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Introduction

What is a landscape?
Many different intuitive definitions
A mathematical formalism of the search space of a combinatorial
optimization problem

Definition: a landscape is a tuple (X,N, f )

A set of states X
A neighborhood operator N : X 7→ P(X)
A fitness function f : X 7→ R
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Introduction: a landscape
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1,4,5,6,3,2

X set of states
N : X 7→ P(X) neighborhood operator

f : X 7→ R objective function
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Local Search as Tree Search

ABCDE

ACBDE ABDCEABEDC ABCED

We often think of local search as greedy depth-first search.
But the neighborhood really induces a connected graph.
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Introduction

Landscape: a vertex-weighted graph
The vertices are points in the search space

What is an “elementary” landscape?
A fitness function f that has a special relationship with the
neighborhood operator N with respect to X

Elementary = “fundamental component”
Why is this useful?

Certain “smooth” properties
Computation of average neighborhood
Constraints on plateaus, local optima
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Preliminaries

G(X,E)

is the underlying graph induced by N.
We assume G is regular with vertices of degree d.

A ∈ R|X|×|X|

is the adjacency matrix of G.
If x1 and x2 are neighbors, A(x1, x2) = 1.

∆ = A− dI ∈ R|X|×|X|

is the Laplacian of G.

Note: f is a discrete, finite function, f ∈ R|X|.
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The Wave Equation: definition 1

On an arbitrary landscape
f and N are unrelated

On an elementary landscape

The wave equation

∆f = λf

where λ is a scalar
In other words, f is an eigenvector of the Laplacian
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The Wave Equation: definition 1
Average change

∆f = (A− dI)f = k(f̄ − f )

∆f (x) =
∑

y∈N(x)

(f (y)− f (x)) = k(f̄ − f (x))

Average value

avg
y∈N(x)

{f (y)} =
1
d

∑

y∈N(x)

f (y)

= f (x) +
1
d


 ∑

y∈N(x)

f (y)− f (x)




= f (x) +
1
d

∆f (x)

= f (x) +
k
d

(
f̄ − f (x)

)

L. D. Whitley & A. M. Sutton Elementary Landscapes: Theory and Applications

546



9

The Wave Equation: definition 2

f (x) =
∑

a subset of “components”

Starting from average...

avg
y∈N(x)

{f (y)} = f (x) + avg
y∈N(x)

{components in− components out}
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Example: TSP under 2-opt

f(x)

∑
wi − f(x)

f(y) = f(x)− out+ in

Components: set of edge weights wi,j

f (x) = sum of edge weights induced by tour x

There are n(n− 1)/2− n weights not in tour x

Average value of components out: 2
n f (x)

Average value of components in: 2
n(n−3)/2 (

∑
w− f (x))
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The Components and f̄

Let C denote the set of components

0 < p3 < 1 is the proportion of the components in C that contribute to
the cost function for any randomly chosen solution

f̄ = p3

∑

c∈C

c

For the TSP:

f̄ =
n

n(n− 1)/2

∑

wi,j∈C

wi,j

f̄ =
2

n− 1

∑

wi,j∈C

wi,j
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The Wave Equation: definition 2

avg
y∈N(x)

{f (y)} = f (x) +
2

n(n− 3)/2

(∑
w− f (x)

)
− 2

n
f (x)

= f (x) +
2

n(n− 3)/2
(
(n− 1)/2f̄ − f (x)

)
− 2

n
f (x)

= f (x) +
(n− 1)

n(n− 3)/2
(f̄ − f (x))

= f (x) +
k
d

(f̄ − f (x))
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Properties

One of the following is true.

f (x) = avg
y∈N(x)

{f (y)} = f̄

f (x) < avg
y∈N(x)

{f (y)} < f̄

f (x) > avg
y∈N(x)

{f (y)} > f̄
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Properties

Assume f (x) < f̄ . Note that 0 < k/d < 1.
Then (f̄ − f (x)) must be positive. Thus

avg
y∈N(x)

