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Evolutionary Algorithms and Other Search Heuristics

Most famous search heuristic: Evolutionary Algorithms (EAs)

a bio-inspired heuristic

paradigm: evolution in nature,
“survival of the fittest”

actually it’s only an algorithm, a
randomized search heuristic (RSH)

Initialization

Selection

Variation

Selection

Stop?

no

Goal: optimization

Here: discrete search spaces, combinatorial optimization, in
particular pseudo-boolean functions

Optimize f : {0, 1}n ! R
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Why Do We Consider Randomized Search Heuristics?

Not enough resources (time, money, knowledge)
for a tailored algorithm

Black Box Scenario
x f (x)

rules out problem-specific algorithms

We like the simplicity, robustness, . . .
of Randomized Search Heuristics

They are surprisingly successful.

Point of view

Want a solid theory to understand how (and when) they work.
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What RSHs Do We Consider?

Theoretically considered RSHs

(1+1) EA

(1+�) EA (o↵spring population)

(µ+1) EA (parent population)

(µ+1) GA (parent population and crossover)

SEMO, DEMO, FEMO, . . . (multi-objective)

Randomized Local Search (RLS)

Metropolis Algorithm/Simulated Annealing (MA/SA)

Ant Colony Optimization (ACO)

Particle Swarm Optimization (PSO)

. . .

First of all: define the simple ones
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The Most Basic RSHs

(1+1) EA and RLS for maximization problems

(1+1) EA

1 Choose x0 2 {0, 1}n uniformly at random.
2 For t := 0, . . . , 1

1
Create y by flipping each bit of xt indep. with probab. 1/n.

2
If f (y) � f (xt) set xt+1 := y else xt+1 := xt .

RLS

1 Choose x0 2 {0, 1}n uniformly at random.
2 For t := 0, . . . , 1

1
Create y by flipping one bit of xt uniformly.

2
If f (y) � f (xt) set xt+1 := y else xt+1 := xt .
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What Kind of Theory Are We Interested in?

Not studied here: convergence, local progress, models of EAs (e. g.,
infinite populations), . . .

Treat RSHs as randomized algorithm!

Analyze their “runtime” (computational complexity)
on selected problems

Definition

Let RSH A optimize f . Each f -evaluation is counted as a time step. The
runtime TA,f of A is the random first point of time such that A has
sampled an optimal search point.

Often considered: expected runtime, distribution of TA,f

Asymptotical results w. r. t. n
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How Do We Obtain Results?

We use (rarely in their pure form):

Coupon Collector’s Theorem

Concentration inequalities:
Markov, Chebyshev, Cherno↵, Hoe↵ding, . . . bounds

Markov chain theory: waiting times, first hitting times

Rapidly Mixing Markov Chains

Random Walks: Gambler’s Ruin, drift analysis, martingale theory,
electrical networks

Random graphs (esp. random trees)

Identifying typical events and failure events

Potential functions and amortized analysis

. . .

Adapt tools from the analysis of randomized algorithms; understanding
the stochastic process is often the hardest task.
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Early Results

Analysis of RSHs already in the 1980s:

Sasaki/Hajek (1988): SA and Maximum Matchings

Sorkin (1991): SA vs. MA

Jerrum (1992): SA and Cliques

Jerrum/Sorkin (1993, 1998): SA/MA for Graph Bisection

. . .

High-quality results, but limited to SA/MA (nothing about EAs) and
hard to generalize.

Since the early 1990s

Systematic approach for the analysis of RSHs,
building up a completely new research area
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This Tutorial

1 The origins: example functions and toy problems
A simple toy problem: OneMax for (1+1) EA

2 Combinatorial optimization problems
Minimum spanning trees
Maximum matchings
Shortest paths
Makespan scheduling
Covering problems
Traveling salesman problem

3 End

4 References
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How the Systematic Research Began — Toy Problems

Simple example functions (test functions)

OneMax(x1, . . . , xn) = x1 + · · · + xn

LeadingOnes(x1, . . . , xn) =
Pn

i=1

Qi
j=1 xj

BinVal(x1, . . . , xn) =
Pn

i=1 2n�ixi

polynomials of fixed degree

Goal: derive first runtime bounds and methods

Artificially designed functions

with sometimes really horrible definitions

but for the first time these allow rigorous statements

Goal: prove benefits and harm of RSH components,
e. g., crossover, mutation strength, population size . . .
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Agenda

1 The origins: example functions and toy problems
A simple toy problem: OneMax for (1+1) EA

2 Combinatorial optimization problems
Minimum spanning trees
Maximum matchings
Shortest paths
Makespan scheduling
Covering problems
Traveling salesman problem

3 End

4 References
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Example: OneMax

Theorem (e. g., Droste/Jansen/Wegener, 1998)

The expected runtime of the RLS, (1+1) EA, (µ+1) EA, (1+�) EA on
OneMax is ⌦(n log n).

Proof by modifications of Coupon Collector’s Theorem.

Theorem (e. g., Mühlenbein, 1992)

The expected runtime of RLS and the (1+1) EA on OneMax is
O(n log n).

Holds also for population-based (µ+1) EA and
for (1+�) EA with small populations.
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Proof of the O(n log n) bound

Fitness levels: Li := {x 2 {0, 1}n | OneMax(x) = i}
(1+1) EA never decreases its current fitness level.

From i to some higher-level set with prob. at least

✓
n � i

1

◆

| {z }
choose a 0-bit

·
✓

1

n

◆

| {z }
flip this bit

·
✓

1 � 1

n

◆n�1

| {z }
keep the other bits

� n � i

en

Expected time to reach a higher-level set is at most en
n�i .

Expected runtime is at most

n�1X

i=0

en

n � i
= O(n log n). ⇤
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Later Results Using Toy Problems

Find the theoretically optimal mutation strength
(1/n for OneMax!).

Bound the optimization time for linear functions (O(n log n)).

optimal population size (often 1!)

crossover vs. no crossover ! Real Royal Road Functions

multistarts vs. populations

frequent restarts vs. long runs

dynamic schedules

. . .
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RSHs for Combinatorial Optimization

Analysis of runtime and approximation quality on well-known
combinatorial optimization problems, e. g.,

sorting problems (is this an optimization problem?),

covering problems,

cutting problems,

subsequence problems,

traveling salesman problem,

Eulerian cycles,

minimum spanning trees,

maximum matchings,

scheduling problems,

shortest paths,

. . .

