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Why Do We Consider Randomized Search Heuristics? What RSHs Do We Consider?
@ Not enough resources (time, money, knowledge) Theoretically considered RSHs

for a tailored algorithm e (1+1) EA
@ (1+X) EA (offspring population)
o (u+1) EA (parent population)

£(x)

@ Black Box Scenario == —

@ (u+1) GA (parent population and crossover)

SEMO, DEMO, FEMO, ... (multi-objective)
Randomized Local Search (RLS)

Metropolis Algorithm/Simulated Annealing (MA/SA)
Ant Colony Optimization (ACO)

Particle Swarm Optimization (PSO)

rules out problem-specific algorithms

@ We like the simplicity, robustness, ...
of Randomized Search Heuristics

@ They are surprisingly successful.

Point of view

Want a solid theory to understand how (and when) they work.

First of all: define the simple ones
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The Most Basic RSHs What Kind of Theory Are We Interested in?

o Not studied here: convergence, local progress, models of EAs (e.g.,
infinite populations), ...

(1+1) EA and RLS for maximization problems
@ Treat RSHs as randomized algorithm!

(14+1) EA @ Analyze their “runtime” (computational complexity)
on selected problems

@ Choose xg € {0,1}" uniformly at random.

Q@ Fort:=0,...,0 Definition
@ Create y by flipping each bit of x; indep. with probab. 1/n. Let RSH A optimize f. Each f-evaluation is counted as a time step. The
Q@ If f(y) > f(x) set xe41 := y else xe41 = xe. ) runtime Ta ¢ of A is the random first point of time such that A has
sampled an optimal search point.
RLS
@ Choose xo € {0,1}" uniformly at random. o Often considered: expected runtime, distribution of Ty ¢
@ Fort:=0,...,00 o Asymptotical results w.r.t. n

@ Create y by flipping one bit of x; uniformly.
@ If f(y) > f(xt) set xep1 := y else xeq1 := Xe.
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We use (rarely in their pure form):
@ Coupon Collector’'s Theorem Analysis of RSHs already in the 1980s:
o Concentration inequalities: o Sasaki/Hajek (1988): SA and Maximum Matchings
Markov, Chebyshev, Chernoff, Hoeffding, ...bounds @ Sorkin (1991): SA vs. MA
@ Markov chain theory: waiting times, first hitting times e Jerrum (1992): SA and Cliques
@ Rapidly Mixing Markov Chains @ Jerrum/Sorkin (1993, 1998): SA/MA for Graph Bisection
@ Random Walks: Gambler's Ruin, drift analysis, martingale theory, o ...
electrical networks High-quality results, but limited to SA/MA (nothing about EAs) and
@ Random graphs (esp. random trees) hard to generalize.

@ Identifying typical events and failure events

o Potential functions and amortized analysis Since the early 1990s
° ... Systematic approach for the analysis of RSHs,
building up a completely new research area

Adapt tools from the analysis of randomized algorithms; understanding
the stochastic process is often the hardest task. J
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This Tutorial How the Systematic Research Began — Toy Problems

@ The origins: example functions and toy problems Simple example functions (test functions)
@ A simple toy problem: OneMax for (1+1) EA o OneMax(xy,...,x,) = x1 + -+ X,
_ _ S o LeadingOnes(x1,...,x,) = 21 [[imy %
© Combinatorial optimization problems . N w
@ Minimum spanning trees ® BinVal(xi,...,x)) = 3512, 2" 'x;
@ Maximum matchings @ polynomials of fixed degree
@ Shortest paths
@ Makespan scheduling
@ Covering problems
@ Traveling salesman problem Artificially designed functions

Goal: derive first runtime bounds and methods

@ with sometimes really horrible definitions

© End @ but for the first time these allow rigorous statements

Goal: prove benefits and harm of RSH components,

e References e. g., crossover, mutation strength, population size ...
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Exomple: OnelViax

@ The origins: example functions and toy problems
@ A simple toy problem: OneMax for (141) EA Theorem (e. g., Droste/Jansen/Wegener, 1998)

The expected runtime of the RLS, (1+1) EA, (u+1) EA, (1+X) EA on
ONEMAX is Q(nlog n).

Proof by modifications of Coupon Collector’s Theorem.

Theorem (e. g., Miihlenbein, 1992)

The expected runtime of RLS and the (1+1) EA on ONEMAX is
O(nlog n).

