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ABSTRACT
Search space characterisation is a field that strives to define
properties of gradients with the general aim of finding the
most suitable stochastic algorithms to solve the problems.
Diagnostic Optimisation characterises the search landscape
while the search progresses. In this work, we have improved
Predictive Diagnostic Optimisation to reduce the cost of
the local search by introducing a sampling procedure to ex-
plore the neighbourhood. The neigbhourhood is created by
the swap operator and the sample size recorded during the
search is shown to correlate with the known characteristics
of the problems.

Categories and Subject Descriptors
D.2.8 [Artificial Intelligence]: Diagnostic Optimisation

1. INTRODUCTION
Local search is a successful class of approximation algo-

rithms which has been shown to achieve near-optimal solu-
tions to many difficult problems when coupled with a suit-
able global search [4]. In multimodal landscapes, where local
search is applied, the solution obtained at the end is usually
a local optimum. In recent work [3] it was shown that the
quality of such local optima can be predicted with a cer-
tain accuracy and that this can help decide which of the
initial solutions promise the largest gain from a local search.
This work intends to reduce the complexity of exploring the
neighbourhood in a way that is computationally more ef-
ficient than the initial Predictive Diagnostic Optimisation
(PDO).

2. PREDICTIVE DIAGNOSTIC OPTIMISA-
TION

The core technique of PDO is the prediction of the ulti-
mate solution quality after a local search has been applied,
solving the problem of choice of initial solution for the local
search. The prediction is based on the fitness improvement
ensuing from the first change made to the initial solution.
This first step of the local search is used to project the fi-
nal quality to be expected when no further improvement
is possible. The ratio of the improvement achieved by the
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first step and the fitness improvement after the search stops
forms a predictor. A predictor can then be matched to new
initial solutions and their first moves. When, after the local
optimisation, it is observed that none of the existing predic-
tors was able to predict the ultimate locally optimal fitness,
a new predictor is created based on this solution. As pre-
dictors are created dynamically whenever the existing pre-
dictors are unable to predict the quality of the optimum to
a predefined margin of accuracy, the number of predictors
created during the run can be used as an indicator of the
homogeneity of the search space.

2.1 Steepest descent
The method used for exploring the neighbourhood cre-

ated from the swap operator, steepest descent (SD), is an
expensive technique that exhaustively explores the complete
neighbourhood before making the move that leads to the
best fitness improvement. It is an iterative improvement
method in which, at each step, the current solution is im-
proved by a predefined small modification. At each step, all
possible modifications of the current solution are explored
and the change with the biggest fitness improvement is made
permanent. It ends when no further improving moves are
possible. For most types of problems of realistic sizes, the
resulting neighbourhood is prohibitively large. In this work,
we decided to replace SD by a sampling procedure, com-
putationally inexpensive, which explores the neighbourhood
looking for an approximate best solution before making a
next move.

2.2 Sampling
The primary goal is to reduce the cost of the local search

and at the same time to preserve approximately the same
prediction accuracy and fitness improvement as the exhaus-
tive SD approach. Compared to SD, when we do sampling
the neigbourhood size is reduced to the sample size, there-
fore the exploration is limited to the sample. Instead of
searching the neighbourhood exhaustively, the sampling pro-
cedure selects the best solution found in a representative
sample. A representative sample is one that finds an ap-
proximate best fitness improvement. It is expected that the
sample size is influenced by the diversity of the gradients and
to have more samples in a rugged landscape than in a ho-
mogeneous one since more exploration is needed to find the
approximate best fitness improvement. Initially, m = 30
local search moves are sampled beginning from the same
solution. Since the sampling size is determined using the
average of the best fitnesses, lower values for the minimum
size would increase the chances for the sample to stop pre-
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maturely. The sample size is recorded during the predictors
creation and when they are used to make predictions. For
testing whether the sample size correlates indeed with the
ruggedness of the landscape, a second batch of experiments
with m = 50 was performed as well.