We do not hope: to be better than the best problem-specific
algorithms

Instead: maybe reasonable polynomial running times

In the following no fine-tuning of the results
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Agenda

1 The origins: example functions and toy problems
A simple toy problem: OneMax for (1+1) EA

2 Combinatorial optimization problems
Minimum spanning trees
Maximum matchings
Shortest paths
Makespan scheduling
Covering problems
Traveling salesman problem

3 End

4 References
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Minimum*Spanning*Trees:*
*
•  Given:*Undirected*connected*graph*G*=*(V,*E)*
with*n*ver0ces*and*m*edges*with*posi0ve*integer*
weights.*

•  Find:*Edge*set*Eb*�*E*with*minimal*weight*
connec0ng*all*ver0ces.*

•  Search*space*{0,1}m*

•  Edge*ei*is*chosen*iff*xi=1*
•  Consider*(1+1)*EA*
*
*

17/88
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Fitness*func0on:*
•  Decrease*number*of*connected*components,*
find*minimum*spanning*tree.*

*
•  f*(s)*:=*(c(s),w(s)).*
*Minimiza0on*of*f*with*respect*to*the*
lexicographic*order.*

*
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First*goal:*Obtain*a*connected*subgraph*of*G.*
*
How*long*does*it*take?*
*
Connected*graph*in*expected*0me*O(mlog*n)*
(fitness_based*par00ons)*

*

19/88
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Bijec0on*for*minimum*spanning*trees:*

Frank Neumann 7Monday, November 23, 2009

Bijection for minimum spanning trees:

k := |E(T!) \ E(T) |
Bijection  α: E(T!) \ E(T) → E(T) \ E(T!)
α(ei ) on the cycle of E(T)!{ei}
w(ei) ≤ w(α(ei))
" k accepted 2-bit flips that turn T into T!

e1
e2

e3
α(e1) α(e2)

α(e3)
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Upper*Bound*
Theorem:**
The*expected*0me*un0l*(1+1)*EA*constructs*a*
minimum*spanning*tree*is*bounded*by*O(m2(log*n*+*
log*wmax)).*
*
Sketch*of*proof:*
•  w(s)*weight*current*solu0on*s.*
•  wopt*weight*minimum*spanning*tree*T�*
•  set*of*m*+*1*opera0ons*to*reach*T�*
•  mb*=*m*−*(n*−*1)*1_bit*flips*concerning*non_T�*edges*
*�*spanning*tree*T*

•  k*2_bit*flips*defined*by*bijec0on*
•  n*−*k*non*accepted*2_bit*flips*
•  �*average*distance*decrease*(w(s)*−*wopt)/(m*+*1)*
*

21/88

Frank Neumann, Carsten Witt Bioinspired Computation in Combinatorial Optimization

Proof*
1_step*(larger*total*weight*decrease*of*1_bit*flips)*
2_step*(larger*total*weight*decrease*of*2_bit*flips)*
*
Consider*2_steps:*
•  Expected*weight*decrease*by*a*factor*1*−*(1/(2n))*
•  Probability*(n/m2)*for*a*good*2_bit*flip*
•  Expected*0me*un0l*q*2_steps*O(qm2/n)*
Consider*1_steps:*
•  Expected*weight*decrease*by*a*factor*1*−*(1/(2mb))*
•  Probability*(mb/m)*for*a*good*1_bit*flip*
•  Expected*0me*un0l*q*1_steps*O(qm/mb)*
*
1_steps*faster*�*show*bound*for*2_steps.*
*
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Expected*Mul0plica0ve*Distance*
Decrease*(aka*DriL*Analysis)*

Frank Neumann 10Monday, November 23, 2009

s sopt

1 step t steps

r accepted operations
that turn s into sopt

Expected multiplicative distance decrease

D = |f(sopt)− f(s)| ≤ dmax

(1− 1/r) ·D (1− 1/r)t ·D

Fitness values are integers

t = O(r log D) steps to reach optimum

23/88

Frank Neumann, Carsten Witt Bioinspired Computation in Combinatorial Optimization

Maximum*distance:*w(s)*_*wopt*≤*D*:=*m*��wmax*
*
1*step:*Expected*distance*at*most*(1*−*1/(2n))(w(s)*−*
wopt*)*

*
t*steps:*Expected*distance*at*most*(1*−*1/(2n)*)t(w(s)*−*
wopt)*

*
*
*
Expected*op0miza0on*0me**
O(tm2/n)*=*O(m2(log*n*+*log*wmax)).*
* Frank Neumann 11Monday, November 23, 2009

Maximum distance: w(s) - wopt ≤ D := m ! wmax

1 step: Expected distance at most (1 − 1/(2n))(w(s) − wopt )

t steps: Expected distance at most (1 − 1/(2n) )t(w(s) − wopt)

t := ⌈2 ! (ln 2)n(log D + 1)⌉: (1 − 1/(2n) )t(w(s) − wopt ) ≤ 1/2

Expected number of 2-steps 2t = O(n(log n + log wmax ))(Markov)

Expected optimization time O(tm2/n) = O(m2(log n + log wmax)).

24/88
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Agenda

1 The origins: example functions and toy problems
A simple toy problem: OneMax for (1+1) EA

2 Combinatorial optimization problems
Minimum spanning trees
Maximum matchings
Shortest paths
Makespan scheduling
Covering problems
Traveling salesman problem

3 End

4 References
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Maximum Matchings

A matching in an undirected graph is a subset of pairwise disjoint edges;
aim: find a maximum matching (solvable in poly-time)

Simple example: path of odd length

Maximum matching with more than half of edges

Concept: augmenting path

Alternating between edges being inside and outside the matching

Starting and ending at “free” nodes not incident on matching

Flipping all choices along the path improves matching

Example: whole graph is augmenting path

Interesting: how simple EAs find augmenting paths
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Maximum Matchings

A matching in an undirected graph is a subset of pairwise disjoint edges;
aim: find a maximum matching (solvable in poly-time)

Simple example: path of odd length

Suboptimal matching

Concept: augmenting path

Alternating between edges being inside and outside the matching

Starting and ending at “free” nodes not incident on matching

Flipping all choices along the path improves matching

Example: whole graph is augmenting path

Interesting: how simple EAs find augmenting paths
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Maximum Matchings: Upper Bound

Fitness function f : {0, 1}# edges ! R:

one bit for each edge, value 1 i↵ edge chosen

value for legal matchings: size of matching

otherwise penalty leading to empty matching

Example: path with n + 1 nodes, n edges: bit string selects edges

Theorem

The expected time until (1+1) EA finds a maximum matching on a path
of n edges is O(n4).
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Maximum Matchings: Upper Bound (Ctnd.)

Proof idea for O(n4) bound

Consider the level of second-best matchings.

Fitness value does not change (walk on plateau).

If “free” edge: chance to flip one bit! ! probability ⇥(1/n).

Else steps flipping two bits ! probability ⇥(1/n2).

Shorten or lengthen augmenting path

At length 1, chance to flip the free edge!

