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Instructor
Lee Spector is a Professor of Computer Science in the School of 
Cognitive Science at Hampshire College in Amherst, Massachusetts, and an 
adjunct professor in the Department of Computer Science at the 
University of Massachusetts, Amherst. He received a B.A. in Philosophy from 
Oberlin College in 1984 and a Ph.D. from the Department of Computer 
Science at the University of Maryland in 1992. His areas of teaching and 
research include genetic and evolutionary computation, quantum 
computation, and a variety of intersections between computer science, 
cognitive science, evolutionary biology, and the arts. He is the Editor-in-
Chief of the journal Genetic Programming and Evolvable Machines (published 
by Springer) and a member of the editorial board of Evolutionary 
Computation (published by MIT Press). He is also a member of the SIGEVO 
executive committee and he was named a Fellow of the International 
Society for Genetic and Evolutionary Computation. 

Tutorial Description (1)
The language in which evolving programs are expressed can have significant 
impacts on the problem-solving capabilities of a genetic programming 
system. These impacts stem both from the absolute computational power 
of the languages that are used, as elucidated by formal language theory, and 
from the ease with which various computational structures can be 
produced by random code generation and by the action of genetic 
operators. Highly expressive languages can facilitate the evolution of 
programs for any computable function using, when appropriate, multiple 
data types, evolved subroutines, evolved control structures, evolved 
data structures, and evolved modular program and data architectures. In 
some cases expressive languages can even support the evolution of 
programs that express methods for their own reproduction and variation 
(and hence for the evolution of their offspring).

Tutorial Description (2)
This tutorial will begin with a comparative survey of approaches to the 
evolution of programs in expressive programming languages ranging from 
machine code to graphical and grammatical representations. Within this 
context it will then provide a detailed introduction to the Push 
programming language, which was designed specifically for expressiveness 
and specifically for use in genetic programming systems. Push programs are 
syntactically unconstrained but can nonetheless make use of multiple data 
types and express arbitrary control structures, supporting the evolution of 
complex, modular programs in a particularly simple and flexible way. The 
Push language will be described and ten years of Push-based research, 
including the production of human-competitive results, will be briefly 
surveyed. The tutorial will conclude with a discussion of recent 
enhancements to Push that are intended to support the evolution of 
complex and robust software systems.
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Course Agenda

• Genetic Programming refresher

• Why evolve programs in expressive languages?

• Expressivity and evolvability

• Expressive trees, bits, graphs, grammars, stacks

• Push

• Expressing the future

Evolutionary Computation

Evolution, the Designer

“Darwinian evolution is itself a designer 
worthy of significant respect, if not religious 
devotion.” Boston Globe OpEd, Aug 29, 2005

Genetic Programming (GP)

• Evolutionary computing to produce 
executable computer programs

• Programs are assessed by executing them

• Automatic programming; producing software

• Potential (?): evolve software at all scales, 
including and surpassing the most ambitious 
and successful products of human software 
engineering
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Program Representations
• Lisp-style symbolic expressions (Koza, ...).

• Purely functional/lambda expressions (Walsh, Yu, ...).

• Linear sequences of machine/byte code (Nordin et al., ...).

• Artificial assembly-like languages (Ray, Adami, ...).

• Stack-based languages (Perkis, Spector, Stoffel, Tchernev, ...).

• Graph-structured programs (Teller, Globus, ...).

• Object hierarchies (Bruce, Abbott, Schmutter, Lucas, ...)

• Fuzzy rule systems (Tunstel, Jamshidi, ...)

• Logic programs (Osborn, Charif, Lamas, Dubossarsky, ...).

• Strings, grammar-mapped to arbitrary languages (O’Neill, Ryan, ...).

! (+ (* X Y)
!    (+ 4 (- Z 23)))

! (+ (* X Y)
!    (+ 4 (- Z 23)))

! (+ (- (+ 2 2) Z)
!    (+ 4 (- Z 23)))

Mutating Lisp

Parent 1:!(+ (* X Y)
          (+ 4 (- Z 23)))
Parent 2:!(- (* 17 (+ 2 X))
! !       (* (- (* 2 Z) 1)
! !          (+ 14 (/ Y X))))

Child 1:! (+ (- (* 2 Z) 1)
! !       (+ 4 (- Z 23)))
Child 2:! (- (* 17 (+ 2 X))
! !       (* (* X Y)
! !          (+ 14 (/ Y X))))

Recombining Lisp

A simple example

Given a set of data points, evolve a program 
that produces y from x.