Holds also for population-based (1:+1) EA and
for (14+X) EA with small populations.
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Proof of the O(nlog n) bound Later Results Using Toy Problems

o Fitness levels: L; := {x € {0,1}" | ONEMAX(x) = i}
@ (1+1) EA never decreases its current fitness level. o Find the theoretically optimal mutation strength
@ From / to some higher-level set with prob. at least (1/n for OneMax!).
n_i 1 1\ "1 n_ i @ Bound the optimization time for linear functions (O(nlog n)).
( 1 ) : (n) : (1 - n) > on @ optimal population size (often 1!)
— =~ @ crossover vs. no crossover — Real Royal Road Functions
choose a 0-bit flip this bit keep the other bits
@ multistarts vs. populations
o Expected time to reach a higher-level set is at most . o frequent restarts vs. long runs
@ Expected runtime is at most o dynamic schedules
n—1 en o .
Z - = O(nlog n). O
—n—i
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RSHs for Combinatorial Optimization

@ Analysis of runtime and approximation quality on well-known
combinatorial optimization problems, e.g.,

sorting problems (is this an optimization problem?),

covering problems,

cutting problems,

subsequence problems,

traveling salesman problem,

Eulerian cycles,

minimum spanning trees,

maximum matchings,

scheduling problems,

shortest paths,

© Combinatorial optimization problems
@ Minimum spanning trees

@ We do not hope: to be better than the best problem-specific
algorithms

@ Instead: maybe reasonable polynomial running times

@ In the following no fine-tuning of the results
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Minimum Spanning Trees:

* Given: Undirected connected graph G = (V, E)
with n vertices and m edges with positive integer
weights.

* Find: Edge set E' & E with minimal weight
connecting all vertices.

* Search space {0,1}™
* Edge e is chosen iff x;=1
* Consider (1+1) EA
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First goal: Obtain a connected subgraph of G.

How long does it take?

Connected graph in expected time O(mlog n)
(fitness-based partitions)
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Fitness function:

* Decrease number of connected components,
find minimum spanning tree.

* f(s) :=(c(s),w(s)).

Minimization of f with respect to the
lexicographic order.
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Bijection for minimum spanning trees:

€1 a(el

K= |E(T*) \E(T) |

Bijection a: E(T*)\ E(T) — E(T) \ E(T%)
a(e;) on the cycle of E(T) U {e}

w(e) = w(a(e))

= k accepted 2-bit flips that turn T into T*

Frank Neumann, Carsten Witt Bioinspired Computation in Combinatorial Optimization



Upper Bound Proof

Theorem: 1-step (larger total weight decrease of 1-bit flips)
The expected time until (1+1) EA constructs a 2-step (larger total weight decrease of 2-bit flips)
minimum spanning tree is bounded by O(m?(log n +

log W,,.,))-

Consider 2-steps:

* Expected weight decrease by a factor 1 - (1/(2n))
* Probability (n/m?2) for a good 2-bit flip

* Expected time until g 2-steps O(gm?/n)

Sketch of proof:
* w(s) weight current solution s.
* W, weight minimum spanning tree T Consider 1-steps:
¢ Se,t of m+1 operahpng to reach T*_ y * Expected weight decrease by a factor 1 - (1/(2m’))
* m'=m - (n-1) 1-bit flips concerning non-T* edges - Probability (m’/m) for a good 1-bit flip

= spanning tree T
* k 2-bit flips defined by bijection
* n-knon accepted 2-bit flips 1-steps faster = show bound for 2-steps.
* = average distance decrease (w(s) - w,,)/(m + 1)

* Expected time until g 1-steps O(gm/m’)
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Expected Multiplicative Distance

Decrease (aka Drift Analysis)

<D:=m* wmax

Maximum distance: w(s) - w, <

r accepted operations
that turn s into sep¢

1 step: Expected distance at most (1 — 1/(2n))(w(s) -

WOpt )
D= ‘f(sapt) - f(S)‘ < dmaz

Sopt

t steps: Expected distance at most (1 - 1/(2n) ){(w(s) -
Wopt)
t:i=12 + (In2)n(log D + 1) ]: (1 = 1/(2n) ){(W(S) — Wy ) < 1/2
Expected number of 2-steps 2t = O(n(log n + log w,,,, ))(Markov)

Fitness values are integers

t = O(r log D) steps to reach optimum

1 step ¢ steps Expected optimization time
O(tm?/n) = O(m?(log n + log w,,,)).
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Viximum Matchings

A matching in an undirected graph is a subset of pairwise disjoint edges;
aim: find a maximum matching (solvable in poly-time)