Length changes according to a fair random walk
! equal probability for lengthenings and shortenings
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Fair Random Walk

Scenario: fair random walk

Initially, player A and B both have n
2 USD

Repeat: flip a coin

If heads: A pays 1 USD to B , tails: other way round

Until one of the players is ruined.

How long does the game take in expectation?

Theorem:
Fair random walk on {0, . . . , n} takes in expectation O(n2) steps.

Frank Neumann, Carsten Witt Bioinspired Computation in Combinatorial Optimization
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Maximum Matchings: Upper Bound (Ctnd.)

Proof idea for O(n4) bound

Consider the level of second-best matchings.

Fitness value does not change (walk on plateau).

If “free” edge: chance to flip one bit! ! probability ⇥(1/n).

Else steps flipping two bits ! probability ⇥(1/n2).

Shorten or lengthen augmenting path

At length 1, chance to flip the free edge!

Length changes according to a fair random walk, expected O(n2) two-bit
flips su�ce, expected optimization time O(n2) · O(n2) = O(n4).
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Maximum Matchings: Lower Bound

Worst-case graph Gh,`

h � 3

` = 2`0 + 1

Augmenting path can get shorter but is more likely to get longer.
(unfair random walk)

Theorem

For h � 3, (1+1) EA has exponential expected optimization time 2⌦(`)

on Gh,`.

Proof requires analysis of negative drift (simplified drift theorem).
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Maximum Matching: Approximations

Insight: do not hope for exact solutions but for approximations

For maximization problems: solution with value a is called
(1 + ")-approximation if OPT

a  1 + ", where OPT optimal value.

Theorem

For " > 0, (1+1) EA finds a (1 + ")-approximation of a maximum
matching in expected time O(m2/"+2) (m number of edges).

Proof idea: If current solution worse than (1 + ")-approximate, there is a
“short” augmenting path (length  2/" + 1); flip it in one go.

Frank Neumann, Carsten Witt Bioinspired Computation in Combinatorial Optimization
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Agenda

1 The origins: example functions and toy problems
A simple toy problem: OneMax for (1+1) EA

2 Combinatorial optimization problems
Minimum spanning trees
Maximum matchings
Shortest paths
Makespan scheduling
Covering problems
Traveling salesman problem

3 End

4 References

Frank Neumann, Carsten Witt Bioinspired Computation in Combinatorial Optimization

All_pairs_shortest_path*(APSP)*problem*
*
*
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All-pairs-shortest-path (APSP) problem

Compute from each vertex vi ∈ V a shortest path (path of minimal weight)
to every other vertex vj ∈ V \ {vi}

Given: Connected directed graph G = (V,E), |V | = n and |E| = m,
and a function w : E → N which assigns positive integer weights to the edges.
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Representa0on:*
*
Individuals*are*paths*between*two*par0cular*
ver0ces*vi*and*vj*
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Representation:

Individuals are paths between two particular vertices vi and vj

P := {Iu,v = (u, v)|(u, v) ∈ E}Initial Population:

Frank Neumann, Carsten Witt Bioinspired Computation in Combinatorial Optimization
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Muta0on:*
*
*
*
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Mutation:

Pick individual Iu,v uniformly at random

e = (x, y) ∈ E−(u) ∪E+(v)

E−(u): incoming edges of u E+(v): outgoing edges of v

Pick uniformly at random an edge

Add e

u

v

New individual I’s,t

s

t
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Muta0on_based*EA*
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1. Set P = {Iu,v = (u, v) | (u, v) ∈ E}.
2. Choose an individual Ix,y ∈ P uniformly at random.
3. Mutate Ix,y to obtain an individual I

′
s,t.

4. If there is no individual Is,t ∈ P , P = P ∪ {I ′s,t},
else if f(I ′s,t) ≤ f(Is,t), P = (P ∪ {I ′s,t}) \ {Is,t}

5. Repeat Steps 2—4 forever.

Steady State EA

Frank Neumann, Carsten Witt Bioinspired Computation in Combinatorial Optimization
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Let ℓ ≥ logn. The expected time until has found all shortest paths
with at most ℓ edges is O(n3ℓ).

Lemma:

Let γ := (v1 = u, v2, . . . , vℓ
′+1 = v) be a shortest path

from u to v consisting of ℓ′, ℓ′ ≤ ℓ, edges in G

Consider two vertices u and v, u ̸= v.

the sub-path γ′ = (v1 = u, v2, . . . , vj) is a shortest path from u to vj .

u

v

vj

Proof idea:
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Popula0on*size*is*upper*bounded*n2**
*(for*each*pair*of*ver0ces*at*most*one*path)*

*
•  Pick*shortest*path*from*u*to*vj*and*append**
edge*(vj,*vj+1)*
•  Shortest*path*from*u*to*vj+1*
*
•  Probability*to*pick*Iu,vj*is*at*least*1/n2*
•  Probability*to*append*right*edge*is*at*least**1/(2n)*
•  Success*with*probability*at*least*p*=*1/(2n3)*
•  At*most*l*successes*needed*to*obtain*shortest*path*
from*u*to*v*

Frank Neumann, Carsten Witt Bioinspired Computation in Combinatorial Optimization
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Consider*typical*run*consis0ng*of*T=cn3l*steps.*
What*is*the*probability*that*the*shortest*path*from*u*to*v*
has*been*obtained?*

We*need*at*most*l*successes,*where*a*success*happens*in*
each*step*with*probability*at*least*p*=*1/(2n3)*

Frank Neumann 18Monday, November 23, 2009

Consider typical run consisting of T=cn3l steps.

What is the probability that the shortest path from u to v has been 
obtained?

We need at most l successes, where a success happens in each 
step with probability at least p = 1/(2n3)

Define for each step i a random variable Xi.

Xi = 1 if step i is a success

Xi = 0 if step i is not a success

Frank Neumann, Carsten Witt Bioinspired Computation in Combinatorial Optimization

Analysis*

Holds*for*any*phase*of*T*steps*

Frank Neumann 19Monday, November 23, 2009

Prob(Xi = 1) ≥ p = 1/(2n3)

Chernoff: Prob(X < (1− δ)E(x)) ≤ e−E(X)δ
2/2

δ = 1
2

Prob(X < (1− 1
2)E(x)) ≤ e

−E(X)/8 ≤ e−T/(16n
3) = e−cn

3ℓ/(16n3) = e−cℓ/(16)

Probability for failure of at least one pair of vertices at most: 

c large enough and ℓ ≥ logn:

Holds for any phase of T steps

Expected time upper bound by T/α = O(n3ℓ)

No failure in any path with probability at least α = 1−n2 ·e−cℓ/16 = 1−o(1)

n2 · e−cℓ/16

Expected number of successes E(X) ≥ T/(2n3) = cn3ℓ
2n3 =

cℓ
2

X ≥ ℓ ???X =
T
i=1Xi

Frank Neumann 19Monday, November 23, 2009

Prob(Xi = 1) ≥ p = 1/(2n3)