Primordial ooze: +, -, *, %, x, 0.1

Fitness = error (smaller is better)

Symbolic Regression
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Maximum number of Generations: 51
Size of Population: 1000
Maximum depth of new individuals: 6
Maximum depth of new subtrees for mutants: 4
Maximum depth of individuals after crossover: 17
Fitness-proportionate reproduction fraction: 0.1
Crossover at any point fraction: 0.3
Crossover at function points fraction: 0.5
Selection method: FITNESS-PROPORTIONATE
Generation method:  RAMPED-HALF-AND-HALF
Randomizer seed: 1.2

GP Parameters y = x3-0.2Evolving
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(+ (- (- 0.1
         (- 0.1
            (- (* X X)
               (+ 0.1
                  (- 0.1
                     (* 0.1
                        0.1))))))
      (* X
         (* (% 0.1
               (% (* (* (- 0.1 0.1)
                        (+ X
                           (- 0.1 0.1)))
                     X)
                  (+ X (+ (- X 0.1)
                          (* X X)))))
            (+ 0.1 (+ 0.1 X)))))
   (* X X))

Best Program, Gen 12
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Expressiveness

• Turing machine tables

• Lambda calculus expressions

• Register machine programs

• Partial recursive functions

• etc.

Evolvability

The fact that a computation can be expressed 
in a formalism does not imply that a correct 
expression can be produced in that formalism 
by a human programmer or by an evolutionary 
process.
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Modularity

• Cars, airplanes, and other complex engineered 
artifacts...

• Evolved biological organisms...

• Large-scale software systems...

... are each composed of millions of specialized 
parts, chosen, in each case, from a portfolio of 
domain-specialized components and processes.

Modularity is Everywhere

Modularity in Software

• Pervasive and widely acknowledged to be 
essential

• Modules may be functions, procedures, 
methods, classes, data structures, interfaces, etc.

• Modularity measures include coupling, 
cohesion, encapsulation, composability, etc.

Data/Control Structure

• Data abstraction and organization

Data types, variables, name spaces, data 
structures, ...

• Control abstraction and organization

Conditionals, loops, modules, threads, ...
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Structure via GP (1)

• Specialize GP techniques to directly support 
human programming language abstractions

• Strongly typed genetic programming

• Module acquisition/encapsulation systems

• Automatically defined functions

• Automatically defined macros

• Architecture altering operations

Evolving Modular Programs
With “automatically defined functions”

• All programs in the population have the same, 
pre-specified architecture

• Genetic operators respect that architecture

• Significant implementation costs

• Significant pre-specification

• Architecture-altering operations: more power 
and higher costs

ADMs

• Macros implement control structures

• ADMs can be implemented via small tweaks 
to any system that supports ADFs

• Similar pros and cons to ADFs, but provide 
additional expressive power

Control Structures (1)

Multiple evaluation

(defmacro do-twice (code)
! `(progn ,code ,code))

(do-twice (incf x))
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Control Structures (2)

Conditional evaluation

(defmacro numeric-if (exp neg zero pos)
  `(if (< ,exp 0)
! ! ,neg
! ! (if (< 0 ,exp) ,pos ,zero)))

(numeric-if (foo) (bar) (baz) (bix)) 

Structure via GP (2)

• Specialize GP techniques to indirectly 
support human programming language 
abstractions

• Constrain genetic change, or repair after 
genetic change, to satisfy abstraction syntax

• Map from unstructured genomes to 
programs in languages that support 
abstraction (e.g. via grammars)

Structure via GP (3)

• Develop new program encodings, 
represented most generally as graphs

• Develop abstraction mechanisms for these 
representations

• Specialize GP techniques to directly or 
indirectly support abstraction in these new 
program encodings

Structure via GP (4)

• Evolve programs in a minimal-syntax 
language that nonetheless supports a full 
range of data and control abstractions

• For example: orchestrate data flows via 
stacks, not via syntax

• Push
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Push

• Stack-based postfix language with one stack per type

• Types include: integer, float, Boolean, name, code, 
exec, vector, matrix, quantum gate, [add more as 
needed]

• Missing argument? NOOP

• Minimal syntax:
program → instruction | literal | ( program* )

Why Push?
• Highly expressive: data types, data 

structures, variables, conditionals, loops, 
recursion, modules, ...

• Elegant: minimal syntax and a simple, stack-
based execution architecture

• Evolvable

• Extensible

• Supports several forms of meta-evolution

Sample Push Instructions
Table 1: Sample Push instructions.

Stack manipulation POP, SWAP, YANK,
instructions DUP, STACKDEPTH,
(all types) SHOVE, FLUSH, =
Math +, −, /, ∗, >, <,
(INTEGER and FLOAT) MIN, MAX
Logic (BOOLEAN) AND, OR, NOT,

FROMINTEGER
Code manipulation QUOTE, CAR, CDR, CONS,
(CODE) INSERT, LENGTH, LIST,

MEMBER, NTH, EXTRACT
Control manipulation DO*, DO*COUNT, DO*RANGE,
(CODE and EXEC) DO*TIMES, IF

programming (e.g. [15, 27, 28]) by providing multiple stacks,
one per type. Types are provided for integers, floating point
numbers, Boolean values, symbolic names, and code (de-
scribed in more detail below), each of which has a corre-
sponding data stack. Additional types for vectors, matrices,
and other data are provided in some implementations, and
it is straightforward to add new types.1 As instructions
are executed they pop any required input values from the
appropriate stacks, preform calculations, and push any out-
put values onto the appropriate stacks. The types of the
values that will be needed or produced are specified in the
implementations of the instructions themselves, and are in-
dependent of the syntactic contexts in which calls to the
instructions occur. This scheme ensures that Push instruc-
tions will always receive inputs and produce outputs of the
appropriate types, regardless of the structure of the pro-
grams in which they occur. Whenever an instruction finds
insufficient items on the stacks for its inputs it acts as a
“no-op” and has no effect.