{f (y)} = f (x) +
k
d

(f̄ − f (x)) > f (x)
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Properties

Assume f (x) < f̄ . Note that 0 < k/d < 1.

avg
y∈N(x)

{f (y)} − f (x) =
k
d

(f̄ − f (x))

k
d

( avg
y∈N(x)

{f (y)} − f (x)) < avg
y∈N(x)

{f (y)}+ f (x) =
k
d

(f̄ − f (x))

k
d

( avg
y∈N(x)

{f (y)} − f (x)) <
k
d

(f̄ − f (x))

THUS: f (x) < avg
y∈N(x)

{f (y)} < f̄
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Properties

When f (x) > f̄ and 0 < k/d < 1 we can similarly show that:

f (x) > avg
y∈N(x)

{f (y)} > f̄
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Properties

local maxima

local minima

x

f(x)
f̄
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A Component Based Model

C is the set of components (e.g. from a cost matrix)

x is a solution (e.g. a subset of the cost matrix)

Let (C − x) denote the set of components, excluding those in x

For a move, we then define:
0 < p1 < 1 is the proportion of components in x that change
0 < p2 < 1 is the proportion of components in (C − x) that change
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The Component Theorem

Theorem
If p1, p2 and p3 can be defined for any regular landscape such that the
evaluation function can be decomposed into components where
p1 = α/d and p2 = β/d and

f̄ = p3

∑

c∈C

c =
β

α+ β

∑

c∈C

c

then the landscape is elementary.
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The Component Theorem

Proof.

avg
y∈N(x)

{f (y)} = f (x)− p1f (x) + p2((
∑

c∈C

c)− f (x))

= f (x)− p1f (x) + p2((1/p3 f̄ )− f (x))

= f (x)− (p1 + p2)f (x) + (p2/p3)f̄

= f (x)− α+ β

d
f (x) +

β/d
β/(α+ β)

f̄

= f (x) +
α+ β

d
(f̄ − f (x))

= f (x) +
k
d

(f̄ − f (x))
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Note that p1, p2 and p3 must be constants and

p1 + p2 = p2/p3 = k/d

where d is the size of the neighborhood and k is a constant.

L. D. Whitley & A. M. Sutton Elementary Landscapes: Theory and Applications

22

This computation also can be expressed as a 2-dimensional matrix M
with d rows and |C| columns.

For a 5 city TSP

ab bc cd de ae ac ad bd be ce
ABCDE 1 1 1 1 1 0 0 0 0 0
ABEDC 1 0 1 1 0 1 0 0 1 0
ABCED 1 1 0 1 0 0 1 0 0 1
ABDCE 1 0 1 0 1 0 0 1 0 1
ACBDE 0 1 0 1 1 1 0 1 0 0
ADCBE 0 1 1 0 1 0 1 0 1 0
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Looking at the neighbors in aggregate.

ab bc cd de ae ac ad bd be ce
1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1
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If we can characterize particular types of neighbors,
they can be removed.

ab bc cd de ae ac ad bd be ce
ABCDE 1 1 1 1 1 0 0 0 0 0
ABEDC 1 0 1 1 0 1 0 0 1 0
ABCED 1 1 0 1 0 0 1 0 0 1
ABDCE 1 0 1 0 1 0 0 1 0 1
ACBDE 0 1 0 1 1 1 0 1 0 0
ADCBE 0 1 1 0 1 0 1 0 1 0
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Graph Coloring

RR B G
V1

V2 V3 V4
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Graph Coloring

The Components are edges in the graph.
Assume r colors, |V| vertices.

p1 =
2(r − 1)

|V|(r − 1)

p2 =
2

|V|(r − 1)

p3 = 1/r

avg
y∈N(x)

{f (y)} = f (x)− p1f (x) + p2((1/p3 f̄ )− f (x))

= f (x) +
2r

|V|(r − 1)
(f̄ − f (x))
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Graph Coloring