Simple example: path of odd length

© Combinatorial optimization problems

@ Maximum matchings

Maximum matching with more than half of edges
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Maximum Matchings Maximum Matchings: Upper Bound

A matching in an undirected graph is a subset of pairwise disjoint edges;

H H . # edges .
aim: find a maximum matching (solvable in poly-time) Fitness function f: {0, 1} - R

_ c @ one bit for each edge, value 1 iff edge chosen
Simple example: path of odd length @ value for legal matchings: size of matching

@ otherwise penalty leading to empty matching

Example: path with n+ 1 nodes, n edges: bit string selects edges
Suboptimal matching

Concept: augmenting path . ‘ ‘ ‘ ‘ . . ‘ J

@ Alternating between edges being inside and outside the matching

@ Starting and ending at “free” nodes not incident on matching

@ Flipping all choices along the path improves matching

The expected time until (14-1) EA finds a maximum matching on a path
Example: whole graph is augmenting path of n edges is O(n*).

Interesting: how simple EAs find augmenting paths
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Maximum Matchings: Upper Bound (Ctnd.) Fair Random Walk

Scenario: fair random walk
Initially, player A and B both have 5 USD
Repeat: flip a coin

Proof idea for O(n*) bound

@ Consider the level of second-best matchings.

@ Fitness value does not change (walk on plateau). ° _

o If “free” edge: chance to flip one bit! — probability ©(1/n). o If he.ads: A pays 1 USD.to B tails: other way round

e Else steps flipping two bits — probability ©(1/n?). ® Until one of the players is ruined.

@ Shorten or lengthen augmenting path ®

@ At length 1, chance to flip the free edge! 0 g n

How long does the game take in expectation?
@ Length changes according to a fair random walk

— equal probability for lengthenings and shortenings Theorem:

Fair random walk on {0, ..., n} takes in expectation O(n?) steps.
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Maximum Matchings: Upper Bound (Ctnd.) Maximum Matchings: Lower Bound

Proof idea for O(n*) bound —  a-- P -~ @~
o Consider the level of second-best matchings. ‘E("}Z' ‘E("}Z' ‘E("}Z' ‘E("}Z'
o Fitness value does not change (walk on plateau). h=3 °_‘\ZVQAI’_‘\ZVQAI’_‘sZ&AI’_‘\ZVQAI’_‘
o If “free” edge: chance to flip one bit! — probability ©(1/n). ._é"_':‘13_;"_':‘}._"'_':{3_‘*"_':‘}._‘
o Else steps flipping two bits — probability ©(1/n?).
@ Shorten or lengthen augmenting path =20 +1
@ At length 1, chance to flip the free edge!

Augmenting path can get shorter but is more likely to get longer.

‘_.._._.._‘ _____ ‘_‘_____. ) J (unfair random walk)

Length changes according to a fair random walk, expected O(n?) two-bit For h >3, (14+1) EA has exponential expected optimization time 2%(*)
flips suffice, expected optimization time O(n?) - O(n?) = O(n*). on Gy

Proof requires analysis of negative drift (simplified drift theorem).
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Viximum Matching Approximations

Insight: do not hope for exact solutions but for approximations

For maximization problems: solution with value a is called
(1 + €)-approximation if Of':T <1+ ¢, where OPT optimal value.

© Combinatorial optimization problems

@ Shortest paths

Fore >0, (1+1) EA finds a (1 + €)-approximation of a maximum
matching in expected time O(m?/5*2) (m number of edges).

Proof idea: If current solution worse than (1 + €)-approximate, there is a
“short” augmenting path (length < 2/¢ 4 1); flip it in one go.
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All-pairs-shortest-path (APSP) problem Representation:

Given: Connected directed graph G = (V, E), [V| = n and |E| = m, Individuals are paths between two particular
and a function w: E — N which assigns positive integer weights to the edges. A
vertices v, and v,

Compute from each vertex v; € V a shortest path (path of minimal weight)

to every other vertex v; € V'\ {v;}
! Initial Population: P:={l,, = (u,v)|(u,v) € E}
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Mutation-based EA

Mutation:

Pick individual 1, uniformly at random
Steady State EA

E~(u): incoming edges of u E*(v): outgoing edges of v 1. Set P ={I,, = (u,v) | (u,v) € E}.
v t 2. Choose an individual I, , € P uniformly at random.
s 3. Mutate I, , to obtain an individual I ,.
4. If there is no individual I, € P, P = P U{I{,},

’ else if f(I5;) < f(Ise), P=(PU{I{}) \{Ls}
5. Repeat Steps 2—4 forever.