Instructions in Push3 are typically given names such as
<TYPE>.<NAME>, where NAME specifies the operation and
TYPE specifies the data type upon which the operation should
be preformed. INTEGER.=, for example, takes two input val-
ues from the INTEGER stack, compares them, and places the
result of the comparison on the BOOLEAN stack. It is not un-
common for the same operator to be implemented for mul-
tiple types. The instructions INTEGER.POP, FLOAT.POP, and
CODE.POP, for example, each pop the top item from the cor-
responding stack.

The full Push instruction set is large and cannot be fully
documented here,2 but a sample of some of the more com-
monly used Push instructions is shown in Table 1. The
instructions shown on the right-hand side are implemented
for each of the types described in the left column, so the in-
struction MAX, for example, exists both as INTEGER.MAX and
as FLOAT.MAX.

Flexibility with respect to control arises because CODE is it-
self a native type in Push. A Push program can put code

1Support for the definition of new types from within Push
programs is not part of the current Push3 specification, al-
though several proposals for accomplishing this are under
consideration.
2See [25].

on the CODE stack (for example, dwith the CODE.QUOTE in-
struction), duplicate or otherwise manipulate it, and later
execute it by means of other CODE instructions. This allows
programs to dynamically create novel control structures and
subroutine architectures. Examples of several such results
in earlier versions of Push are described elsewhere [21, 26,
22, 25].

Code manipulation by evolving programs can also support
entirely new forms of evolutionary computation such as “au-
toconstructive evolution,” in which evolving programs must
generate their own offspring, eschewing hardcoded genetic
operators in favor of evolved genetic operators that are im-
plemented by code-manipulation instructions working on
the CODE stack. The results of experiments employing au-
toconstructive evolution in earlier versions of Push can be
found in [21, 23, 24].

3. THE PUSH3 EXEC STACK
3.1 Push Program Interpretation
The most significant change to the Push language in Push3
is the introduction of the EXEC stack, which stores expres-
sions, instructions, and literals that the Push interpreter will
subsequently execute. This stack is independent of the CODE
stack, which can still be used for code manipulation and for
general list manipulation. Code on the CODE stack is static
data unless it is executed with an instruction like CODE.DO*
or CODE.DO*TIMES; such instructions are now implemented
by moving code to the EXEC stack. In contrast the EXEC
stack holds the code that is queued for execution in the in-
terpereter, and it is continuously executed. Although the
EXEC stack execution model of Push3 is backward compati-
ble with program execution in Push2, it nonetheless repre-
sents a fundamental change in the way that Push programs
are executed and it does so in a way that provides new op-
portunities for the evolution of arbitrary control.

In Push2, programs were executed according to the following
algorithm:

• To execute program P :

1. If P is an INSTRUCTION: execute P (accessing
whatever stacks are required).

2. If P is a LITERAL: push P onto the appropriate
stack.

3. If P is a LIST: recursively execute each subpro-
gram in P .

In this scheme an interpreter that encounters a list must
maintain the state of the computation for continuation after
returning from recursive calls; for example, when executing
a list of two subprograms the interpreter must store the
second (for later execution) while recursively executing the
first. If the Push interpreter is implemented in a language
that supports recursion then this can be handled by the
language’s native mechanisms, which presumably store local
variables in activation records during recursive calls. Push3,
by contrast, performs the same computation by storing all
of the necessary information within the interpreter itself, on
an EXEC stack:

Push(3) Semantics

• To execute program P :

1. Push P onto the EXEC stack.

2. While the EXEC stack is not empty, pop and pro-
cess the top element of the EXEC stack, E:

(a) If E is an instruction: execute E (accessing
whatever stacks are required).

(b) If E is a literal: push E onto the appropriate
stack.

(c) If E is a list: push each element of E onto
the EXEC stack, in reverse order.

All of the Push2 control structures (e.g. CODE.DO*TIMES) are
expressed in Push3 as sequences of instructions that pushed
onto the EXEC stack and subsequently executed by the loop
in step 2 above. The CODE.DO*COUNT instruction, for exam-
ple, was implemented in Push2 as a loop in the Push inter-
preter’s native language that would repeatedly push counter
values on to the INTEGER stack and then execute code from
the CODE stack. In Push3, the CODE.DO*COUNT instruction
simply pushes code (including a recursive call) and integers
onto the EXEC stack, and the continued execution of elements
from the EXEC stack produces the same results. Other fea-
tures of Push can also be more elegantly implemented in
Push3 than in Push2; for example the CODE.QUOTE instruc-
tion, which formerly required an exception to the standard
evaluation rule and a global flag, can now be implemented
simply by copying the top of the EXEC stack to the CODE
stack (making it the inverse of CODE.DO*).