Chernoff: Prob(X < (1− δ)E(x)) ≤ e−E(X)δ
2/2

δ = 1
2

Prob(X < (1− 1
2)E(x)) ≤ e

−E(X)/8 ≤ e−T/(16n
3) = e−cn

3ℓ/(16n3) = e−cℓ/(16)

Probability for failure of at least one pair of vertices at most: 

c large enough and ℓ ≥ logn:

Holds for any phase of T steps

Expected time upper bound by T/α = O(n3ℓ)

No failure in any path with probability at least α = 1−n2 ·e−cℓ/16 = 1−o(1)

n2 · e−cℓ/16

Expected number of successes E(X) ≥ T/(2n3) = cn3ℓ
2n3 =

cℓ
2

X ≥ ℓ ???X =
T
i=1Xi

Frank Neumann 19Monday, November 23, 2009

Prob(Xi = 1) ≥ p = 1/(2n3)

Chernoff: Prob(X < (1− δ)E(x)) ≤ e−E(X)δ
2/2

δ = 1
2

Prob(X < (1− 1
2)E(x)) ≤ e

−E(X)/8 ≤ e−T/(16n
3) = e−cn

3ℓ/(16n3) = e−cℓ/(16)

Probability for failure of at least one pair of vertices at most: 

c large enough and ℓ ≥ logn:

Holds for any phase of T steps

Expected time upper bound by T/α = O(n3ℓ)

No failure in any path with probability at least α = 1−n2 ·e−cℓ/16 = 1−o(1)

n2 · e−cℓ/16

Expected number of successes E(X) ≥ T/(2n3) = cn3ℓ
2n3 =

cℓ
2

X ≥ ℓ ???X =
T
i=1Xi

Frank Neumann 19Monday, November 23, 2009

Prob(Xi = 1) ≥ p = 1/(2n3)

Chernoff: Prob(X < (1− δ)E(x)) ≤ e−E(X)δ
2/2

δ = 1
2

Prob(X < (1− 1
2)E(x)) ≤ e

−E(X)/8 ≤ e−T/(16n
3) = e−cn

3ℓ/(16n3) = e−cℓ/(16)

Probability for failure of at least one pair of vertices at most: 

c large enough and ℓ ≥ logn:

Holds for any phase of T steps

Expected time upper bound by T/α = O(n3ℓ)

No failure in any path with probability at least α = 1−n2 ·e−cℓ/16 = 1−o(1)

n2 · e−cℓ/16

Expected number of successes E(X) ≥ T/(2n3) = cn3ℓ
2n3 =

cℓ
2

X ≥ ℓ ???X =
T
i=1Xi

Frank Neumann 19Monday, November 23, 2009

Prob(Xi = 1) ≥ p = 1/(2n3)

Chernoff: Prob(X < (1− δ)E(x)) ≤ e−E(X)δ
2/2

δ = 1
2

Prob(X < (1− 1
2)E(x)) ≤ e

−E(X)/8 ≤ e−T/(16n
3) = e−cn

3ℓ/(16n3) = e−cℓ/(16)

Probability for failure of at least one pair of vertices at most: 

c large enough and ℓ ≥ logn:

Holds for any phase of T steps

Expected time upper bound by T/α = O(n3ℓ)

No failure in any path with probability at least α = 1−n2 ·e−cℓ/16 = 1−o(1)

n2 · e−cℓ/16

Expected number of successes E(X) ≥ T/(2n3) = cn3ℓ
2n3 =

cℓ
2

X ≥ ℓ ???X =
T
i=1Xi

Frank Neumann 19Monday, November 23, 2009

Prob(Xi = 1) ≥ p = 1/(2n3)

Chernoff: Prob(X < (1− δ)E(x)) ≤ e−E(X)δ
2/2

δ = 1
2

Prob(X < (1− 1
2)E(x)) ≤ e

−E(X)/8 ≤ e−T/(16n
3) = e−cn

3ℓ/(16n3) = e−cℓ/(16)

Probability for failure of at least one pair of vertices at most: 

c large enough and ℓ ≥ logn:

Holds for any phase of T steps

Expected time upper bound by T/α = O(n3ℓ)

No failure in any path with probability at least α = 1−n2 ·e−cℓ/16 = 1−o(1)

n2 · e−cℓ/16

Expected number of successes E(X) ≥ T/(2n3) = cn3ℓ
2n3 =

cℓ
2

X ≥ ℓ ???X =
T
i=1Xi

Frank Neumann 19Monday, November 23, 2009

Prob(Xi = 1) ≥ p = 1/(2n3)

Chernoff: Prob(X < (1− δ)E(x)) ≤ e−E(X)δ
2/2

δ = 1
2

Prob(X < (1− 1
2)E(x)) ≤ e

−E(X)/8 ≤ e−T/(16n
3) = e−cn

3ℓ/(16n3) = e−cℓ/(16)

Probability for failure of at least one pair of vertices at most: 

c large enough and ℓ ≥ logn:

Holds for any phase of T steps

Expected time upper bound by T/α = O(n3ℓ)

No failure in any path with probability at least α = 1−n2 ·e−cℓ/16 = 1−o(1)

n2 · e−cℓ/16

Expected number of successes E(X) ≥ T/(2n3) = cn3ℓ
2n3 =

cℓ
2

X ≥ ℓ ???X =
T
i=1Xi

Frank Neumann 19Monday, November 23, 2009

Prob(Xi = 1) ≥ p = 1/(2n3)

Chernoff: Prob(X < (1− δ)E(x)) ≤ e−E(X)δ
2/2

δ = 1
2

Prob(X < (1− 1
2)E(x)) ≤ e

−E(X)/8 ≤ e−T/(16n
3) = e−cn

3ℓ/(16n3) = e−cℓ/(16)

Probability for failure of at least one pair of vertices at most: 

c large enough and ℓ ≥ logn:

Holds for any phase of T steps

Expected time upper bound by T/α = O(n3ℓ)

No failure in any path with probability at least α = 1−n2 ·e−cℓ/16 = 1−o(1)

n2 · e−cℓ/16

Expected number of successes E(X) ≥ T/(2n3) = cn3ℓ
2n3 =

cℓ
2

X ≥ ℓ ???X =
T
i=1Xi

Frank Neumann 19Monday, November 23, 2009

Prob(Xi = 1) ≥ p = 1/(2n3)

Chernoff: Prob(X < (1− δ)E(x)) ≤ e−E(X)δ
2/2

δ = 1
2

Prob(X < (1− 1
2)E(x)) ≤ e

−E(X)/8 ≤ e−T/(16n
3) = e−cn

3ℓ/(16n3) = e−cℓ/(16)