Pick uniformly at random an edge e = (z,y) € E~ (u) U E*(v)

Add e New individual I',,
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Population size is upper bounded n?

Lemma: (for each pair of vertices at most one path)

Let £ > logn. The expected time until has found all shortest paths

ith at t £ edges is O(n>(). .
v mmenteme BT * Pick shortest path from u to v; and append

edge (v} V;,.)
* Shortest path from u to v,

Proof idea:
Consider two vertices u and v, u # v.

Let v := (v! = u,v? v +1 = v) be a shortest path

gee ey

from u to v consisting of £/, ¢/ < ¢, edges in G

Probability to pick | .. is at least 1/n?

the sub-path v/ = (v! = u,v2,...,v7) is a shortest path from u to v7. o uvj )
v * Probability to append right edge is at least 1/(2n)
* Success with probability at least p = 1/(2n3)
u Vi * At most | successes needed to obtain shortest path

fromutov
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Analysis
Consider typical run consisting of T=cn3| steps.

Prob(X;=1)>p=1/20%) X =%7 X, X>0777
What is the prob.ablll'gy that the shortest path fromutov Expected number of successes E(X) > T/(2n?) = 2% — <
has been obtained: Chemoff:  Prob(X < (1 — 6)E(z)) < e~ B(X)9*/2
We need at most | successes, where a success happens in §=1
each step with probability at least p = 1/(2n3)

PTOb(X < (1—%)E(27)) < e*E(X)/S < e*T/(lGn‘a) — efcnsl/(16n3) — e*Cf/(lG)

Probability for failure of at least one pair of vertices at most: n?.ect/16
Define for each step i a random variable X;.

¢ large enough and ¢ > logn:
X, =1 if step ¢ is a success No failure in any path with probability at least & = 1—n2-e~¢/16 = 1—-0(1)
X,; = 0 if step ¢ is not a success Holds for any phase of T steps

Expected time upper bound by T'/a = O(n?/)

Frank Neumann, Carsten Witt

Bioinspired Computation in Combinatorial Optimization
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Crossover
Shortest paths have length at most n-1.

Pick two individuals 1, and I, from population
Setl=n-1

uniformly at random.

Theorem

The expected optimization time of Steady State EA n t
for the APSP problem is O(n?).

._.S
If v=s t
Remark:

v=s
There are instances where the expected optimization of (1 + 1)-EA is Q(n?)

Question:
Can crossover help to achieve a better expected optimization time?

Frank Neumann, Carsten Witt
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Steady State GA

. Set P ={I,, = (u,v) | (u,v) € E}.
2. Choose r € [0,1] uniformly at random.
. If r < pe, choose two individuals I, € P and I,/ ,, € P uniformly at
random and perform crossover to obtain an individual I ;,
else choose an individual I, , € P uniformly at random and mutate I,
to obtain an individual I7 ,.
. If I, is a path from s to ¢ then
If there is no individual I € P, P = PU{I;,},
else if f(I5:) < f(Ls), P = (PU{I{ 1)\ {Ls.e}-
. Repeat Steps 24 forever.

Pe is a constant
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Analysis Crossover

Long paths by crossover:

Assumption: All shortest paths with at most I*
edges have already been obtained.

Assume that all shortest paths of length k < I*
have been obtained.

What is the expected time to obtain all shortest paths of
length at most 3k/2°?

Frank Neumann, Carsten Witt Bioinspired Computation in Combinatorial Optimization
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Theorem:
The expected optimization time of Steady State GA is O(n®%\/logn).

Mutation and ¢* := \/nlogn

All shortest path of length at most I* edges are obtained

Show: Longer paths are obtained by crossover within
the stated time bound.
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Analysis Crossover

Consider pair of vertices x and y for which a shortest
path of r, k < r < 3k/2, edges exists.

There are 2k-r pairs of shortest paths of length at most k
that can be joined to obtain shortest path from x to y.
Probability for one specific pair: at least 1/n*

At least 2k+1-r possible pairs: probability

at least (2k+1-r)/n*) > k/(2n%)

At most n? shortest paths of length r, k < r < 3k/2

Time to collect all paths O(n*log n/ k)
(similar to Coupon Collectors Theorem)
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Analysis Crossover

Sum up over the different values of k, namely

\/nlogn,c- \/nlogn7 2. \/nlogn,‘..,clogc(”/vnk’g") -y/nlogn,

where ¢ = 3/2.