RR B G
V1

V2 V3 V4

avg
y∈N′(x)

f (y) < f (x) < avg
y∈N(x)

f (y) < f̄
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Graph Coloring, Partial Neighborhoods

Let Qx denote vertices involved in a conflict.
Ex denotes the Components (edges that touch v ∈ Qx)
Let Degree(v) store the degree of vertex v.
The new set of components is given by

|Ex| =
∑

v∈Qx

Degree(v)− f (x)

p1 =
2(r − 1)

|Qx|(r − 1)

p2 =
1

|Qx|(r − 1)

avg
y∈N′(x)

{f (y)} = f (x) +

∑
v∈Qx

Degree(v)− (2r)f (x)

|Qx|(r − 1)
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Min-Cut Graph Partitioning

LHS

RHS

V1 V2

V3 V4 V5 V6

V7 V8
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Min-Cut Graph Partitioning

The Components are edges in the graph.
Assume r colors, |V| vertices.

p3 =
n/2

n− 1
=

n2/4
|C|

f̄ = p3

∑

c∈C

c =
n

2(n− 1)

∑

ei,j∈E

wi,j

p1 =
2(n/2− 1)

n2/4
=

n− 2
n2/4

=
α

d

p2 =
n

n2/4
=
α

d
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Min-Cut Graph Partitioning

avg{f (y)}
y∈N(x)

= f (x)− p1f (x) + p2(1/p3(f̄ − f (x)))

= f (x)− n− 2
n2/4

f (x) +
n

n2/4

[
2(n− 1)

n
f̄ − f (x)

]

= f (x) +
2(n− 1)

n2/4
(f̄ − f (x))

where k = 2(n− 1) and the neighborhood size is d = n2/4. Grover
simplifies this to obtain:

avg{f (y)}
y∈N(x)

= f (x) +
8(n− 1)

n2 (f̄ − f (x))
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Min-Cut Graph Partitioning

LHS

RHS

V1 V2

V3 V4 V5 V6

V7 V8
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Partial Neighborhoods for Min-Cut

Let nL count the number of vertices in the LHS which have no edges
that connect to the right hand size.

Let nR count the number of vertices in the RHS which have no edges
that connect to the right hand size.

There are nL x nR vertex pairs that cannot be yield an improvement.

Let d′ denote the size of the new neighborhood.

Let W ′ represent the sum of all the weights that are eliminated when
these moves are excluded.

L. D. Whitley & A. M. Sutton Elementary Landscapes: Theory and Applications
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Partial Neighborhoods for Min-Cut

Theorem

A partial neighborhood N′(x) exists for the Min-Cut Graph Partitioning
problems such that

avg{f (y)}
y∈N′(x)

= f (x)− 2n− 2
d′

f (x) +
n(
∑

ei,j∈E wi,j)−W ′

d′

where d′ = n2/4− |nL||nr|

and W ′ = |nL|
∑

i∈V,x∈nR

w(i, x) + |nR|
∑

i∈V,x∈nL

w(i, x)
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Partial Neighborhoods for Min-Cut

A vector Weights(x) can be precomputed that stores the sum of the
weights associated with edges incident on vertex x.
The information needed to compute W ′ is found in the vector
Weights(i) since

If x ∈ nL then
∑

i∈V

w(i, x) = Weights(x)

If x ∈ nR then
∑

i∈V

w(i, x) = Weights(x)
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A “spectral” approach

Algorithms that use local move or mutation operators essentially
perform a heuristic search on the landscape graph (call it G).

When is such a search successful?
If there is no relationship between G and f , essentially a random
search.
Local search algorithms: considered the state of the art for many
combinatorial optimization problems⇒ there must be a
relationship between G and f .

The study of landscapes is really the study of the relationship
between the spectrum1 of G and the function f .

