Oliveto and Witt [Oliveto and Witt, 2011]
- Multiplicative drift by Doerr et al [Doerr et al., 2010b]
 (1+1) EA on linear functions: en ln(n) + O(n) [Witt, 2012]
- Variable drift by Johannsen [Johannsen, 2010] and Mitavskiy et al. [Mitavskiy et al., 2009]
- Population drift by Lehre [Lehre, 2011b]

⁵More on drift in GECCO 2012 tutorial by Lehre http://www.cs.nott.ac.uk/~pkl/drift

Final O	verview						General	lower bo	un
Overview							Overview		
	00000000	0000000	0000	00000000000000	0000000000	000000000000000000000000000000000000000		00000000	000
Introduction	Motivation	Evolutionary Algorithms	Tail Inequalities	Artificial Fitness Levels	Drift Analysis	Conclusions	Introduction	Motivation	E



Overview

- Tail Inequalities
- Artificial Fitness Levels
- Drift Analysis

Other Techniques (Not covered)

- Family Trees [Witt, 2006]
- Gambler's Ruin & Martingales [Jansen and Wegener, 2001]

Induction hypothesis

$$E_j \ge \mathbb{E}[T_j] + \chi \sum_{k=j+1}^{m-1} \mathbb{E}[T_k]$$

Assumptions

$$\gamma_{ij} \ge \chi \sum_{k=j}^{m-1} \gamma_{ik}$$
$$\sum_{k=i+1}^{m-1} \gamma_{ik} = 1$$

$$\begin{split} \mathcal{E}_{i} &\geq \mathbb{E}\left[T_{i}\right] + \sum_{j=i+1}^{m-1} \gamma_{ij} \mathcal{E}_{j} \\ &\geq \mathbb{E}\left[T_{i}\right] + \sum_{j=i+1}^{m-1} \gamma_{ij} \left(\mathbb{E}\left[T_{j}\right] + \chi \sum_{k=j+1}^{m-1} \mathbb{E}\left[T_{k}\right]\right) \\ &= \mathbb{E}\left[T_{i}\right] + \sum_{j=i+1}^{m-1} \mathbb{E}\left[T_{j}\right] \left(\gamma_{ij} + \chi \sum_{k=i+1}^{j-1} \gamma_{ik}\right) \\ &\geq \mathbb{E}\left[T_{i}\right] + \sum_{j=i+1}^{m-1} \mathbb{E}\left[T_{j}\right] \left(\chi \sum_{k=j}^{m-1} \gamma_{ik} + \chi \sum_{k=i+1}^{j-1} \gamma_{ik}\right) \\ &= \mathbb{E}\left[T_{i}\right] + \chi \sum_{j=i+1}^{m-1} \mathbb{E}\left[T_{j}\right]. \end{split}$$

m - 1

⁶Simple generalisation of [Sudholt, 2010].

Introduction		Evolutionary Algorithms	Tail Inequalities 0000	Artificial Fitness Levels	Drift Analysis 0000000000	Conclusions
Further reading						
Further	Reading					

Next Tutorials

- Bioinspired Computation in Combinatorial Optimization Algorithms and Their Computational Complexity, (Neumann, Witt)
- Black-Box Complexity: From Complexity Theory to Playing Mastermind, (B. Doerr, C. Doerr)
- Artificial Immune Systems for Optimization, (Jansen, Zarges)
- Elementary Landscapes: Theory and Applications (Sutton, Whitley)

Papers at this Gecco:

- The Generalized Minimum Spanning Tree Problem: A Parameterized Complexity Analysis of Bi-level Optimisation, (Çörüş, Lehre, Neumann);
- Parameterized Average-Case Complexity of the Hypervolume Indicator, (Bringmann, Friedrich);
- Analysis of Diversity Mechanisms for Robust Optimisation in Dynamic Environments with Low Frequencies of Change, (Oliveto, Zarges);
- Lessons From the Black-Box: A Fast Crossover-Based Genetic Algorithm, (B. Doerr, C. Doerr, Ebel);
- Runtime Analysis of Mutation-Based Geometric Semantic Genetic Programming for Basis Functions Regression, (Moraglio, Mambrini);
- A Theoretical Runtime and Empirical Analysis of Different Alternating Variable Searches for Search-Based Testing, (Kempka, McMinn, Sudholt);
- Plenty more in the Theory Track!