© Combinatorial optimization problems

@ Makespan scheduling
Expected Optimization

log, (n/AToE ™) i logn o
—s | _—_ 3.5 -5 _ 3.5
SZ:;) ( (W) ¢ ) = 0(n’°y/logn) gc = 0(n*°y/logn)
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Vakespan Scheduling

What about NP-hard problems? — Study approximation quality

Makespan scheduling on 2 machines:

o n objects with weights/processing times w1, . .., w, @ Problem encoding: bit string xi, ..., x, reserves a bit for each

o 2 machines (bins) object, put object i in bin x; + 1.

@ Minimize the total weight of fuller bin = makespan. @ Fitness function
. . n n
Formally, find / C {1,..., n} minimizing (X1, Xn) i= max{z W;X;,ZW,-(]_ —x,-)}
i=1 i=1
max{z W,‘,ZW;} . to be minimized.

o o Consider (1+1) EA and RLS.

Sometimes also called the Partition problem.
This is an “easy” NP-hard problem, good approximations possible
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Types of Results Sufficient Conditions for Progress

Abbreviate S := wy + - - - + w, = perfect partition has cost %

Suppose we know
@ s* = size of smallest object in the fuller bin,
o f(x) >3+ 57 for the current search point x

o Worst-case results then the solution is improvable by a single-bit flip.

@ Success probabilities and approximations

@ An average-case analysis

! (N[0

@ A parameterized analysis

If f(x) < g + % no improvements can be guaranteed.

If smallest object in fuller bin is always bounded by s* then (1+1) EA
and RLS reach f-value < 3 + % in expected O(n?) steps.
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Sufficient Conditions for Progress Sufficient Conditions for Progress
Abbreviate S := wy + - -+ + w, = perfect partition has cost % Abbreviate S := wy + - - - + w, = perfect partition has cost %
Suppose we know Suppose we know
@ s* = size of smallest object in the fuller bin, @ s* = size of smallest object in the fuller bin,
o f(x)> % + 57 for the current search point x o f(x)> % + 57 for the current search point x
then the solution is improvable by a single-bit flip. then the solution is improvable by a single-bit flip.

! (N[0

If f(x) < 2+ % no improvements can be guaranteed. If f(x) < 2+ % no improvements can be guaranteed.

If smallest object in fuller bin is always bounded by s* then (1+1) EA If smallest object in fuller bin is always bounded by s* then (1+1) EA
and RLS reach f-value < 3 + % in expected O(n?) steps. and RLS reach f-value < 3 + % in expected O(n?) steps.
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Sufficient Conditions for Progress Sufficient Conditions for Progress

Abbreviate S := wy + - - - + w,, = perfect partition has cost % Abbreviate S := wy + - - - + w,, = perfect partition has cost %
Suppose we know Suppose we know

@ s* = size of smallest object in the fuller bin, @ s* = size of smallest object in the fuller bin,

o f(x)> % + 57 for the current search point x o f(x)> % + 57 for the current search point x
then the solution is improvable by a single-bit flip. then the solution is improvable by a single-bit flip.

! (N[0

If f(x) < 2+ % no improvements can be guaranteed. If f(x) < 2+ % no improvements can be guaranteed.

If smallest object in fuller bin is always bounded by s* then (1+1) EA If smallest object in fuller bin is always bounded by s* then (1+1) EA
and RLS reach f-value < 3 + % in expected O(n?) steps. and RLS reach f-value < 3 + % in expected O(n?) steps.
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Worst-Case Results Worst-Case Instance
Instance W = {wy,...,w,} is defined by wy := wy := % — 5 (big
objects) and w; := % for 3 < i < n, & very small constant; n even

Sum is 1; there is a perfect partition.

On any instance to the makespan scheduling problem, the (1+1) EA and But if bin with bi d bin with Il obi value 2 _ <
RLS reach a solution with approximation ratio § in expected time O(n?). ut it one bin with big and one bin with small objects: value 5 — 5.
Move a big object in the emptier bin = value (% +5)+ (% —-2)= % + 5!

Use study of object sizes and previous lemma.

Need to move > en small objects at once for improvement: very unlikely.

There is an instance W such that the (1+1) EA and RLS need with
prob. Q(1) at least n*(") steps to find a solution with a better ratio than
4/3 — S e ¢ Q(n) small pbjects

Q(n)

With constant probability in this situation, n needed to escape.
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Worst Case — PRAS by Parallelism Worst Case — PRAS by Parallelism (Proof Idea)

Set 5 := [ﬂ

i .. : S i
Previous result shows: success dependent on big objects Assuming wy > > Wy, we have w; < g3 for i > s.