1i.e., the eigendecomposition of its adjacency matrix
L. D. Whitley & A. M. Sutton Elementary Landscapes: Theory and Applications
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Working in function space

Any function f : X → R can be characterized as a vector in R|X|

Any vector in R|X| can be characterized as a real function on X

ex

ex

ex

ex

ey ey
f fϕi ϕj

ϕk

ey(x) = δxy

f(x) =
∑

y

fyey(x) f(x) =
∑

i

aiϕi(x)
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The adjacency matrix

x

The landscape can be partially
represented by an adjacency
matrix A.

Axy =

{
1 if y ∈ N(x);
0 otherwise.

L. D. Whitley & A. M. Sutton Elementary Landscapes: Theory and Applications
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Main insight #1: Matrices as operators

Any |X| × |X| matrix M can be characterized as an operator on the
space of real functions over X.

Mf = g M : {f : X → R} → {f : X → R}

Consider the matrix vector product Af = g.

x→




0 1 1 0 1 0 0 0
1 0 0 1 0 1 0 0
1 0 0 1 0 0 1 0
0 1 1 0 0 0 0 1
1 0 0 0 0 1 1 0
0 1 0 0 1 0 0 1
0 0 1 0 1 0 0 1
0 0 0 1 0 1 1 0







3
2
4
1
1
7
5
8




=




7
11
9

14
15
11
13
13




← g(x)

Image of f under A is a function g(x) that gives the sum of f values
over the neighbors of x (the sifting property).

L. D. Whitley & A. M. Sutton Elementary Landscapes: Theory and Applications
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Main insight #2: Eigenfunctions of the adjacency

Want a set of basis functions that allow us to study the relationship
between the neighborhood graph and the fitness function.

f (x) =
∑

i

aiϕi(x)

where ai is an “amplitude” and ϕi : X → C is an eigenfunction of A.

An eigenfunction of A is any function ϕ : X → C that satisfies the
equation (

Aϕ
)
(x) = Aϕ(x) = λϕ(x)

for a constant λ.
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What does this have to do with elementary
landscapes?

Recall the “wave” equation

avg
y∈N(x)

{f (y)} = f (x) +
k
d

(f̄ − f (x)) (*)

avg
y∈N(x)

{f (y)} =
1
d

∑

y∈N(x)

f (y) =
1
d

g(x) =
1
d

Af (x)

(the last equivalence follows by the sifting property)

So putting this with (*) above, we get

Af (x) = (d − k)f (x) + (kf̄ )

So if a function obeys the wave equation... it is (up to an additive
constant) an eigenfunction of the adjacency matrix of G
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Using the analysis

Computing statistics over regions (Sutton, Whitley & Howe 2012)

Approximating the fitness distribution (Sutton, Whitley & Howe 2011)

Finding good mutation rates (Chicano & Alba 2011)

Providing fitness bounds on the existence of certain neighborhood
features

Computing the correlation structure

Designing search algorithms and heuristics

L. D. Whitley & A. M. Sutton Elementary Landscapes: Theory and Applications
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Why “elementary”?

Components of more general landscapes

+
+

=

f(x)

f1(x)

f2(x)

f3(x)

x
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Superpositions of Elementary Landscapes

f (x) = f 1(x) + f 2(x) + f 3(x) + f 4(x)

f 1(x) = f 1a(x) + f 1b(x) + f 1c(x)

f 2(x) = f 2a(x) + f 2b(x) + f 2c(x)

f 3(x) = f 3a(x) + f 3b(x) + f 3c(x)

f 4(x) = f 4a(x) + f 4b(x) + f 4c(x)

ϕ(1)(x) = f 1a(x) + f 2a(x) + f 3a(x) + f 4a(x)

ϕ(2)(x) = f 1b(x) + f 2b(x) + f 3b(x) + f 4a(x)

ϕ(3)(x) = f 1c(x) + f 2c(x) + f 3c(x) + f 4a(x)

f (x) = ϕ(1)(x) + ϕ(2)(x) + ϕ(3)(x)

L. D. Whitley & A. M. Sutton Elementary Landscapes: Theory and Applications
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MAX-k-SAT

Given: a set of m disjunctive, length-k clauses over a set of n
variables

MAX-3-SAT

{(v2 ∨ ¬v1 ∨ v4), (¬v3 ∨ v1 ∨ ¬v2), . . .}

The set of all assignments is isomorphic to {0, 1}n.

