
Comparing Coevolution, Genetic Algorithms, and
Hill-Climbers for Finding Real-Time Strategy Game Plans

Christopher Ballinger
University of Nevada, Reno

Reno, Nevada 89503
caballinger@cse.unr.edu

Sushil Louis
University of Nevada, Reno

Reno, Nevada 89503
sushil@cse.unr.edu

ABSTRACT

This paper evaluates a coevolutionary genetic algorithm’s
performance at generating competitive strategies in the ini-
tial stages of real-time strategy games. Specifically, we eval-
uate coevolution’s performance against an exhaustive search
of all possible build orders. Three hand coded strategies out-
side this exhaustive list provide a quantitative baseline for
comparison with other strategy search algorithms. Earlier
work had shown that a bit-setting hill-climber only finds
the best strategies six percent of the time but takes signifi-
cantly less time compared to a genetic algorithm that rou-
tinely finds the best strategies. Our results here show that
coevolved strategies win or tie against hill-climber and ge-
netic algorithm strategies eighty percent of the time but rou-
tinely lose to the three hand coded baselines. This work in-
forms our research on improving coevolutionary approaches
to real-time strategy game player design.

Categories and Subject Descriptors

I.2.m [Artificial Intelligence]: Evolutionary Computation;
I.2.1 [Applications and Expert Systems]: Games

General Terms

Algorithms

Keywords

Coevolution, Real-Time Strategy Games, Build-orders

1. INTRODUCTION
Finding effective and robust strategies in Real-Time Strat-

egy (RTS) games presents a challenging problem. RTS game
players must compete for resources, build up an economy
able to support their military force, expand their control
over the map, and eventually destroy their opponent’s base.
Any advances in developing RTS game players will impact
planning and execution in competitive industrial settings
through the development of smart, realistic opponents.
Our overall goal is to create competent RTS game players

and this paper compares CAs to GAs and HCs. However,
several issues make such comparisons difficult. First, there
is no single optimal strategy. RTS games are designed like

Copyright is held by the author/owner(s).
GECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
ACM 978-1-4503-1964-5/13/07.

rock-paper-scissors games and for every possible good strat-
egy there is a counter strategy that can beat it.

In order to make such comparisons more meaningful, we
also need to look at the space of all possible strategies, that
is, we need to exhaustively list all possible strategies and
evaluate their performance against our three baselines.

Our results show that the CA solutions beat GA gener-
ated and HC generated solutions 80% of the the time but
fare much worse against the three hand coded baselines.
Since the GA generated solutions do relatively well against
the baselines, the CA tends to find solutions that beat the
GA but not the baselines. These results inform our current
research in developing a full game AI for WaterCraft, our
open-source RTS clone of StarCraft.

2. METHODOLOGY
We created three hand-tuned “baseline” build-orders to

compare against potential solutions generated by the CA,
GA and HC. These baselines take 24-39 bits to encode, com-
pared to the 15 bit solutions we develop in coevolution. This
allows the baselines to present a challenging opponent that
coevolution will have never encountered before, in contrast
to the 15 bit solutions produced by the GA and HC, which
the CA may still independently discover.

Our fitness calculation encourages players to find ways to
destroy enemy units and structures, as shown in Equation 1.
Where Fij is the fitness of individual i against individual j,
SRi is the amount of resources spent by individual i, UDj is
the set of units owned by individual j that were destroyed,
UCk is the cost to build unit k, BDj is the set of buildings
owned by individual j that were destroyed, and BCk is the
cost to build building k.

Fij = SRi + 2
∑

k∈UDj

UCk + 3
∑

k∈BDj

BCk (1)

We represented a build-order as a sequence of commands.
Since GAs prefer a binary encoding, the CA, GA and the
HC all worked with the same binary encoded sequence of
commands [2]. We encoded the chromosome as a 15-length
binary string. Every three bits of the binary string encodes
an action and required prerequisites. WaterCraft sequen-
tially decodes the binary string and inserts a request for
each encoded action, preceded by any missing prerequisites,
into a queue. Our game AI will issue actions from the queue
as quickly as possible.

When evaluating an individual during coevolution, we
used a teach set, scaled fitness, hall of fame, shared sampling,
and fitness sharing as described by Rosin and Belew [3].