On any instance, the (1+1) EA and RLS with prob. > 2-<[1/¢1In(1/¢)
find a (1 + €)-approximation within O(nIn(1/¢)) steps.

o 20([1/21In(1/2)) parallel runs find a (1 + ¢)-approximation
with prob. > 3/4 in O(nln(1/¢)) parallel steps.

s—1 large objects small objects

@ Parallel runs form a polynomial-time randomized approximation analyze probability of distributing
scheme (PRAS)! o large objects in an optimal way,

o small objects greedily = error < 5%,

Random search rediscovers algorithmic idea of early algorithms.
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Average-Case Analyses Makespan Scheduling — Known Averge-Case Results

Models: each weight drawn independently at random, namely

Deterministic, problem-specific heuristic LPT

@ uniformly from the interval [0, 1], Sort weights decreasingly,

@ exponentially distributed with parameter 1 put every object into currently emptier bin.
(i.e., Prob(X >t)=e"t fort > 0).

Approximation ratio no longer meaningful, we investigate: Known for both random models:

LPT creates a solution with discrepancy O((logn)/n).
discrepancy = absolute difference between weights of bins. pancy O((log n)/n)

i i _time?
How close to discrepancy 0 do we come? | What discrepancy do the (1+1) EA and RLS reach in poly-time? )
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Average-Case Analysis of the (141) EA

In both models, the (1+1) EA reaches discrepancy O((log n)/n) after
O(n“**log? n) steps with probability 1 — O(1/n).

Almost the same result as for LPT!

Proof exploits order statistics:

If X(jy (i-th largest) in fuller bin, X(;11) in emptier one, and discrepancy
> 2(X(iy — X(i+1)) > 0, then objects can be swapped; discrepancy falls

I I }
W. h.p. X(i) — X(i+1) = O((log n)/n)

(for i = Q(n)). |:| |:| I:I |:| ]I»:X(I,-) - Xi1y)

Consider such “difference objects”.
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A Parameterized Analysis

Have seen: problem is hard for (14+1) EA/RLS in the worst case,
but not so hard on average.

What parameters make the problem hard?

Definition

A problem is fixed-parameter tractable (FPT) if there is a problem
parameter k such that it can be solved in time f(k) - poly(n), where (k)
does not depend on n.

Intuition: for small k, we have an efficient algorithm.

Considered parameters (Sutton and Neumann, 2012):
© Value of optimal solution
@ No. jobs on fuller machine in optimal solution

© Unbalance of optimal solution

Frank Neumann, Carsten Witt Bioinspired Computation in Combinatorial Optimization

Value of Optimal Solution

Recall approximation result: decent chance to distribute k big jobs
optimally if k small.

Since wy > -+ > w,, already wy < S/k.

Consequence: optimal distribution of first k objects — can reach
makespan S/2 + S/k by greedily treating the other objects.

(1+1) EA and RLS find solution of makespan < S/2 + S/k with
probability Q((2k)~¢) in time O(nlog k). Multistarts have success
probability > 1/2 after O(2(¢TV ke nlog k) evaluations.

2(etDk kek |og k does not depend on n — a randomized FPT-algorithm.
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No. Objects on Fuller Machine

Suppose: optimal solution puts only k objects on fuller machine.
Notion: k is called critical path size.

Intuition:

@ Good chance of putting k objects on same machine if k small,

@ other objects can be moved greedily.

For critical path size k, multistart RLS finds optimum in
O(2*(en)*nlog n) evaluations with probability > 1/2.

Due to term n°, result is somewhat weaker than FPT (a so-called
XP-algorithm). Still, for constant k polynomial.

Remark: with (141)-EA, get an additional log wi-term.

Frank Neumann, Carsten Witt Bioinspired Computation in Combinatorial Optimization




Unbalance of Optimal Soluion

Consider discrepancy of optimum A* := 2(OPT — §/2).
Question/decision problem: Is wy > A* > wy41?
© Combinatorial optimization problems

Observation: If A* > wy1, optimal solution will put wyy1,...,w, on
emptier machine. Crucial to distribute first k objects optimally.

@ Covering problems

Multistart RLS with biased mutation (touches objects wi, . .., wx with
prob. 1/(kn) each) solves decision problem in O(2Xn®log n) evaluations
with probability > 1/2.