Fitness function f : {0, 1}n → {0, 1, . . . ,m} counts how many clauses
are satisfied under an assignment.

Neighborhood operator is Hamming operator: flip each bit.

L. D. Whitley & A. M. Sutton Elementary Landscapes: Theory and Applications
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Fitness functions over bitstrings

Spectral decomposition of A

Write A = WDW−1 where D is a diagonal matrix
The columns of W are eigenvectors of A

For Hamming operator, A is the hypercube adjacency⇒ W is the
well-known Walsh matrix.

Working in function space...
The 2n columns of W correspond to the Walsh functions

ψi : {0, 1}n → R

For Hamming adjacency, the Walsh functions obey

Aψi(x) = λiψi(x)

L. D. Whitley & A. M. Sutton Elementary Landscapes: Theory and Applications
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Fitness functions over bitstrings

W is an orthogonal matrix, so any real function f over {0, 1}n can be
written as a linear combination of Walsh functions

f (x) =

2n∑

i=1

wiψi(x)

For MAX-k-SAT, most coefficients wi vanish
when the length-n binary representation of i has greater than k
bits (due to Rana, Heckendorn, Whitley 1998)

Thus there are are O(2k) nonzero coefficients, and they can be
computed in time O(m2k).

L. D. Whitley & A. M. Sutton Elementary Landscapes: Theory and Applications
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Forbidden structure in MAX-3-SAT search space

Search positions of Hoos & Stützle
interior plateau state

ledge state

local minimum strict local minimum

local maximum

strict local maximum

slope

Hoos & Stützle (2004) characterized the search space by empirically
sampling and determining the frequency of search positions

On MAX-3-SAT, they could not find any interior plateau states.

L. D. Whitley & A. M. Sutton Elementary Landscapes: Theory and Applications
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Forbidden structure in MAX-3-SAT search space

Interior plateau state

x

f(x)

f (x) =
1
n

∑

y∈N(x)

f (y) =
1
n

Af (x) (sifting)

f (x) =
1
n

∑

i

wiAψi(x) =
1
n

∑

i

wiλiψi(x)

f̄ − τ ≤ f (x) ≤ f̄ + τ

L. D. Whitley & A. M. Sutton Elementary Landscapes: Theory and Applications

50

Forbidden structure in MAX-3-SAT search space

no plateaus of width > 1

no plateaus of width > 1

no local maxima

f
(x
)

f̄

f̄ − τ

f̄ + τ

L. D. Whitley & A. M. Sutton Elementary Landscapes: Theory and Applications
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Correlation structure

A rugged landscape
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s

A smooth landscape

0
2

4
6

8
1

0

5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

f 2
(x
)

f2 f2 (autocorrelation)

r(
s)

s

L. D. Whitley & A. M. Sutton Elementary Landscapes: Theory and Applications

52

Correlation structure

Background

Dynamics of polynucleotide folding landscapes, interest in TSP
(Fontana et al., 1989)

TSP (Stadler & Schnabl, 1992)

Graph bipartitioning (Stadler & Happel, 1992)

Idea for problem classification (Angel & Zissimopolous, 2000)

MAX-k-SAT (Sutton, Whitley & Howe, 2009)

Quadratic Assignment Problem (Chicano, Luque & Alba, 2012)
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Correlation structure

Random walk transition matrix

T =
1
n

A

Random walk process estimates the following equation

r(s) =
〈f ,Tsf 〉 − 〈1, f 〉2
〈f , f 〉 − 〈1, f 〉2

Replace f with the expansion...

L. D. Whitley & A. M. Sutton Elementary Landscapes: Theory and Applications
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Correlation structure

Lemma
ψi is an eigenvector of the random walk transition matrix T.

Tψi = λiψi

where λi =
(

1− 2〈i,i〉
n

)
.