Probability for failure of at least one pair of vertices at most: 

c large enough and ℓ ≥ logn:

Holds for any phase of T steps

Expected time upper bound by T/α = O(n3ℓ)

No failure in any path with probability at least α = 1−n2 ·e−cℓ/16 = 1−o(1)

n2 · e−cℓ/16

Expected number of successes E(X) ≥ T/(2n3) = cn3ℓ
2n3 =

cℓ
2

X ≥ ℓ ???X =
T
i=1Xi

Frank Neumann 19Monday, November 23, 2009

Prob(Xi = 1) ≥ p = 1/(2n3)

Chernoff: Prob(X < (1− δ)E(x)) ≤ e−E(X)δ
2/2

δ = 1
2

Prob(X < (1− 1
2)E(x)) ≤ e

−E(X)/8 ≤ e−T/(16n
3) = e−cn

3ℓ/(16n3) = e−cℓ/(16)

Probability for failure of at least one pair of vertices at most: 

c large enough and ℓ ≥ logn:

Holds for any phase of T steps

Expected time upper bound by T/α = O(n3ℓ)

No failure in any path with probability at least α = 1−n2 ·e−cℓ/16 = 1−o(1)

n2 · e−cℓ/16

Expected number of successes E(X) ≥ T/(2n3) = cn3ℓ
2n3 =

cℓ
2

X ≥ ℓ ???X =
T
i=1Xi

Frank Neumann 19Monday, November 23, 2009

Prob(Xi = 1) ≥ p = 1/(2n3)

Chernoff: Prob(X < (1− δ)E(x)) ≤ e−E(X)δ
2/2

δ = 1
2

Prob(X < (1− 1
2)E(x)) ≤ e

−E(X)/8 ≤ e−T/(16n
3) = e−cn

3ℓ/(16n3) = e−cℓ/(16)

Probability for failure of at least one pair of vertices at most: 

c large enough and ℓ ≥ logn:

Holds for any phase of T steps

Expected time upper bound by T/α = O(n3ℓ)

No failure in any path with probability at least α = 1−n2 ·e−cℓ/16 = 1−o(1)

n2 · e−cℓ/16

Expected number of successes E(X) ≥ T/(2n3) = cn3ℓ
2n3 =

cℓ
2

X ≥ ℓ ???X =
T
i=1Xi

Frank Neumann, Carsten Witt Bioinspired Computation in Combinatorial Optimization

Shortest*paths*have*length*at*most*n_1.*
Set*l*=*n_1*
*
*

Ques0on:**
Can*crossover*help*to*achieve*a*beCer*expected*op0miza0on*0me?*
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Shortest paths have length at most n-1.

Set l = n-1

Theorem

There are instances where the expected optimization of (µ+1)-EA is Ω(n4)
Remark:

Question: Can crossover help to achieve a better expected optimization time?

The expected optimization time of Steady State EA
for the APSP problem is O(n4).
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Crossover*
Pick*two*individuals**Iu,v*and*Is,t*from*popula0on*
uniformly*at*random.*

*

t*
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Crossover:

Pick two individuals  Iu,v and Is,t from population uniformly at 
random.

v
u

t

s

u

t

v=s
If v=s
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1. Set P = {Iu,v = (u, v) | (u, v) ∈ E}.
2. Choose r ∈ [0, 1] uniformly at random.
3. If r ≤ pc, choose two individuals Ix,y ∈ P and Ix′,y′ ∈ P uniformly at
random and perform crossover to obtain an individual I ′s,t,
else choose an individual Ix,y ∈ P uniformly at random and mutate Ix,y
to obtain an individual I ′s,t.

4. If I ′s,t is a path from s to t then
⋆ If there is no individual Is,t ∈ P , P = P ∪ {I ′s,t},
⋆ else if f(I ′s,t) ≤ f(Is,t), P = (P ∪ {I′s,t}) \ {Is,t}.

5. Repeat Steps 2—4 forever.

pc is a constant

Steady State GA

Frank Neumann, Carsten Witt Bioinspired Computation in Combinatorial Optimization

Show:*Longer*paths*are*obtained*by*crossover*within**
the*stated*0me*bound.*
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The expected optimization time of Steady State GA is O(n3.5
√
logn).

Theorem:

ℓ∗ :=
√
n lognMutation and

All shortest path of length at most l* edges are obtained

Longer paths are obtained by crossover within the stated time bound
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The expected optimization time of Steady State GA is O(n3.5
√
logn).

Theorem:

ℓ∗ :=
√
n lognMutation and

All shortest path of length at most l* edges are obtained

Longer paths are obtained by crossover within the stated time bound
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Analysis*Crossover*
Long*paths*by*crossover:*
Assump0on:*All*shortest*paths*with*at*most*l**
edges*have*already*been*obtained.*

Assume*that*all*shortest*paths*of*length*k*≤*l***
have*been*obtained.***

What*is*the*expected*0me*to*obtain*all*shortest*paths*of*
*length*at*most*3k/2?*
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Analysis*Crossover*
Consider*pair*of*ver0ces*x*and*y*for*which**a*shortest*
path*of*r,*k*<*r*≤*3k/2,*edges*exists.*

There*are*2k_r*pairs*of*shortest*paths*of*length*at*most*k*
that*can*be*joined*to*obtain*shortest*path*from*x*to*y.*

Probability*for*one*specific*pair:*at*least*1/n4*

At*least*2k+1_r*possible*pairs:*probability**
at*least*(2k+1_r)/n4*)*≥*k/(2n4)**
*
At*most*n2*shortest*paths*of*length*r,*k*<*r*≤*3k/2**
Time*to*collect*all*paths*O(n4*log*n/*k)***
(similar*to*Coupon*Collectors*Theorem)*
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Analysis*Crossover*

Frank Neumann 26Monday, November 23, 2009

Sum up over the different values of k, namely


n logn, c ·


n logn, c2 ·


n logn, . . . , clogc(n/

√
n logn) ·


n logn,

where c = 3/2.

Expected Optimization

logc(n/
√
n logn)

s=0


O


n4 logn
√
n log n


c−s

= O(n3.5


logn)

∞

s=0

c−s = O(n3.5

logn)
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Agenda

1 The origins: example functions and toy problems
A simple toy problem: OneMax for (1+1) EA

2 Combinatorial optimization problems
Minimum spanning trees
Maximum matchings
Shortest paths
Makespan scheduling
Covering problems
Traveling salesman problem

3 End

4 References
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Makespan Scheduling

What about NP-hard problems? ! Study approximation quality

Makespan scheduling on 2 machines:

n objects with weights/processing times w1, . . . ,wn

2 machines (bins)

Minimize the total weight of fuller bin = makespan.

Formally, find I ✓ {1, . . . , n} minimizing

max

(
X

i2I

wi ,
X

i /2I

wi

)
.

