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ABSTRACT
 

In order to achieve a satisfactory optimization performance by 

evolutionary programming (EP), it is necessary to ensure proper 

balance between exploration and exploitation. It is obvious that 

one single mutation operator is not the answer. Moreover, early 

loss of genetic diversity causes premature trapping around locally 

optimal points of the fitness landscape. This paper presents a 

fitness tracking based evolutionary programming (FTEP) 

algorithm incorporating a fitness tracking scheme to find the 

locally trapped individuals and treat them in a different way so 

that they are able to improve their performance. FTEP also 

incorporates several mutation operators in one algorithm and 

employs a self-adaptive strategy to gradually self-adapt the 

mutation operators in order to apply an appropriate mutation 

operator on the individual based on its need. A test-suite of 25 

functions has been used to evaluate the performance of FTEP.  

   

Categories and Subject Descriptors 

G.1.6 [Mathematics of Computing]: Optimization—Global 

Optimization; I.2.8 [Artificial Intelligence]: Problem Solving, 

Control Methods, and Search—Heuristic methods 

General Terms 

Algorithms, Performances 

Keywords 

evolutionary programming, mutation, stagnant population, fitness 

tracking 

1. INTRODUCTION 
    Evolutionary algorithms, such as evolutionary programming 

(EP), evolution strategies (ESs) and genetic algorithms (GAs) 

have been very successful in solving many optimization problems. 

The basic difference between EP (or ESs) and GAs is that: Both 

EP and ES use only mutation operator to produce offspring while 

GAs use both crossover and mutation operators. Since mutation is 

the main operator in EP, a number of innovative mutation 

operators e.g. Gaussian mutation [2], Cauchy mutation [1], Lévy 

mutation [3] have been proposed to improve the performance of 

EP. In this paper, we have introduced a fitness tracking based EP   

 

 

 

 

 

(FTEP) algorithm that incorporates Fitness Tracking Process to 

avoid premature convergence. FTEP maintains a pool of different 

yet effective mutation operators integrating their advantages 

together in order to overcome the shortcomings of a pure strategy.  

2. METHOD 
    The proposed FTEP scheme uses fitness tracking to track the 

performance of an individual i.e. at what degree the individual is 

able to optimize its fitness. A pool of mutation operators is 

associated with FTEP to provide necessary search step sizes as the 

evolutionary process progresses. Each mutation operator as a 

probability associated with it which is same for all at the 

beginning. Each individual is assigned two mutation operators, 

chosen from the mutation pool by fitness proportionate selection. 

Therefore, two children are generated from each individual and 

the better candidate is selected as the offspring. At each 

generation, successful mutation rate of the mutation operators are 

recorded. After a predefined number of consecutive generations 

(known as learning period LP), the following tasks are done: a) 

Fitness optimization information of each individual is recorded 

and based on that information, less-fit (stagnant) individuals are 

separated from the main population. b) Each stagnant individual is 

further mutated by two differential mutation operators to generate 

two children as discussed in section 2.2 and the better candidate 

replaces its corresponding stagnant parent in the main population. 

c) Successful mutation rate is used to increase or decrease the 

probability of each mutation operator so that better mutation 

operators are rewarded and others are penalized. The necessary 

details of the components of FTEP are given in the following 

subsections. 

2.1 Fitness Tracking Procedure 
    The central component of our proposed FTEP system is the 

Fitness Tracking scheme for separating the under-performing 

individuals. Although there exists some algorithms like Crowding, 

Fitness sharing that penalize similar individuals and promote 

diverse ones, fitness tracking scheme allows the apparently under-

performing individuals to grow. In fact, fitness tracking keeps the 

optimization record of the individuals to distinguish the best-fit 

individuals from the less-fit ones as they evolve through 

generations. The tracking procedure continues for LP generations. 

Each individual has a fitness tracker associated with it which is 

initialized by the fitness value of its parent at the beginning of LP. 

During each generation of LP, the fitness of each individual is 

recorded by the fitness tracker associated with it. Thus after the 

completion of LP generations, a sequence of fitness values 

starting from root parent individual to the current offspring is 

obtained for each individual. This sequence of fitness values 
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associated with the individual therefore represents its 

improvement within the learning period. From this sequence of 

fitness values, optimization record of each individual can be 

obtained and based on that record stagnant individuals are 

detected and separated from the main population. 