Remember in the Walsh decomposition

f (x) =
∑

i

wiψi(x)

we are actually writing the fitness function in terms of the eigenbasis
of T
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Correlation structure

Remark. We have the following identities:

〈f , f 〉 =
∑

i w2
i 〈f ,Tsf 〉 =

∑
i λ

s
i w

2
i 〈1, f 〉 = w0

〈f , f 〉 = 〈
∑

i

wiψi,
∑

j

wjψj〉

=
∑

i

∑

j

wiwj〈ψi, ψj〉

=
∑

i

w2
i since {ψi} is an orthogonal basis
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Correlation structure

Remark. We have the following identities:

〈f , f 〉 =
∑

i w2
i 〈f ,Tsf 〉 =

∑
i λ

s
i w

2
i 〈1, f 〉 = w0

〈f ,Tsf 〉 = 〈
∑

i

wiψi,Ts
∑

j

wjψj〉

=
∑

i

∑

j

wiλ
s
j wj〈ψi, ψj〉 since {ψi} is an eigenbasis

=
∑

i

λs
i w

2
i since {ψi} is an orthogonal basis
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Correlation structure

Remark. We have the following identities:

〈f , f 〉 =
∑

i w2
i 〈f ,Tsf 〉 =

∑
i λ

s
i w

2
i 〈1, f 〉 = w0

〈1, f 〉 = 〈1,
∑

i

wiψi〉

= w0
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Correlation structure

Remark. We have the following identities:

〈f , f 〉 =
∑

i w2
i 〈f ,Tsf 〉 =

∑
i λ

s
i w

2
i 〈1, f 〉 = w0

Random walk process estimates the following equation

r(s) =
〈f ,Tsf 〉 − 〈1, f 〉2
〈f , f 〉 − 〈1, f 〉2

Substitutions...

r(s) =

∑

i

λs
i w

2
i − w2

0

∑

j

w2
j − w2

0

=

∑

i6=0

λs
i w

2
i

∑

j6=0

w2
j
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Correlation structure

This gives exact autocorrelation function

r(s) =

∑

i6=0

λs
i w

2
i

∑

j6=0

w2
j

where λi =
(

1− 2〈i,i〉
n

)
.

Recall for MAX-k-SAT all nonzero wi can be computed in O(m)
time.
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Neighborhoods that result in elementary landscapes

MAX-k-SAT – neighborhood operator is Hamming operator, i.e., flip
each bit:

N
(
(0, 1, 0)

)
= {(1, 1, 0), (0, 0, 0), (0, 1, 1)}.

Together, f and N do not form an elementary landscape, rather we
have been expressing f as a linear combination of elementary
landscapes.

Questions
Can we find a new neighborhood operator N′ such that f and N′

yield an elementary landscape?

If so, how is this useful?
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MAX-2-SAT

Consider now the case when the clause size is exactly 2...

New neighborhood operator: flip a bit or flip all bits at once

N′
(
(0, 1, 0)

)
= {(1, 1, 0), (0, 0, 0), (0, 1, 1)} ∪ {1, 0, 1}.

Theorem
(
{0, 1}n, f ,N′

)
is elementary
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MAX-2-SAT

Proof.
Consider an arbitrary assignment x. We study the condition of the i-th
clause (`1 ∨ `2) under x and its neighbors:

Case 1: i-th clause is not satisfied by x
Then there are three assignments y ∈ N(x) that satisfy it.

(the two distinct Hamming neighbors that negate each variable
appearing in the clause, and the element corresponding to the
complement of x, which negates both variables in the clause).

Case 2: exactly one literal evaluates to true under x
Then there is one element y ∈ N(x) that does not satisfy it.

(the negation of the true literal).

Case 3: both literals evaluate to true
Then there is one element y ∈ N(x) that does not satisfy it.

(when x is complemented).
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MAX-2-SAT

Proof (continued).
Clause indicator function ci : {0, 1}n → {0, 1}.