Sometimes also called the Partition problem.
This is an “easy” NP-hard problem, good approximations possible
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Fitness Function

Problem encoding: bit string x1, . . . , xn reserves a bit for each
object, put object i in bin xi + 1.

Fitness function

f (x1, . . . , xn) := max

(
nX

i=1

wixi ,
nX

i=1

wi (1 � xi )

)

to be minimized.

Consider (1+1) EA and RLS.
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Types of Results

Worst-case results

Success probabilities and approximations

An average-case analysis

A parameterized analysis
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Su�cient Conditions for Progress

Abbreviate S := w1 + · · · + wn ) perfect partition has cost S
2 .

Suppose we know

s⇤ = size of smallest object in the fuller bin,

f (x) > S
2 + s⇤

2 for the current search point x

then the solution is improvable by a single-bit flip.

� s⇤S
2

If f (x) < S
2 + s⇤

2 , no improvements can be guaranteed.

Lemma

If smallest object in fuller bin is always bounded by s⇤ then (1+1) EA
and RLS reach f -value  S

2 + s⇤

2 in expected O(n2) steps.
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Worst-Case Results

Theorem

On any instance to the makespan scheduling problem, the (1+1) EA and
RLS reach a solution with approximation ratio 4

3 in expected time O(n2).

Use study of object sizes and previous lemma.

Theorem

There is an instance W ⇤
" such that the (1+1) EA and RLS need with

prob. ⌦(1) at least n⌦(n) steps to find a solution with a better ratio than
4/3 � ".
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Worst-Case Instance

Instance W ⇤
" = {w1, . . . ,wn} is defined by w1 := w2 := 1

3 � "
4 (big

objects) and wi := 1/3+"/2
n�2 for 3  i  n, " very small constant; n even

Sum is 1; there is a perfect partition.

But if one bin with big and one bin with small objects: value 2
3 � "

2 .

Move a big object in the emptier bin ) value ( 13 + "
2 ) + ( 13 � "

4 ) = 2
3 + "

4 !

Need to move � "n small objects at once for improvement: very unlikely.

⌦(n) small objects

With constant probability in this situation, n⌦(n) needed to escape.
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Worst Case – PRAS by Parallelism

Previous result shows: success dependent on big objects

Theorem

On any instance, the (1+1) EA and RLS with prob. � 2�cd1/"e ln(1/")

find a (1 + ")-approximation within O(n ln(1/")) steps.

2O(d1/"e ln(1/")) parallel runs find a (1 + ")-approximation
with prob. � 3/4 in O(n ln(1/")) parallel steps.

Parallel runs form a polynomial-time randomized approximation
scheme (PRAS)!

Frank Neumann, Carsten Witt Bioinspired Computation in Combinatorial Optimization
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Worst Case – PRAS by Parallelism (Proof Idea)

Set s :=
⌃
2
"

⌥

Assuming w1 � · · · � wn, we have wi  "S
2 for i � s.

| {z }
s�1 large objects

| {z }
small objects

analyze probability of distributing

large objects in an optimal way,

small objects greedily ) error  "S
2 ,

Random search rediscovers algorithmic idea of early algorithms.
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Average-Case Analyses

Models: each weight drawn independently at random, namely

1 uniformly from the interval [0, 1],
2 exponentially distributed with parameter 1

(i. e., Prob(X � t) = e�t for t � 0).

Approximation ratio no longer meaningful, we investigate:

discrepancy = absolute di↵erence between weights of bins.

How close to discrepancy 0 do we come?

Frank Neumann, Carsten Witt Bioinspired Computation in Combinatorial Optimization
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Makespan Scheduling – Known Averge-Case Results

Deterministic, problem-specific heuristic LPT

Sort weights decreasingly,
put every object into currently emptier bin.

Known for both random models:

LPT creates a solution with discrepancy O((log n)/n).

What discrepancy do the (1+1) EA and RLS reach in poly-time?
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Average-Case Analysis of the (1+1) EA

Theorem

In both models, the (1+1) EA reaches discrepancy O((log n)/n) after
O(nc+4 log2 n) steps with probability 1 � O(1/nc).

Almost the same result as for LPT!

Proof exploits order statistics:

If X(i) (i-th largest) in fuller bin, X(i+1) in emptier one, and discrepancy
> 2(X(i) � X(i+1)) > 0, then objects can be swapped; discrepancy falls

Consider such “di↵erence objects”.

W. h. p. X(i) � X(i+1) = O((log n)/n)
(for i = ⌦(n)).

}X(i) � X(i+1)
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A Parameterized Analysis

Have seen: problem is hard for (1+1) EA/RLS in the worst case,
but not so hard on average.

What parameters make the problem hard?

Definition

A problem is fixed-parameter tractable (FPT) if there is a problem
parameter k such that it can be solved in time f (k) · poly(n), where f (k)
does not depend on n.

Intuition: for small k , we have an e�cient algorithm.

Considered parameters (Sutton and Neumann, 2012):
1 Value of optimal solution
2 No. jobs on fuller machine in optimal solution
3 Unbalance of optimal solution
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Value of Optimal Solution

Recall approximation result: decent chance to distribute k big jobs
optimally if k small.

Since w1 � · · · � wn, already wk  S/k .

Consequence: optimal distribution of first k objects ! can reach
makespan S/2 + S/k by greedily treating the other objects.

Theorem

(1+1) EA and RLS find solution of makespan  S/2 + S/k with
probability ⌦((2k)�ek) in time O(n log k). Multistarts have success
probability � 1/2 after O(2(e+1)kkekn log k) evaluations.

2(e+1)kkek log k does not depend on n ! a randomized FPT-algorithm.

Frank Neumann, Carsten Witt Bioinspired Computation in Combinatorial Optimization

63/88

No. Objects on Fuller Machine

Suppose: optimal solution puts only k objects on fuller machine.
Notion: k is called critical path size.

Intuition:

Good chance of putting k objects on same machine if k small,

other objects can be moved greedily.

Theorem

For critical path size k , multistart RLS finds optimum in
O(2k(en)ckn log n) evaluations with probability � 1/2.

Due to term nck , result is somewhat weaker than FPT (a so-called
XP-algorithm). Still, for constant k polynomial.

Remark: with (1+1)-EA, get an additional logw1-term.
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Unbalance of Optimal Solution

Consider discrepancy of optimum �⇤ := 2(OPT � S/2).

Question/decision problem: Is wk � �⇤ � wk+1?

Observation: If �⇤ � wk+1, optimal solution will put wk+1, . . . ,wn on
emptier machine. Crucial to distribute first k objects optimally.

Theorem

Multistart RLS with biased mutation (touches objects w1, . . . ,wk with
prob. 1/(kn) each) solves decision problem in O(2kn3 log n) evaluations
with probability � 1/2.