Introduction		Evolutionary Algorithms 00@00000	Tail Inequalities 0000	Artificial Fitness Levels	Drift Analysis 0000000000	Conclusions		
Further reading								
Coming up Workshop								

Goals

- To contribute to the theoretical understanding of randomised search heuristics;
- to stimulate interactions within the research field and between people from different disciplines working on randomised algorithms;
- discuss recent ideas and detecting challenging topics for future work.

Further reading References I

Bāck, T. (1993). Optimal mutation rates in genetic search. In In Proceedings of the Fifth International Conference on Genetic Algorithms (ICGA), pages 2–8.
Doerr, B., Johannsen, D., and Winzen, C. (2010a). Multiplicative drift analysis. In <i>Proceedings of the 12th annual conference on Genetic and evolutionary computation</i> , GECCO '10, pages 1449–1456. ACM.
Doerr, B., Johannsen, D., and Winzen, C. (2010b). Multiplicative drift analysis. In GECCO '10: Proceedings of the 12th annual conference on Genetic and evolutionary computation, pages 1449–1456, New York, NY, USA. ACM.
Droste, S., Jansen, T., and Wegener, I. (1998). A rigorous complexity analysis of the $(1 + 1)$ evolutionary algorithm for separable functions with boolean inputs.
Evolutionary Computation, 6(2):185–196. Giel, O. and Wegener, I. (2003). Evolutionary algorithms and the maximum matching problem. In Proceedings of the 20th Annual Symposium on Theoretical Aspects of Computer Science (STACS 2003), pages 415–426.
Goldberg, D. E. (1989). Genetic Algorithms for Search, Optimization, and Machine Learning. Addison-Wesley.

Further reading References II

0000

0000

urther reading	Motivation 0000000	Evolutionary Algorithms	Tail Inequalities 0000	Artificial Fitness Levels	Drift Analysis Conclusi		00000000
Referenc	ces III						ences IV
	Lehre, P. K.	(2011a). 5 for non-elitist populatior				[Rudolph, G. (19 Finite Markov c
	In <i>Proceedin</i> 2075–2082. <i>J</i> Lehre, P. K.	gs of the 13th annual con ACM. (2011b).		and evolutionary computation	on, GECCO '11, pages	[Fundamenta Info Sasaki, G. H. an The time compl
	In Proceedin, 244–253. Spi	t in populations. gs of Parallel Problem So ringer Berlin / Heidelberg and Tweedie, R. L. (1993		(PPSN XI), volume 6238 of	LNCS, pages	[Journal of the A Sudholt, D. (20) General lower bo In PPSN (1), pa
	Springer-Ver	ns and Stochastic Stabilit lag. ., Rowe, J. E., and Cannii					Vose, M. D. (19 The simple gene MIT Press, Cam
_	total number			network communication sub etics, 2(2):243–284.	ject to preserving the		Witt, C. (2006). Runtime analysis
	Simplified dr	. and Witt, C. (2011). ift analysis for proving lov , 59(3):369–386.	ver bounds inevolutio	onary computation.		[In <i>GECCO '06:</i> 651–658, New Y Witt, C. (2012).
	Genetic Algo	. and Rowe, J. E. (2002). rithms: Principles and Pe emic Publishers, Norwell,		to GA Theory.			Optimizing linea In Dürr, C. and Science (STACS 420–431, Dagstu

.998)

chain results in evolutionary computation: A tour d'horizon. nformaticae, 35(1–4):67–89.

and Hajek, B. (1988).

plexity of maximum matching by simulated annealing. Association for Computing Machinery, 35(2):387-403.

2010).

bounds for the running time of evolutionary algorithms. pages 124-133.

L999).

netic algorithm: foundations and theory mbridge, MA.

sis of the $(\mu+1)$ ea on simple pseudo-boolean functions evolutionary computation. Proceedings of the 8th annual conference on Genetic and evolutionary computation, pages York, NY, USA. ACM Press.

ear functions with randomized search heuristics - the robustness of mutation. d Wilke, T., editors, 29th International Symposium on Theoretical Aspects of Computer CS 2012), volume 14 of Leibniz International Proceedings in Informatics (LIPIcs), pages stuhl, Germany. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Introduction	Motivation	Evolutionary Algorithms	Tail Inequalities	Artificial Fitness Levels	Drift Analysis	Conclusions
		00000000				000000000000000000000000000000000000000
Further reading						
Reference	ces V					