At first glance the use of the EXEC stack does not appear
to be a dramatic departure from the program execution al-
gorithm used in Push2. The power of this approach be-
comes evident, however, when one considers what it means
to manipulate the EXEC stack during a computation. Just
as control structures can be implemented by manipulating
and later executing items on to the CODE stack, novel con-
trol structures can also be implemented through EXEC stack
manipulation and these implementations are often more par-
simonious (and therefore potentially more evolvable).

Since a list of code to be executed is placed on the EXEC stack
in reverse order, EXEC instructions have the property of oper-
ating on elements in the code which come after them, unlike
operators applied to other types which use the postfix nota-
tion standard in stack-based languages. The following two
programs fragments, for example, both produce the same
results:

( 5 CODE.QUOTE ( INTEGER.+ ) CODE.DO*COUNT )
( 5 EXEC.DO*COUNT ( INTEGER.+ ) )

3.2 Combinators
The stack manipulation instructions that are provided for all
types in Push can be used to manipulate the EXEC stack, but
the EXEC stack can also be manipulated with Push versions
of the standard combinators K, S and Y [19, 5]. These
combinatory logic operators allow complex computational
processes to be built up from simple expressions on the EXEC
stack.

The combinator EXEC.K simply removes the second element
from the EXEC stack. For example, if the EXEC stack contains
(A, B, C) then executing EXEC.K yields (A, C). The combi-
nator EXEC.S pops three items, A, B and C from the EXEC
stack and then pushes back three separate items: (B, C),
C and A (leaving the A on top). Note that this produces
two calls to C. The fixed point Y -combinator instruction
EXEC.Y can also be used to implement recursion using anony-
mous expressions on the EXEC stack; it inspects (but does not
pop) the top of the EXEC stack, A, and then inserts the list
(EXEC.Y A) as the second item on the EXEC stack. By itself,
this generates an endlessly recursive call to the unnamed
non-recursive “function” A. Recursion can be terminated
through further manipulation of the EXEC stack that may
occur, possibly conditionally, within A.

3.3 Re-entrance
An additional benefit of the EXEC stack is that the state of a
Push interpreter can now be fully specified by its configura-
tion, its NAME bindings, and the contents of its stacks. No in-
ternal state variables such as loop counters, execution point-
ers or continuations are necessary. Among other things, this
makes Push interpreters fully re-entrant and allows stricter
control over program execution. Loops, previously imple-
mented in the native language’s for-loop (or analogous con-
trol structure), are now implemented by pushing a series of
elements onto the EXEC stack. Execution of the loop pro-
ceeds through the sequential execution of the elements on
the EXEC stack.

Re-entrant interpreters are of particular interest when using
Push programs as controllers in time sensitive applications.
In these situations, Push programs cannot be allowed to run
until they are complete or until a loop terminates—there
may be strict limits on the number of Push instructions that
can be executed per time-step. The re-entrant interpreter
allows for the controlled execution of a particular number of
instructions per time-step.

3.4 Naming simplified
Previous incarnations of Push allowed names to be bound
to values using a SET instruction and retrieved later using a
GET instruction. This allowed, in principle, for evolution of
named constants and subroutines but it required synchro-
nization of several different instructions. The introduction
of the EXEC stack presents opportunities for simplification.

Binding a name to a subroutine has been simplified by one
instruction, using the EXEC stack instead of a quoted value
on the CODE stack:

Push2:
( TIMES2 CODE.QUOTE ( 2 INTEGER.* ) CODE.SET )

Push3:
( TIMES2 EXEC.DEFINE ( 2 INTEGER.* ) )

Executing a subroutine has been simplified by two instruc-
tions. The bound symbol is now executed directly (the bind-
ing is copied to the EXEC stack), instead of being loaded onto
the CODE stack with CODE.GET and executed with CODE.DO:
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( 2 3 INTEGER.* 4.1 5.2 
FLOAT.+ TRUE FALSE 

BOOLEAN.OR )

( 2 3 INTEGER.* 4.1 5.2 
FLOAT.+ TRUE FALSE 

BOOLEAN.OR )

exec code bool int float

( 2 3 INTEGER.* 4.1 5.2 FLOAT.+ 
TRUE FALSE BOOLEAN.OR ) 2

3

INTEGER.*

4.1

5.2

FLOAT.+

TRUE

FALSE

BOOLEAN.OR 
( 2 3 INTEGER.* 4.1 5.2 
FLOAT.+ TRUE FALSE 

BOOLEAN.OR )

exec code bool int float

3

INTEGER.*

4.1

5.2

FLOAT.+

TRUE

FALSE

BOOLEAN.OR 
( 2 3 INTEGER.* 4.1 5.2 
FLOAT.+ TRUE FALSE 

BOOLEAN.OR )
2

exec code bool int float

INTEGER.*

4.1

5.2

FLOAT.+

TRUE

FALSE 3

BOOLEAN.OR 
( 2 3 INTEGER.* 4.1 5.2 
FLOAT.+ TRUE FALSE 

BOOLEAN.OR )
2

exec code bool int float
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4.1