2.2 Stagnant Population Replacement Strategy  
    FTEP introduces differential mutation operators, picked from 

differential evolution (DE) literature instead of distribution based 

mutation operators, to treat the stagnant individuals so that they 

can improve themselves. It chooses DE/target-to-local-best/1 and 

DE/target-to-global-best/1, two differential mutation strategies 

from [4]. DE/target-to-global-best/1 is exploitative in nature and 

possesses higher ability to converge to the near-optimal solutions 

as quickly as possible. Thus it performs better for functions with a 

few local optima. On the other hand, DE/target-to-local-best/1 is 

explorative in nature and searches every region of the feasible 

search space. Thus, it is best suited for functions with many local 

optima. While choosing the local neighborhood for DE/target-to-

local-best/1, the neighbor individuals are chosen randomly not 

considering their geographical nearness or similar fitness values. 

Details about the behavior of these differential mutation operators 

are one of the focuses of our future work. Each stagnant 

individual is mutated by these two differential mutation operators 

and the better candidate replaces its stagnant parent. 

2.3 Self-Adaptive Mutation Pool 
    FTEP maintains a mutation pool containing a variety of 

mutation operators with effective yet diverse characteristics. 

During evolution, with respect to each individual in the current 

population, two mutation operators will be chosen from this 

mutation pool according to the probability learned from its 

previous experience of generating promising solutions and applied 

to perform the mutation operation. The more successfully the 

mutation operators behaved in previous LP generations to 

generate promising solutions, the higher the probability they will 

have to be chosen in the current generation. An ideal mutation 

pool should contain effective mutation operators having distinct 

capabilities when dealing with a specific problem at different 

stages of evolution. The member mutation operators of the 

mutation pool of FTEP are: Gaussian, Cauchy, four Lévy 

mutations (with its scaling parameter=1, 1.3, 1.5, 1.7), mean 

mutation operator (MMO) [6] and adaptive mean mutation 

operator (AMMO) [6]. Details about the construction of mutation 

pool and its member mutation operators are the topics for our 

future study. 

3. RESULTS AND DISCUSSION 
    We have chosen the set of benchmark functions provided by 

CEC 2005 special session [5] to present a simple experimental 

study. Table 1 shows the obtained error results from the 

experiments for FTEP with problem dimension set to 30 and 

number of function evaluations set to 300,000 and. The error is 

computed as (Error = f(x) – f(x*)), where f(x) is the obtained 

solution by the algorithm and f(x*) is the already known global 

optimum for a particular benchmark function. It is apparent from 

the table that FTEP achieves excellent optimization performance 

for both unimodal (f1-f5) and multimodal functions (f6-f14). As the 

hybrid composition functions (f14-f25) are more challenging and 

difficult to solve, FTEP has not been able to solve them, but 

obtains better results if compared to some state-of-the-art works. 

It will be one of the focuses of our future work to present 

comparison experiment in more details.  The convergence 

characteristics for four functions have been presented in Figure 1. 

It is obvious from the figure that FTEP converges smoothly 

without getting stuck at local minima until it reaches proximity of 

global minima.  

    In summary, fitness tracking, stagnant individuals’ replacement 

through differential mutation and self-adaptive mutation pool lead 

to reliable optimization achieved by FTEP. In future, we are 

interested to explore this idea in more details and conduct 

experimental studies for a broader class of problems.  

Table 1. Performance on CEC2005 benchmark functions with 

(over 25 runs) 

 

 

    Figure 1. Convergence characteristics for f9, f10, f15 and f21. 
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Mean Error 
f1 3.70e-02 f10 6.52e+01 f19 8.24e+02 

f2 6.10e-01 f11 1.21e+01 f20 8.27e+02 

f3 9.91e+05 f12 9.31e+02 f21 5.00e+02 

f4 2.55e+03 f13 2.46e+00 f22 5.12e+02 

f5 2.71e+03 f14 1.24e+01 f23 5.34e+02 

f6 1.59e+01 f15 2.03e+02 f24 2.11e+02 

f7 7.58e-02 f16 9.24e+01 f25 2.11e+02 

f8 2.07e+01 f17 9.45e+01   

f9 1.28e+01 f18 8.27e+02   
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