Again, a randomized FPT-algorithm.

Bioinspired Computation in Combinatorial Optimization
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The Problem The Problem

The Vertex Cover Problem: Integer Linear Program (ILP)
Given an undirected graph G=(V,E). min 7, z;
. st.x;+x;>1 V{ijlekE
@ 2 ° * » » z; € {0,1}
Linear Program (LP)
() mind . x;
® 2 L ¢ ¢ . 21
. .. . s.t. LL'Z'+LU]'21 V{Z,j}EE
Find a minimum subset of vertices such that each edge ; €0, 1]
is covered at least once.
NP-hard, several 2-approximation algorithms. Decision problem: Is there a set of vertices of size

at most k covering all edges?

Simple single-objective evolutionary algorithms fail!!! ) ]
Our parameter: Value of an optimal solution (OPT)

Bioinspired Computation in Combinatorial Optimization
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Evolutionary Algorithm Evolutionary Algorithm

Representation: Bitstrings of length n

L . 1 1/n
Minimize fitness function: /n / 1/2
o =1 2y =1 ws—o N1@) =z, |U)])
filz) =(2,2)
fola) = (21, LP(x)) o 2
f2(z) =(2,1) Two mutation operations:
To = 0 Ty = 0 Te — 0
1. Standard bit mutation with probability 1/n
U(z): Edges not covered by z 2. Mutation probability 1/2 for vertices adjacent to edges of U(z).
G (x) = G(V) U (m)) Otherwise mutation probability 1/n.
Decide uniformly at random which operator to use in next iteration

LP(x): value of LP applied to G(z)

Frank Neumann, Carsten Witt Bioinspired Computation in Combinatorial Optimization
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Multi-Objective Approach:
Treat the different objectives in the same way

|«’U\1-A |x’1A
® o ® ®
® Keep trade-offs of the two criteria
] [
¢ [
o
o © ° ®
® ® !Empty set inc!uded
® o in the population
[ & ® ’
® @ °
> : ® >
|U ()] ‘U(CB)|
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What can we say about these solutions?

EZEON h A
(log n)-approximation (Friedrich, Hebbinghaus, He, N., Witt (2010))
. Approach can be generalized to the SetCover Problem
] (best possible approximation in polynomial time) ]
.y 'v
> [ ] Kernelization in expected polynomial time * [ ]
+Subset of a minimum vertex cover Kernelization in expected polynomial time
©. ’ *G(x) has maximum degree at most OPT ©. *Subset of a minimum vertex cover
»  *G(x) has at most OPT + OPT? > *G(x) has at most 20PT non-isolated
N ! non-isolated vertices . ' vertices
Optimal solution L Optimal solution L
Expected time g(OPT)* poly(n) ( Y °. Expected time O(4°FT - poly(n)) (Y
Fixed parameter evolutionary algorithm Fixed parameter evolutionary algorithm
. () > . ® >
\U(x)] |LP(z)|
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Linear Programming Approximations
Combination with Linear Programming .
. . . . Z|1
» LP-relaxation is half integral, i.e. A |z, <(1+e0PT
z; €4{0,1/2,1},1<i<n ]
Q |z|1 +2LP(z) < (1+¢)OPT
Theorem (Nemhauser, Trotter (1975)): .
Let z* be an optimal solution of the LP. Then there is a minimum vertex cover ([ ] o o
that contains all vertices v; where z} = 1. o Kernelization in expected polynomial time
Lemma: ‘ R
All search points = with LP(z) = LP(0™) — |z|; are Pareto optimal. .
They can be extended to minimum vertex cover by selecting additional o e
) Expected time o.
vertices. .
041 = OPT . poly(n))
@
. o >
Can we also say something about approximations? |LP(x)|
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Euclidean TSP

Given n points in the plane and Euclidean distances

between the cities.
© Combinatorial optimization problems

Find a shortest tour that visits each city exactly
once and return to the origin.