5.2

FLOAT.+

TRUE

FALSE

BOOLEAN.OR 
( 2 3 INTEGER.* 4.1 5.2 
FLOAT.+ TRUE FALSE 

BOOLEAN.OR )
6

exec code bool int float

5.2

FLOAT.+

TRUE

FALSE

BOOLEAN.OR 
( 2 3 INTEGER.* 4.1 5.2 
FLOAT.+ TRUE FALSE 

BOOLEAN.OR )
6 4.1

exec code bool int float

FLOAT.+

TRUE

FALSE 5.2

BOOLEAN.OR 
( 2 3 INTEGER.* 4.1 5.2 
FLOAT.+ TRUE FALSE 

BOOLEAN.OR )
6 4.1

exec code bool int float

TRUE

FALSE

BOOLEAN.OR 
( 2 3 INTEGER.* 4.1 5.2 
FLOAT.+ TRUE FALSE 

BOOLEAN.OR )
6 9.3

exec code bool int float
693



FALSE

BOOLEAN.OR 
( 2 3 INTEGER.* 4.1 5.2 
FLOAT.+ TRUE FALSE 

BOOLEAN.OR )
TRUE 6 9.3

exec code bool int float

FALSE

BOOLEAN.OR 
( 2 3 INTEGER.* 4.1 5.2 
FLOAT.+ TRUE FALSE 

BOOLEAN.OR )
TRUE 6 9.3

exec code bool int float

( 2 3 INTEGER.* 4.1 5.2 
FLOAT.+ TRUE FALSE 

BOOLEAN.OR )
TRUE 6 9.3

exec code bool int float

Same Results

( 2 3 INTEGER.* 4.1 5.2 FLOAT.+ 
TRUE FALSE BOOLEAN.OR )

( 2 BOOLEAN.AND 4.1 TRUE INTEGER./ FALSE
3 5.2 BOOLEAN.OR INTEGER.* FLOAT.+ )
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( 3.14 CODE.REVERSE 
CODE.CDR IN IN

5.0 FLOAT.> 
(CODE.QUOTE FLOAT.*) 

CODE.IF )

( 3.14 CODE.REVERSE 
CODE.CDR IN IN

5.0 FLOAT.> 
(CODE.QUOTE FLOAT.*) 

CODE.IF )

exec code bool int float

( 3.14 CODE.REVERSE CODE.CDR IN IN 5.0 
FLOAT.> (CODE.QUOTE FLOAT.*) CODE.IF )

IN=4.0

3.14

CODE.REVERSE

CODE.CDR

IN

IN

5.0

FLOAT.>

(CODE.QUOTE FLOAT.*)

CODE.IF
( 3.14 CODE.REVERSE 

CODE.CDR IN IN
5.0 FLOAT.> 

(CODE.QUOTE FLOAT.*) 
CODE.IF )

exec code bool int float

CODE.REVERSE

CODE.CDR

IN

IN

5.0

FLOAT.>

(CODE.QUOTE FLOAT.*)

CODE.IF
( 3.14 CODE.REVERSE 

CODE.CDR IN IN
5.0 FLOAT.> 

(CODE.QUOTE FLOAT.*) 
CODE.IF )

3.14

exec code bool int float

CODE.CDR

IN

IN

5.0

FLOAT.>

(CODE.QUOTE FLOAT.*)

CODE.IF
(CODE.IF (CODE.QUOTE 
FLOAT.*) FLOAT.> 5.0 IN 

IN CODE.CDR 
CODE.REVERSE 3.14)

3.14

exec code bool int float
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IN

IN

5.0

FLOAT.>

(CODE.QUOTE FLOAT.*)

CODE.IF
((CODE.QUOTE FLOAT.*) 

FLOAT.> 5.0 IN IN 
CODE.CDR 

CODE.REVERSE 3.14)

3.14

exec code bool int float

IN

5.0

FLOAT.>

(CODE.QUOTE FLOAT.*) 4.0

CODE.IF
((CODE.QUOTE FLOAT.*) 

FLOAT.> 5.0 IN IN 
CODE.CDR 

CODE.REVERSE 3.14)

3.14

exec code bool int float

5.0

FLOAT.> 4.0

(CODE.QUOTE FLOAT.*) 4.0

CODE.IF
((CODE.QUOTE FLOAT.*) 

FLOAT.> 5.0 IN IN 
CODE.CDR 

CODE.REVERSE 3.14)

3.14

exec code bool int float

5.0

FLOAT.> 4.0

(CODE.QUOTE FLOAT.*) 4.0

CODE.IF
((CODE.QUOTE FLOAT.*) 

FLOAT.> 5.0 IN IN 
CODE.CDR 

CODE.REVERSE 3.14)

3.14

exec code bool int float
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(CODE.QUOTE FLOAT.*) 4.0