Again, a randomized FPT-algorithm.
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Agenda

1 The origins: example functions and toy problems
A simple toy problem: OneMax for (1+1) EA

2 Combinatorial optimization problems
Minimum spanning trees
Maximum matchings
Shortest paths
Makespan scheduling
Covering problems
Traveling salesman problem

3 End

4 References
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The Problem 
The Vertex Cover Problem: 
Given an undirected graph G=(V,E). 

�).$�!�-).)-4-�24"2%3�/&�5%13)#%2�24#(�3(!3�%!#(�%$'%�
)2�#/5%1%$�!3�,%!23�/.#%��
���(!1$��2%5%1!,���!001/7)-!3)/.�!,'/1)3(-2��

Simple*single_objec0ve*evolu0onary*algorithms*fail!!!*
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The Problem 

�%#)2)/.�01/",%-���2�3(%1%�!�2%3�/&�5%13)#%2�/&�2)9%�
!3�-/23�+�#/5%1).'�!,,�%$'%2
�
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min
Pn

i=1 xi

s.t. xi + xj � 1 � {i, j} 2 E
xi 2 {0, 1}

min
Pn

i=1 xi

s.t. xi + xj � 1 � {i, j} 2 E
xi 2 [0, 1]

Integer*Linear*Program*(ILP)*

Linear*Program*(LP)*
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Evolutionary Algorithm 
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Evolutionary Algorithm 
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Evolutionary Algorithm
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 

    Expected time O(4OPT · poly(n))
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Linear Programming 
Combination with Linear Programming 
•  LP-relaxation is half integral, i.e.  
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Linear Programming

Combination with Linear Programming

LP-relaxation is half integral, i.e.          

   
               
      


  


             
          

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Linear Programming

Combination with Linear Programming

LP-relaxation is half integral, i.e.          

   
               
      


  


             
          

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Linear Programming

Combination with Linear Programming

LP-relaxation is half integral, i.e.          

   
               
      


  


             
          


!"#$%&$"'()$("*$()+&,-.#/$"0)1,$"223)4.+",.)#(5
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Euclidean*TSP **
Given*n*points*in*the*plane*and*Euclidean*distances*
between*the*ci0es.*
*
Find*a*shortest*tour*that*visits*each*city*exactly*
once*and*return*to*the*origin.*
*
NP_hard,*PTAS,*FPT*when*number*of*inner*points*is*
the*parameter.*
*
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Representa0on*and*Muta0on*
Representa0on:*Permuta0on*of*the*n*ci0es*
*
For*example:*(3,*4,*1,*2,*5)*
*
Inversion*(inv)*as*muta0on*operator:*
•  Select*i,j*from*{1,*…n}*uniformly*at*random*and*invert*
the*part*from*posi0on*i*to*posi0on*j.*

•  Inv(2,5)*applied*to*(3,*4,*1,*2,*5)*yields*(3,*5,*2,*1,*4)*
*

*
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(1+1)*EA*

This proves that the (1+1)-EA is an XP-algorithm [Downey
and Fellows, 1999] for the Euclidean TSP.

The remainder of the paper is organized as follows. We
begin by introducing the Euclidean TSP and simple evolu-
tionary algorithms tasked to solve it. We then study struc-
tural properties that facilitate the technical analysis. We ana-
lyze the runtime of simple evolutionary algorithms on points
in convex position and then bound their runtime parameter-
ized by the number of interior points. We investigate the
parameterized complexity of finding locally optimal 2-opt
tours and solving the TSP to optimality with a simple (1+1)
evolutionary algorithm.

Simple EAs and the Euclidean TSP
Let V be a set of n points in the plane labeled as [n] =
{1, . . . , n} such that no three points are collinear. We
consider the complete, weighted Euclidean graph G(V, E)
where E is the set of all 2-sets from V . The weight of an
edge {u, v} 2 E is equal to d(u, v): the Euclidean dis-
tance separating the points. The goal is to find a set of n
edges of minimum weight that form a Hamiltonian cycle
in G. A candidate solution of the TSP is a permutation x
of V which we consider as a sequence of distinct elements
x = (x1, x2, . . . , xn), such that xi 2 [n]. The Hamiltonian
cycle in G induced by such a permutation is the set of n
edges
C(x) = {{x1, x2}, {x2, x3}, . . . , {xn�1, xn}, {xn, x1}} .

The optimization problem is to find a permutation x which
minimizes the fitness function

f(x) =
X

{u,v}2C(x)

d(u, v). (1)

The inversion operator is closely related to the well-
known 2-change (or 2-opt) operation for TSP. A permuta-
tion x is transformed into a permutation �ij [x] by inverting
the subsequence in x from position i to position j where
1  i < j  n. The usual effect of the inversion oper-
ator is to delete the two edges {xi�1, xi} and {xj , xj+1}
from C(x) and reconnect the tour C(�ij [x]) using edges
{xi�1, xj} and {xi, xj+1}. Here and subsequently, we con-
sider arithmetic on the indices to be modulo n, i.e., 1�1 = n
and n + 1 = 1. Since the underlying graph G is undirected,
when (i, j) = (1, n), the operator has no effect since the
current tour is only reversed. There is also no effect when
(i, j) 2 {(2, n), (1, n � 1)}. In this case, it is straightfor-
ward to check that the edges removed from C(x) are equal
to the edges replaced to create C(�ij [x]).

Many randomized search heuristics such as evolutionary
algorithms applied to the TSP operate by iteratively gener-
ating successive permutations using applications of the in-
version operator. Such an algorithm starts from a random
initial permutation x(1) and generates successive permuta-
tions x(t+1) that attempt to improve upon x(t). The general
form of a simple evolutionary algorithm is as follows.

x � a random permutation of [n].
repeat forever

y � MUTATE(x)
if f(y) < f(x) then x � y

Note, that in practice a stopping criteria is required.
For our theoretical investigations, we consider the infinite
stochastic process (x(1), x(2), x(3), . . .) where x(t) equals
the permutation x after the t-th step of the algorithm. We
are interested in the expected value of t such that x(t) is for
the first time a candidate solution of interest (for example,
an optimal solution). We call this the expected time to reach
the desired goal.

In this paper, we will analyze two algorithms called ran-
domized local search (RLS) and (1+1) evolutionary algo-
rithms ((1+1)-EA) which are commonly studied in the com-
putational complexity analysis of evolutionary algorithms
(see e.g. [Droste, Jansen, and Wegener, 2002; Neumann and
Witt, 2010]. In the case of the TSP, a natural choice for
the mutation operator is based on a random inversion op-
eration. A random inversion of a permutation x is a permu-
tation obtained from applying the inversion operator �ij [x]
where {i, j} is selected uniformly at random from the set
of

�n
2

�
distinct 2-subsets of [n]. RLS and the (1+1)-EA are

both characterized by the above pseudocode but differ in im-
plementation of the MUTATE procedure. In RLS, the mu-
tation step MUTATE(x) is defined by performing a single
random inversion �ij [x]. In the (1+1)-EA, the mutation step
MUTATE(x) is defined by performing k + 1 random inver-
sions where k is drawn from a Poisson distribution with pa-
rameter � = 1.