@ Traveling salesman problem

NP-hard, PTAS, FPT when number of inner points is
the parameter.
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Representation and Mutation (1+1) EA

Representation: Permutation of the n cities
x < arandom permutation of [n].
repeat forever
For example: (3, 4,1, 2, 5) y < MUTATE(z)
if f(y) < f(z) thenx « y

Inversion (inv) as mutation operator:

* Selecti,j from {1, ...n} uniformly at random and invert Mutation:
the part from position i to position j. (1+1) EA: k random inversion,
* Inv(2,5) applied to (3, 4, 1, 2, 5) yields (3, 5, 2, 1, 4) k chosen according to
1+Pois(1)
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Intersection and Mutation

[ ®
® ® L
®
® k inner points .
® d ®
° o

Convex hull containing n-k points

Bioinspired Computation in Combinatorial Optimization
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Angle bounded set of points Progress

There may be an exponential number of inversion to end up in

a local optimum if points are in arbitrary positions (Englert et al, 2007). Assumptions:

d,.: Maximum distance between any two points

We assume that the set V is angle bounded d.,: Minimum distance between any two points
V is angle-bounded by € > 0 if for any three points u,v,w € V,0<e <0 < 1—¢ V is angle-bounded by &
where 6 denotes the angle formed by the line from u to v and the line from v
to w. u Whenever the current tour is not intersection-
o free, we can guarantee a certain progress
v ® 0 Lemma:
ow Let « be a permutation such that is not intersection-free. Let y be the permu-

tation constructed from an inversion on x that replaces two intersecting edges
with two non-intersecting edges.Then, f(z) — f(y) > 2dmin (1_‘:(’5(6)) .

cos(e€)

If Vis angle-bounded then we get a lower bound on an improvement depending on €

Bioinspired Computation in Combinatorial Optimization
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Tours

A tour x is either
* Intersection free
* Non intersection free

Intersection free tour are good. The points on the
convex hull are already in the right order

(Quintas and Supnick, 1965).

Claim: We do not spend too much time on non
intersection free tours.
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Parameterized Result

Lemma:

Suppose V has k inner points and x is an intersection-free tour on V. Then
there is a sequence of at most 2k inversions that transforms z into an optimal
permutation.

Theorem:

Let V be a set of points quantized on an m X m and k be the number of
inner points. Then the expected optimisation time of the (14+1)-EA on V is
O(m*m®) + O(n**(2k - 1))).

Frank Neumann, Carsten Witt Bioinspired Computation in Combinatorial Optimization

Time spend on intersecting tours

Lemma:

Let (z™,2®, ... 2® ) denote the sequence of permutations generated by
the (1+1)-EA. Let o be an indicator variable defined on permutations of [n] as

@) 1 2 contains intersections;
a(z) =
0 otherwise.

Then E (352, a(z®)) =0 (713 <37 - 1) <132§§<)5>>> :

min

For an m x m grid:
For points on an m x m grid this bound becomes O(n3m?).
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Summary and Conclusions

Runtime analysis of RSHs in combinatorial optimization

Starting from toy problems to real problems

Insight into working principles using runtime analysis
General-purpose algorithms successful for wide range of problems

Interesting, general techniques

Runtime analysis of new approaches possible

— An exciting research direction.

Thank you!

Frank Neumann, Carsten Witt Bioinspired Computation in Combinatorial Optimization



References

B

) & & W W W @

F. Neumann and C. Witt (2010):

Bioinspired Computation in Combinatorial Optimization — Algorithms and Their Computational Complexity.
Springer

A. Auger and B. Doerr (2011):
Theory of Randomized Search Heuristics — Foundations and Recent Developments.
World Scientific Publishing

F. Neumann and I. Wegener (2007):

Randomized local search, evolutionary algorithms, and the minimum spanning tree problem.
Theoretical Computer Science 378(1):32-40

O. Giel and I. Wegener (2003)

Evolutionary algorithms and the maximum matching problem.
Proc. of STACS 03, LNCS 2607, 415-426, Springer

B. Doerr, E. Happ and C. Klein (2012):

Crossover can provably be useful in evolutionary computation.
Theoretical Computer Science 425:17-33.

C. Witt (2005):

Worst-case and ge-case approximations by simple randomized search heuristics.
Proc. of STACS 2005, LNCS 3404, 44-56, Springer

T. Friedrich, J. He, N. Hebbinghaus, F. Neumann and C. Witt (2010):

Approximating covering problems by randomized search heuristics using multi-objective models.
Evolutionary Computation 18(4):617-633

S. Kratsch and F. Neumann (2009)

Fixed-parameter evolutionary algorithms and the vertex cover problem.
In Proc. of GECCO 2009, 293-300. ACM

A. M. Sutton and F. Neumann (2012):

A parameterized runtime analysis of evolutionary algorithms for the Euclidean traveling salesperson problem.
Proc. of AAAI 2012

Frank Neumann, Carsten W ioinspired Computation in Combinatorial Optimization

590