CODE.IF
((CODE.QUOTE FLOAT.*) 

FLOAT.> 5.0 IN IN 
CODE.CDR 

CODE.REVERSE 3.14)

FALSE 3.14

exec code bool int float

CODE.QUOTE

FLOAT.* 4.0

CODE.IF
((CODE.QUOTE FLOAT.*) 

FLOAT.> 5.0 IN IN 
CODE.CDR 

CODE.REVERSE 3.14)

FALSE 3.14

exec code bool int float

FLOAT.* 4.0

CODE.IF
((CODE.QUOTE FLOAT.*) 

FLOAT.> 5.0 IN IN 
CODE.CDR 

CODE.REVERSE 3.14)

FALSE 3.14

exec code bool int float

4.0

FLOAT.* 3.14

exec code bool int float
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12.56

exec code bool int float

(IN EXEC.DUP (3.13 
FLOAT.*) 10.0 FLOAT./)

(IN EXEC.DUP (3.13 
FLOAT.*) 10.0 FLOAT./)

exec code bool int float

(IN EXEC.DUP (3.13 FLOAT.*)
10.0 FLOAT./)

IN=4.0

IN

EXEC.DUP

(3.13 FLOAT.*)

10.0

FLOAT./ (IN EXEC.DUP (3.13 
FLOAT.*) 10.0 FLOAT./)

exec code bool int float

EXEC.DUP

(3.13 FLOAT.*)

10.0

FLOAT./ (IN EXEC.DUP (3.13 
FLOAT.*) 10.0 FLOAT./) 4.0

exec code bool int float
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(3.13 FLOAT.*)

(3.13 FLOAT.*)

10.0

FLOAT./ (IN EXEC.DUP (3.13 
FLOAT.*) 10.0 FLOAT./) 4.0

exec code bool int float

3.13

FLOAT.*

(3.13 FLOAT.*)

10.0

FLOAT./ (IN EXEC.DUP (3.13 
FLOAT.*) 10.0 FLOAT./) 4.0

exec code bool int float

FLOAT.*

(3.13 FLOAT.*)

10.0 3.13

FLOAT./ (IN EXEC.DUP (3.13 
FLOAT.*) 10.0 FLOAT./) 4.0

exec code bool int float

(3.13 FLOAT.*)

10.0

FLOAT./ (IN EXEC.DUP (3.13 
FLOAT.*) 10.0 FLOAT./) 12.52

exec code bool int float
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3.13

FLOAT.*

10.0

FLOAT./ (IN EXEC.DUP (3.13 
FLOAT.*) 10.0 FLOAT./) 12.52

exec code bool int float

FLOAT.*

10.0 3.13

FLOAT./ (IN EXEC.DUP (3.13 
FLOAT.*) 10.0 FLOAT./) 12.52

exec code bool int float

10.0

FLOAT./ (IN EXEC.DUP (3.13 
FLOAT.*) 10.0 FLOAT./) 39.1876

exec code bool int float

10.0

FLOAT./ (IN EXEC.DUP (3.13 
FLOAT.*) 10.0 FLOAT./) 39.1876

exec code bool int float
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(IN EXEC.DUP (3.13 
FLOAT.*) 10.0 FLOAT./) 3.91876

exec code bool int float

The Odd Problem

• Integer input

• Boolean output

• Was the input odd?

•((code.nth) code.atom)

Combinators

• Standard K, S, and Y combinators:

• EXEC.K removes the second item from the EXEC stack.

• EXEC.S pops three items (call them A, B, and C) and 
then pushes (B C), C, and then A.

• EXEC.Y inserts (EXEC.Y T) under the top item (T).

• A Y-based “while” loop:
( EXEC.Y 
  ( <BODY/CONDITION> EXEC.IF
  ( ) EXEC.POP ) )

Iterators

CODE.DO*TIMES, CODE.DO*COUNT, 
CODE.DO*RANGE
EXEC.DO*TIMES, EXEC.DO*COUNT, 
EXEC.DO*RANGE
Additional forms of iteration are supported 
through code manipulation (e.g. via 
CODE.DUP CODE.APPEND CODE.DO)
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Named Subroutines

( TIMES2 EXEC.DEFINE ( 2 INTEGER.* ) )

Auto-simplification

Loop: 

Make it randomly simpler

If it’s as good or better: keep it

Otherwise: revert

The ULTRA Operator
• Uniform Linear Transformation with Repair 

and Alternation

• Linearize 2 parents, treating “(” and “)” as 
ordinary tokens

• Start at the beginning of one parent and 
copy tokens to the child, switching parents 
stochastically (according to the alternation 
rate, and subject to an alignment deviation)

• Post-process with uniform mutation 
(according to a mutation rate) and repair

ULTRA on the 
bioavailability problem

8 Lee Spector and Thomas Helmuth

of whether the RMSE results of two runs come from the same distribution using the
Kruskal-Wallis one-way analysis of variance at p = 0.01.