Structural Properties
In the following, we show some structural properties that
will later be used for the runtime analysis of the algorithms.
Geometrically, it will often be convenient to consider an
edge {u, v} as the unique planar line segment with end
points u and v. We say a pair of edges {u, v} and {s, t}
intersect if they cross at a point in the Euclidean plane. An
important observation, which we state here without proof, is
that any pair of intersecting edges form the diagonals of a
convex quadrilateral in the plane.
Proposition 1. If {u, v} and {s, t} intersect at a point p,
they form the diagonals of a convex quadrilateral described
by points u, s, v, and t. Hence edges {s, u}, {s, v}, {t, v}
and {t, u} form a set of edges that mutually do not intersect.

We say the tour C(x) is intersection-free if it contains no
pairs of edges that intersect. If a tour is not intersection-free,
an intersection can always be removed by an inversion. This
notion is captured by the following lemma.
Lemma 1. Let x be a permutation such that C(x) is not
intersection-free. Then there exists an inversion that removes
a pair of intersecting edges and replaces them with a pair of
non-intersecting edges.

Proof. Suppose {xi�1, xi} and {xj , xj+1} intersect in
C(x). Let y = �ij [x]. Then

C(x) \ C(y) = {{xi�1, xi}, {xj , xj+1}} , and
C(y) \ C(x) = {{xi�1, xj}, {xi, xj+1}} .

By Proposition 1, since {xi�1, xi} and {xj , xj+1} intersect,
the two new edges introduced to C(y) by �ij [·] do not in-

(1+1)*EA:*k*random*inversion,**
* * *k*chosen*according*to*

1+Pois(1)*

Muta0on:*
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k*inner*points*

Convex*hull*containing*n_k*points*
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Intersec0on*and*Muta0on*

81/88

Frank Neumann, Carsten Witt Bioinspired Computation in Combinatorial Optimization

Angle*bounded*set*of*points*

u*

v*
w*

There*may*be*an*exponen0al*number*of*inversion*to*end*up**in*
a*local*op0mum*if*points*are*in*arbitrary*posi0ons*(Englert*et*al,*2007).*

V is angle-bounded by � > 0 if for any three points u, v, w 2 V , 0 < � < � < ���
where � denotes the angle formed by the line from u to v and the line from v
to w.

�

We*assume*that*the*set*V*is*angle*bounded*

If*V*is*angle_bounded*then*we*get*a*lower*bound*on*an*improvement*depending*on*ε**
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Progress*

Whenever*the*current*tour*is*not*intersec0on_
free,*we*can*guarantee*a*certain*progress*

dmax:*Maximum*distance*between*any*two*points*
dmin:*Minimum*distance*between*any*two*points*
V*is*angle_bounded*by*ε*

Let x be a permutation such that is not intersection-free. Let y be the permu-
tation constructed from an inversion on x that replaces two intersecting edges

with two non-intersecting edges.Then, f(x) � f(y) > 2dmin

�
1�cos(�)
cos(�)

�
.

Assump0ons:*

Lemma:*
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Tours*
A*tour*x*is*either*
•  Intersec0on*free*
•  Non*intersec0on*free*

Intersec0on*free*tour*are*good.*The*points*on*the*
convex*hull*are*already*in*the*right*order**
(Quintas*and*Supnick,*1965).*
*
Claim:*We*do*not*spend*too*much*0me*on*non*
intersec0on*free*tours.*
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Time*spend*on*intersec0ng*tours*

Let (x(1), x(2), . . . , x(t), . . .) denote the sequence of permutations generated by
the (1+1)-EA. Let � be an indicator variable defined on permutations of [n] as

�(x) =

(
1 x contains intersections;

0 otherwise.

Then E
�P�

t=1 �(x(t))
�

= O
�
n3

�
dmax
dmin

� 1
� �

cos(�)
1�cos(�)

��
.

Lemma:*

For points on an m � m grid this bound becomes O(n3m5).
For*an*m*x*m*grid:*
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Parameterized*Result*

Suppose V has k inner points and x is an intersection-free tour on V . Then
there is a sequence of at most 2k inversions that transforms x into an optimal
permutation.

Lemma:*

Let V be a set of points quantized on an m � m and k be the number of
inner points. Then the expected optimisation time of the (1+1)-EA on V is
O(n3m5) + O(n4k(2k � 1)!).

Theorem:*
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Summary and Conclusions

Runtime analysis of RSHs in combinatorial optimization

Starting from toy problems to real problems

Insight into working principles using runtime analysis

General-purpose algorithms successful for wide range of problems

Interesting, general techniques

Runtime analysis of new approaches possible

! An exciting research direction.

Thank you!

Frank Neumann, Carsten Witt Bioinspired Computation in Combinatorial Optimization

589



88/88

References

F. Neumann and C. Witt (2010):

Bioinspired Computation in Combinatorial Optimization – Algorithms and Their Computational Complexity.
Springer.

A. Auger and B. Doerr (2011):

Theory of Randomized Search Heuristics – Foundations and Recent Developments.
World Scientific Publishing

F. Neumann and I. Wegener (2007):

Randomized local search, evolutionary algorithms, and the minimum spanning tree problem.
Theoretical Computer Science 378(1):32–40.

O. Giel and I. Wegener (2003):

Evolutionary algorithms and the maximum matching problem.
Proc. of STACS ’03, LNCS 2607, 415–426, Springer

B. Doerr, E. Happ and C. Klein (2012):

Crossover can provably be useful in evolutionary computation.
Theoretical Computer Science 425:17–33.

C. Witt (2005):

Worst-case and average-case approximations by simple randomized search heuristics.
Proc. of STACS 2005, LNCS 3404, 44–56, Springer.

T. Friedrich, J. He, N. Hebbinghaus, F. Neumann and C. Witt (2010):

Approximating covering problems by randomized search heuristics using multi-objective models.
Evolutionary Computation 18(4):617–633.

S. Kratsch and F. Neumann (2009):

Fixed-parameter evolutionary algorithms and the vertex cover problem.
In Proc. of GECCO 2009, 293–300. ACM.

A. M. Sutton and F. Neumann (2012):

A parameterized runtime analysis of evolutionary algorithms for the Euclidean traveling salesperson problem.
Proc. of AAAI 2012.

Frank Neumann, Carsten Witt Bioinspired Computation in Combinatorial Optimization

590