∑

y∈N′(x)

ci(y) = 3(1− ci(x)) + (|N′(x)| − 1)ci(x) = 3 + (n− 3)ci(x).

Since f (x) =
∑m

i=1 ci(x), we have

∑

y∈N′(x)

f (y) =

m∑

i=1

(
3 + (n− 3)ci(x)

)
= 3m + (n− 3)f (x).

Thus N′ and f satisfy the “wave equation”.
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MAX-2-SAT

Corollary

Suppose x̂ has no improving neighbors in N′. Then

f (x̂) ≥ 3
4

m

where m is the number of clauses.

local maxima

local minima

x

f(x)
f̄
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MAX-2-SAT

Define Ai,j be the 3-set of clauses defined on two variables vi and vj

Ai,j = {(¬vi ∨ ¬vj), (¬vi ∨ vj), (vi ∨ ¬vj)}.

Construct a MAX-2-SAT instance on 2q variables by taking the union
of q 3-sets of clauses

A1,2 ∪ A3,4 ∪ · · · ∪ A2q−1,2q.

Thus for this instance, m = 3q.

Consider x̂ = (111 · · · 1) (no improving Hamming neighbors)

Since x̂ satisfies 2 clauses in each set Ai,j, we have

f (x̂) = 2q =
2
3

m <
3
4

m.

L. D. Whitley & A. M. Sutton Elementary Landscapes: Theory and Applications

63

MAX-2-SAT

It follows that, when using the Hamming (flip) operator on MAX-2-SAT
there can be local optima with inferior fitness to all local optima on
the landscape induced by the new operator.

Local search using N′ is a polynomial-time 3/4-approximation
algorithm for MAX-2-SAT.

This result was also used to show that the (1+1) EA is a randomized
fixed-parameter tractable algorithm for the standard parameterization
of MAX-2-SAT (Sutton, Day, & Neumann, GECCO 2012)
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Constant Time Steepest Descent

A model for all bounded pseudo-Boolean functions:

1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 0 1 0

f (x) =
m∑

i=1

fi(x; mask)

f1 f2 f3 f4 · · · fm
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Constant Time Steepest Descent

Let vector w′ store the Walsh coefficients
including the sign relative to solution x.

w′i(x) = wiψi(x)

Flip bit p such that yp ∈ N(x). Then

if p ⊂ i then w′i(yp) = −w′i(x)

otherwise w′i(yp) = w′i(x)

For MAX-kSAT and NK-Landscapes
flipping one bit changes the sign

of only a constant number of Walsh coefficients.
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Constant Time Steepest Descent

Construct a vector S such that

Sp(x) =
∑

∀b, p⊂b

w′b(x)

In this way, all of the Walsh coefficients whose signs will be changed
by flipping bit p are collected into a single number Sp(x).
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Constant Time Steepest Descent

Lemma 1.
Let yp ∈ N(x) be the neighbor of string x generated by flipping bit p.
Then f (yp) = f (x)− 2(Sp(x)).

If p ⊂ b then ψb(yp) = −1(ψb(x)) and otherwise ψb(yp) = ψb(x). For
each Walsh coefficient that changes, the change is −2(w′b(x)).

Corollary: For all bit flips j, f (yj) = f (x)− 2(Sj(x)).
Thus, Sj(x) can be used as a proxy for f (yj); f (x) is constant as j is
varied. Maximizing Sj(x) minimizes the neighborhood of f (x).
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Constant Time Steepest Descent

To make this easy, assume we have an NK-Landscape or MAX-kSAT
problem such that every variable occcurs exactly the same
number of times.

This case is easy to analysis, but also exactly corresponds to the
average complexity case (with mild restrictions on the frequence of bit
flips).

Assume each variable appears kc time.

For MAX-kSAT c is the clause variable ratio. For NK-landscapes
c = 1.
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Constant Time Steepest Descent

When one bit flips, it impacts kc subfunctions. There are k(k − 1)
pairings of bits in each subfunction. Thus there are ck(k − 1) total bits
affected by a bit flip.