For the Pagie-1 problem we use mean error across fitness cases, and do not use a
test set. We present the number of successes and mean best fitnesses for the Pagie-1
runs. Mean best fitness (MBF) is the mean of the best individual fitnesses attained
in each run. The fitnesses given here are the mean errors across test cases, not the
sums of those errors. As recommended in (Luke and Panait, 2002; McDermott et al,
2012), we use unpaired t-tests to compare the differences in MBF for different con-
ditions.

5 Results

Fig. 1 Results from the
bioavailability problem. We
conducted 100 runs for each
choice of operators. The
RMSE of the best individuals
on the training fitness cases
(left) and on the test fitness
cases (right). In each plot,
subtree replacement 81/9/10
is plotted first, followed by
subtree replacement 45/45/10
and then ULTRA. In each box
plot, the box stretches from
the first quartile to the third
quartile with a line for the
median in the middle. The
whiskers extend to the fur-
thest value within 1.5 times
the inter-quartile range. Points
beyond the whiskers are out-
liers, plotted as points. Note
that in the right plot, 8 outliers
on the 81/9/10 set, 7 outliers
on the 45/45/10 set, and 3
outliers on the ULTRA set fell
outside the of the visible plot.
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Figure 1 gives two box plots from our sets runs of the bioavailability problem,
where each set contains 300 runs. The left plot shows the root mean square error
(RMSE) of the best program as measured on the training set. The right plot shows
the RMSE of the same individuals on the test set. Both subtree replacement 81/9/10
and subtree replacement 45/45/10 differ statistically significantly from ULTRA on
both the training and test sets. ULTRA appears to be able to find more accurate
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Fig. 2 Program sizes for the
bioavailability problem.
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Table 3 Results on the Pagie-1 problem. We conducted 100 runs for each choice of operators.
MBF is the mean best fitness of the run. Note that the reported fitnesses are the mean errors over
test cases, not the summed errors.

Operators Successes MBF
Subtree Replacement 80/10/10 0 0.363
Subtree Replacement 45/45/10 0 0.319
ULTRA 15 0.036

models of the training data than subtree replacement without running into problems
of overfitting the data, which would lead to worse performance on the test set.

The mean program sizes with respect to evolutionary time are plotted in Figure 2.
The runs using subtree replacement show steady growth in program sizes, whereas
those using ULTRA quickly fall at the beginning of the run and then remain rela-
tively steady. The lower program sizes of ULTRA runs may contribute to its ability
to not overfit the data.

Table 3 presents the results of our experiments on the Pagie-1 problem. PushGP
using ULTRA found perfect solutions in 15 out of 100 runs, whereas runs with
subtree replacement found none with either parameter setting. The difference in
MBF between subtree replacement 80/10/10 and ULTRA, as well as subtree re-
placement 45/45/10 and ULTRA, is statistically significant based on an unpaired
t-test at p = 0.01. Note that the results for subtree replacement 45/45/10 are only

over 98 runs, with data from 2 runs yet to come.

The mean program sizes in our Pagie-1 experiments are given in Figure 3. Runs
using subtree replacement experienced quick code growth, reaching mean sizes near
the maximum program size of 500 within the first 50 generations. After this point,
it is difficult for the genetic operators to make changes to large programs without
exceeding the program size limit. On the other hand, the mean program sizes of
ULTRA runs quickly drop to around size 50, and then climb to approach 100. In
these runs, it is unlikely that many genetic operations will exceed the size limit.
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Problems Solved by PushGP in the 
GECCO-2005 Paper on Push3

• Reversing a list

• Factorial (many algorithms)

• Fibonacci (many algorithms)

• Parity (any size input)

• Exponentiation

• Sorting
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ABSTRACT
We describe the application of genetic programming (GP)
to a problem in pure mathematics, in the study of finite al-
gebras. We document the production of human-competitive
results in the discovery of particular algebraic terms, namely
discriminator, Pixley, majority and Mal’cev terms, showing
that GP can exceed the performance of every prior method
of finding these terms in either time or size by several or-
ders of magnitude. Our terms were produced using the ECJ
and PushGP genetic programming systems in configurations
that included alternative code generators, asynchronous is-
lands, trivial geography, parsimony-based selection, alpha-
inverted selection pressure, and fitness case challenges. We
conclude with a discussion of the prospects for further ap-
plications of the presented methods.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
program synthesis; I.1.2 [Symbolic and Algebraic Ma-
nipulation]: Algorithms—algebraic algorithms

General Terms
Algorithms, Experimentation, Performance

Keywords
ECJ, genetic programming, finite algebras, PushGP

1. INTRODUCTION
Genetic programming (GP) has the potential for applica-

tion to many areas of mathematics. In particular, any area
in which open questions can be resolved by discovering rela-
tively small equations, terms, or finite structures is a promis-
ing area for the application of GP. For some such questions
the very existence of a constraint-satisfying equation, term

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO 2008 Atlanta, Georgia USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

or structure may settle the issue under study, while for oth-
ers the specific properties of discovered solutions may have
additional implications or provide additional insights.

