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ABSTRACT
We present a novel Natural Evolution Strategy (NES) vari-
ant, the Rank-One NES (R1-NES), which uses a low-rank
approximation of the search distribution covariance matrix.
The algorithm allows computation of the natural gradient
with cost linear in the dimensionality of the parameter space,
and excels in solving high-dimensional non-separable prob-
lems.

Categories and Subject Descriptors
I.2 [Computing Methodologies]: Artificial Intelligence;
G.1.6 [Mathematics of Computing]: Numerical Analy-
sis—Optimization

Keywords
evolution strategies, covariance matrix adaptation, natural
gradient

1. INTRODUCTION
The state-of-the-art continuous black-box optimization al-

gorithms, such as xNES [2] and CMA-ES [5], are all based
on the same principle: a Gaussian search distribution is re-
peatedly adjusted according to the objective function eval-
uated at sampled points. Usually the full covariance ma-
trix is updated, allowing the distribution to adapt to the
curvature of the objective function. However, this implies
that the number of parameters scales quadratically in the
number of dimensions, and the cost of updating the search
distribution can become the computational bottleneck. One
possible remedy is to restrict the covariance matrix to be
diagonal [6], which reduces the computation per function
evaluation to O(d). Unfortunately, this “diagonal” approach
performs poorly when the problem is non-separable.
We propose a new variant of the natural evolution strategy

family [7], termed Rank One NES (R1-NES). This algorithm
stays within the general NES framework in that the search
distribution is adjusted according to the natural gradient
[1], but it uses a novel parameterization of the covariance
matrix,

Σ = e2s(I+ vv>), (1)

where s and v are the parameters to be adjusted. This pa-
rameterization allows v, the predominant eigen-direction of
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Σ, to be oriented in any direction, enabling the algorithm
to tackle non-separable problems while maintaining O (d)
parameters. R1-NES scales well to high dimensions, and
dramatically outperforms diagonal covariance matrix algo-
rithms on some non-separable objective functions. As an ex-
ample, R1-NES reliably solves the non-convex Rosenbrock
function up to 512 dimensions.

2. THE ALGORITHM
Natural Evolution Strategy (NES) are a class of evolution-

ary algorithms for real-valued optimization that maintain a
search distribution, and adapt the distribution parameters
by following the natural gradient of the expected function
value. At each time step, the algorithm samples n new sam-
ples x1, . . . ,xn ∼ π (·|θ), with π (·|θ) being the search distri-
bution parameterized by θ. Let f : Rd 7→ R be the objective
function to maximize. The expected function value under
the search distribution is

J (θ) = Eθ [f(x)] =

∫
f(x)π (x|θ) dx,

whose natural gradient can be computed (e.g., see [7]) by

∇θJ = Eθ[f (x) ∇̃θL (x)] ≈ 1

λ

∑λ
i=1f (xi) ∇̃θL (xi) . (2)

where L (x) = log π (x|θ) is the log-likelihood, ∇̃θ log π (x|θ) =
F−1

θ ∇θ log π (x|θ) is its natural gradient, and F is the Fisher
information matrix.

In R1-NES, the search distribution is N (µ,Σ), where Σ
is given by Eq.1. Let y ∼ N (0, I), α ∼ N (0, 1) and w =
y + αv, then

x = µ+ esw ∼ N (µ,Σ) ,

and the natural gradients w.r.t. µ, s and v are

∇̃µL (x) = x− µ (3)

∇̃sL (x) =
1

2 (d− 1)
[(w>w − d)− ((w>z)2 − 1)] (4)

∇̃vL (x) =
(r2− d+ 2)(w>z)2− (r2 + 1)w>w

2r (d− 1)
z+

w>z
r

w

(5)

Here r = ‖v‖ and z = r−1v. Note that computing both

∇̃σL(x) and ∇̃vL(x) takes O (d) storage and time.
The natural gradient above is obtained with respect to

v. However, when ∇̃vL(x) is large and in the opposite di-
rection of v, the gradient update could flip the direction of
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Algorithm 1: R1-NES(λ, η, ηµ,v)

1 while not terminate do
2 for i = 1 to λ do
3 yi ←N (0, I)
4 αi ←N (0, 1)
5 xi ←µ+ es(yi + αiv) //generate samples
6 evaluate f(xi)

7 end
8 compute the natural gradient for µ, s, v, c, and z

according to Eq.3, 4, 5, 6, and 7, and combine them
using Eq.2

9 µ ←µ+ η∇̃µJ

10 s ←s+ η∇̃sJ

11 if ∇̃cJ < 0 then

12 c ←c+ η∇̃cJ //multiplicative update

13 z ← z+η∇̃zJ

‖z+η∇̃zJ‖
14 v ←ecz

15 else

16 v ←v + η∇̃vJ //additive update
17 c ←log ‖v‖
18 z ← v

‖v‖
19 end

20 end

v and grow its length, causing instability. A remedy is to
re-parameterize v = ecz, where ‖z‖ = 1 and ec = r, so that
the update on c will never flip v. The natural gradient w.r.t.
c and z is given by

∇̃cL(x) = r−1(∇̃vL(x))
>z (6)

∇̃zL(x) = r−1[∇̃vL(x)− ((∇̃vL(x))
>z)z], (7)

Algorithm 1 shows the complete R1-NES algorithm in pseu-
docode.

3. EXPERIMENT
We show comparison between R1-NES and xNES [2], SNES [6]

on eight noise-free unimodal functions in the ‘Black-Box Op-
timization Benchmarking’ collection [4], with problem di-
mensions d vary from 2 to 512 (xNES was only run up to
d = 64.) In order to make the results comparable those of
other methods, the setup in [3] was used, which transforms
the pure benchmark functions to make the parameters non-
separable (for some) and avoid trivial optima at the origin.
Figure 1 shows eight functions where R1-NES achieves

good performance. However, it must be pointed out that
out of the twelve benchmark functions, R1-NES failed to
solve four of them (f2, f7, f10, f11), due to the limitation in
its parameterization.
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Figure 1: Performance comparison on BBOB uni-
modal functions. Log-log plot of the median number of
evaluations (over 20 trials) required to reach the target fit-
ness of −10−8 for functions for which R1-NES is well suited
(cases for which 90% or more of the runs converged pre-
maturely are not shown). Note that, with exception of f6
and f13, xNES consistently solves all benchmarks on small
dimensions (≤ 64), with a scaling factor that is almost the
same over all functions.
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