Also at most ck(k − 1) terms in vector S change.

When one bit flips, it impacts at most 2k−1 − 1 Walsh coefficients in
any subfunction. If a bit appears in exactly kc functions, then at most
ck(2k−1 − 1) nonlinear Walsh coefficients change. Thus, the update
take O(1) time.
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The locations of the updates are obvious

S1(yp) = S1(x)

S2(yp) = S2(x)

S3(yp) = S3(x) +
∑

∀b, (p∧3)⊂b

w′b(x)

S4(yp) = S4(x)

S5(yp) = S5(x)

S6(yp) = S6(x)

S7(yp) = S7(x)

S8(yp) = S8(x) +
∑

∀b, (p∧8)⊂b

w′b(x)

S9(yp) = S9(x)
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"Old" and "New" improving moves

A "new" improving move must be a new updated locations in S.
Checking these takes O(1) time on average.

There can be previously discovered “old" moves stored in a buffer.
Here we approximate steepest descent.

If there are less than ck(k − 1) old moves items in the buffer we check
them all. If there are more than ck(k − 1) old moves in the buffer, we
sample ck(k − 1) moves and select the best old move.

We then select either the best new move or the (approximate) best
old move. Total cost: at most 2ck(k− 1) + 1 comparisons, which is
O(1)
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Next Ascent

If we want to do Next Ascent instead of Steepest Ascent, we just all of
the improving moves into a buffer and pick one. Again, this takes O(1)
time.
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Identifying Local Optima

If there are no improving moves, the point is a local optimum. The
point is automatically identified: there are no "old" improving moves
and no update is an improving move.
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Speed Results for MAXSAT Solvers

AdaptG2WSAT GSAT Walsh
UR-1000000 698.86 32.13 1.80
UR-2000000 3458.06 140.37 3.88
UR-3000000 8157.01 319.95 6.05

mem-ctrl2 4120.52 54.11 4.17
wb_4m8s-48 7339.77 83.16 6.06

Table: Time in seconds require to reach a Local Optima for several stochastic
local search algorithms for MAX-kSAT problems.
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Steepest Descent over Neighborhood Means

We have the vector S such that

Sp(x) =
∑

∀b, p⊂b

w′b(x)

Also construct the vector Z such that

Zp(x) =
∑

∀b, p⊂b

order(b) w′b(x)

Note that S and Z and U all update at exactly the same locations.

Lemma 2.

Avg(N(yp)) = Avg(N(x))− 2(Sp(x)) +
4
N

Zp(x)
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Steepest Descent over Neighborhood Means

Let Up(x) = −2(Sp(x)) +
4
N

Zp(x)

Avg(N(yp)) = Avg(N(x)) + Up(x)

The vector U(x) can now be used as a proxy for Avg(N(x))
Maximizing Up(x) minimizes the neighborhood of Avg(N(yp)).
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The locations of the updates are obvious

U1(yp) = U1(x)

U2(yp) = U2(x)

U3(yp) = U3(x) + Update

U4(yp) = U4(x)

U5(yp) = U5(x)

U6(yp) = U6(x)

U7(yp) = U7(x)

U8(yp) = U8(x) + Update

U9(yp) = U9(x)

L. D. Whitley & A. M. Sutton Elementary Landscapes: Theory and Applications

564



78

Search on an NKq-Landscape

And NKq-Landscape generates subfunctions using only q values. For
q = 2 there are many plateaus and equal moves.
1. f (x) versus Avg(N(x))
2. Steepest Ascent versus Next Ascent
3. Random Walk Restart (with O(1) cost) versus Hard Random
Restart (with O(N) cost)
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Search on an NKq-Landscape
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Conclusions

Elementary landscapes provide an interesting tool for analyzing
search in combinatorial optimization
Linear algebraic approach to formalizing “landscape” concept for
discrete problems
Ongoing research to connect search space topology to algorithm
dynamics
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