For determining the approximate best improvement from
the neighbourhood by sampling, a statistical significance
test is proposed, where a dynamic stopping criterion based
on accuracy monitoring determines when the sample reaches
the confidence level for the neighbourhood. After the initial
m samples, the average of the best fitnesses a1 and the mean
square of those best fitnesses, a2 is computed for each new
sample. The sampling increments k, the current sample size,
until the predefined significance level is reached, computed
according to Eq. 1.

wr =
2Z√
k

√
a2 − a2

1

a1
(1)

where Z-values for the 95%, 98% and 99% confidence in-
tervals are 1.96, 2.33 and 2.58.

The sample size index is calculated as the neighbourhood
sample size attained when the statistical significance level
has been reached divided by the initial sample size m. The
goal of sampling is to reduce the overhead of investigating
all possible moves that can be made from one solution while
losing as little as possible of the accuracy provided by SD.
Intuitively, a higher significance level would allow the sample
size to develop more, giving more chances to discover better
fitness, but a tradeoff between sampling overhead and accu-
racy is desirable. For example, on Chr25a problem, 95% had
the sample index 1.001 for the best fitness normalised to the
global optimum at 0.66, while 98% had the index 1.24 for a
normalised best fitness at 0.68. 99% had the index 2.42 for
a normalised best fitness of 0.67, therefore we have setup for
98%.

2.3 Results
To investigate the effects of replacing SD with the sam-

pling technique, a set of twelve instances of Quadratic As-
signment Problem (QAP) from the QAPLIB collection [1],
six instances of Linear Ordering Problem (LOP) available
in the LOLIB benchmark library [2] and six instances of
Flow Shop Scheduling Problem (FSSP) generated according
to Taillard [5] were chosen for experimentation.

The values confirm that for instances like Nug20, Nug30,
Tai100a, Tai100b with a homogeneous landscape, the sam-
ple size index stays at minimal values, 1 , which means that
the minimum size sample is representative enough for ex-
ploring the neighbourhood. The sample size index shown
in Table 1 correlates with the ruggedness of the landscape
created, for hard instances like Chr20a, Chr25a and Ste36b
showing that a larger sample is needed. If the landscape is
rugged, the size of the sample is larger due to the diversity of
gradients, and a larger sample promises a better solution to
be discovered in the neighbourhood exploration. On FSSP
instances, on m = 30 there is a slight difference in index for
the less complex problems. In most cases, the LOP instances
present a small index, more uniform for m = 50, except for
hard problems where we obtain a bigger sample size index,
e.g econ36 containing real-world data. Observing the overall
distribution of the sample index values over the two studied
cases, we conclude that starting sampling with bigger sizes
will attenuate the differences in the index leaving only the
very rugged landscapes with a significant index. From the

Table 1: Sample size index.
Problem m=30 m=50

Q
A

P

Chr20a 2.093 1.54
Chr25a 1.528 1.24
Kra30a 1 1
Kra32 1 1
Nug20 1.001 1
Nug30 1 1
Ste36a 1.064 1.02
Ste36b 1.277 1.12
Tai20a 1 1
Tai30b 1.119 1.04
Tai100a 1 1
Tai100b 1 1

L
O

P

econ36 1.243 1.11
p40.01 1.001 1
be75eec 1.056 1.02
sgb75.01 1.01 1
t1d100.01 1 1
be75eec150 1 1

F
S
S
P

Tai20x10 1.002 1
Tai20x20 1.002 1
Tai50x10 1 1
Tai50x20 1 1
Tai100x10 1 1
Tai100x20 1 1

diagnostic angle, a sample that can capture as much as pos-
sible the differences between the problems is preferable. To
use this sample index as a metric for ruggedness, it is nec-
essary to confirm these results with more tests which apply
a diversity of neighbourhoods.

3. CONCLUSIONS
In this paper, we have improved PDO, an optimisation ap-

proach which is based on predictive local search. The main
improvement of the algorithm comprises the introduction
of a sampling procedure that reduces the cost of the local
search during the exploration of the neighbourhood. The in-
formation obtained during the search correlates with the dif-
ficulty of the problem and the values obtained for the metric
vary significantly depending on the landscapes. These land-
scapes were investigated in the literature and our previous
work and the observations coincide with the existing knowl-
edge about the problem instances. An interesting direction
for further research is to test different neighbourhoods for
the consistency of the sample size index as a characterisation
metric especially for unknown problems.
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