47

-2500

-2000

-1500

-1000

-500

 0

 500

 0 10 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 C

A
 P

o
p

u
la

ti
o

n
 S

c
o

re
 D

if
fe

re
n

c
e

Generation

vs 3 Best GA
vs 32 BSO

vs 3 Baselines

Figure 1: Avg Score Difference

of CA Population.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 10 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 C

A
 P

o
p

u
la

ti
o

n
 W

in
 F

ra
c
ti
o

n

Generation

vs 3 Best GA
vs 32 BSO

vs 3 Baselines

Figure 2: Avg Win Fraction of

CA Population.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 10 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 C

A
 P

o
p

u
la

ti
o

n
 T

ie
 F

ra
c
ti
o

n

Generation

vs 3 Best GA
vs 32 BSO

vs 3 Baselines

Figure 3: Avg Tie Fraction of

CA Population.

The teach set that every chromosome plays against con-
tains eight chromosomes selected from two sources: four
chromosomes from the hall of fame and four chromosomes
from shared sampling. We limited our teach set size to eight,
so that with our population size of 50, our entire cluster of
400 nodes would be full. The hall of fame is simply a list of
chromosomes that have performed well in the past. By using
fitness sharing, the CA will not only favor strategies that de-
feat many opponents, but also strategies that defeat only a
few opponents that rarely lose, since they contain important
new information on how to beat those opponents.
For the basic CA operations and parameters, we used uni-

form crossover with a 95% chance of crossover occurring and
bit-mutation with a .1% chance of each individual bit chang-
ing value. The chromosomes are selected for crossover by
using standard roulette wheel selection. Once we have cre-
ated all the children chromosomes, we evaluate them against
the same teach set, then use CHC selection to select chro-
mosomes for the next population [1].
Our GA implementation was simple. We modified the

concept of the teach set we used for coevolution; instead of
creating a new teach set each generation, we populate the
teach set solely with our baseline strategies. Other than the
change to the teach set, we used all the same parameters
and methods that we used for coevolution.
We use the bit-setting optimization HC which attempts

to find an effective solution by sequentially flipping each bit
and keeping the value with the highest fitness [4].

fi =
∑

j∈B

Fij − Fji (2)

We determine the fitness by playing a chromosome against
all three baselines and taking the sum of the differences in
scores, as shown in Equation 2 Where fi is the fitness of
chromosome i, j is a baseline in the set of all baselines B,
Fij is the fitness chromosome i got against baseline j, and
Fji is the fitness baseline j got against chromosome i.
HC performance depends on the initial seed. We initialize

this HC with thirty-two different seeds: a chromosome set
to all 0’s, a chromosome set to all 1’s, and thirty randomly
generated chromosomes.
Exhaustive search evaluates all 215 possible build-orders

against all three of our baselines. We limited ourselves to
15-bit solutions since that was the maximum build-order
length we could exhaustively search in a reasonable amount
of time. Exhaustive search enables us to rank all possible
15-bit solutions, and compare the effectiveness of solutions

against the baselines found by CAs, GAs, HCs, as well as
other search methods in the future.

3. RESULTS
We ran coevolution with a population size of 50 on our

400 node cluster for 98 generations, in order to match the
number of generations performed by our GA. We measured
coevolution’s progress by playing all members of the pop-
ulation at each generation against three sets of opponents,
taken from our previous study: The three best solutions
found by the GA, 32 solutions found by the HC, and the
three baselines used to evaluate the GA and HC solutions.

Figure 1 shows that coevolution very quickly moves to
increase the average score of the population, but not by very
much. However, this slight increase in average score has a
huge affect on the number of wins and ties the solutions
achieve, as shown by Figure 2 and Figure 3.

While Figure 1 and Figure 2 shows that our coevolved
solutions are not as good against the baselines as the GA
results, all three figures seem to indicate that an increase /
decrease in performance against the GA and HC solutions
correlates to an increase / decrease in performance against
the baselines.

These results help specify the trade-offs between injecting
human expertise into our evolutionary algorithms. Using a
genetic algorithm against a set of hand-tuned baselines pro-
duces strategies that are robust against the opponents used
in training. The coevolutionary algorithm produced strate-
gies that defeated opponents of the same bit-length, but only
made minor improvements against the baselines. These re-
sults inform our future work on finding robust strategies that
also defeat specific opponents. This research is supported by
ONR grant N000014-12-C-0522.

4. REFERENCES
[1] L. J. Eshelman. The chc adaptive search algorithm :

How to have safe search when engaging in
nontraditional genetic recombination. Foundations of

Genetic Algorithms, pages 265–283, 1991.

[2] D. E. Goldberg. Genetic algorithms in search,
optimization, and machine learning. 1989.

[3] C. D. Rosin and R. K. Belew. New methods for
competitive coevolution. Evol. Comput.

[4] S. W. Wilson. Ga-easy does not imply steepest-ascent
optimizable, 1991.

48