In this paper we present initial but promising results from
the application of GP to an area of pure mathematics, the
study of finite algebras. While the idea for application in
this general area has been raised in the literature [?], we are
not aware of significant prior results. We document here the
discovery of particular algebraic terms that have both theo-
retical significance and quantifiable di⇤culty, and we argue
that the results we have achieved are human-competitive
according to widely promulgated criteria.

In the following section we briefly describe the relevant
mathematical context and the specific problems solved. In
Section ?? we describe the GP techniques that we used to
produce our results, which are themselves presented in Sec-
tion ??. In Section ?? we discuss the significance of these
results, including our claims of human-competitive perfor-
mance, and in Section ?? we summarize our findings and
discuss prospects for further applications of the presented
methods.

2. FINITE ALGEBRAS
For the sake of this paper, and within the over-arching

area of mathematics known as universal algebra, an algebra
A := ⌥A, F � consists of an underlying set A and an asso-
ciated collection F of operations f : Ar � A on A. The
natural number r is called the arity of the operation f . Uni-
versal algebra is a significant branch of mathematics with a
long history (for example see [?], [?], [?]), important sub-
disciplines such as group theory [?], and applications to sev-
eral areas of science and engineering.

We use the term finite algebra to refer to an algebra in
which the underlying set is finite. The finite algebra most
familiar to most computer scientists is the ordinary two-
element Boolean algebra, B := ⌥{0, 1},⇤,⌅,¬�, in which
the underlying set is {0, 1} and the associated operations
are the Boolean operators AND (⇤), OR (⌅) and NOT (¬).
These operations can be defined by tables:

⇥ 0 1
0 0 0
1 0 1

⇤ 0 1
0 0 1
1 1 1

¬
0 1
1 0

A well-known and convenient feature of Boolean alge-
bra is the fact that this small set of operations is su⇤cient

Humies 2008
GOLD MEDAL

• Individuals make their own children

• Agents thereby control their own mutation rates, 
sexuality, and reproductive timing

• The machinery of reproduction and diversification 
(i.e., the machinery of evolution) evolves

• Radical self-adaptation

Autoconstructive 
Evolution
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• MetaGP: but (1) programs and reproductive 
strategies dissociated and (2) generally restricted 
reproductive strategies

• ALife systems such as Tierra, Avida, SeMar: but (1) 
hand-crafted ancestors, (2) reliance on cosmic ray 
mutation, and (3) weak problem solving

• Evolved self-reproduction: but generally exact 
reproduction, non-improving (exception: Koza, 
but very limited tools for problem solving and for 
construction of offspring)

Related Work
• A soup of evolving Push programs

• Reproductive procedures emerge ex nihilo: 

• No hand-designed “ancestor” 

• Children constructed by any computable process

• No externally applied mutation procedure or rate

• Exact clones are prohibited, but near-clones are 
permitted.

• Selection for problem-solving performance

Pushpop

Push Interpreter

(QUOTE (POP 1) QUOTE (DUP 1 - DO *) DUP 2 < IF)

X7

23

Integer
stack

3.141

0.001

12.34

Float
stack

TRUE

Boolean
stack

(+ 2 .

(POP <

Code
stack

FLOAT

CODE

Type
stack

CNOT

U

Matrix
stack

Name
stack

More stacks as needed...

Executing Program

Name/type=value bindings

X/float=3.14

f/code=(DUP...)

Stack-based language with stack per type.

Types include integer, float, Boolean, code, child,

type, name.

Supports modules (any architecture), recursion,

evolved control structures, evolved reproductive

mechanisms.

Test problem-solving fitness
and produce children

Fitness tournaments

Add random organisms
if too few

Population of randomly
generated organisms

Evaluated, pregnant
organisms

Children

Child population

Pushpop

# Species vs. Mother/Child Differences

Runs including
sexual instructions

Runs without
sexual instructions

near-clones

Note distribution of “+” points: adaptive populations have many species and mother/daughter

differences in a relatively high, narrow range (above near-clone levels).
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• In adaptive populations: 

• Species are more numerous

• Diversification processes are more reliable

• Selection can promote diversity

• Provides a possible explanation for the evolution 
of diversifying reproductive systems 

Pushpop Results

• Behavior (including reproduction) controlled 
by evolved Push programs

• Color, color-based agent discrimination 
controlled by agents

• Energy conservation

• Facilities for communication, energy sharing

• Ample user feedback (e.g. diversity metrics, 
agent energy determines size)

SwarmEvolve 2.0

SwarmEvolve 2.0

Winner, Best Paper Award, AAAA Track, GECCO-2003
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• Goals:

• Superior problem-solving performance

• Tractable analysis

• Push3

• Asexual

• Children produced on demand (not during 
fitness testing)

• Constraints on selection and birth

• Still work in progress

AutoPush Evolving Modular Programs
With Code Manipulation

• Transform code as data on “code” stack

• Execute transformed code with code.do, etc.

• Simple uses of modules can be evolved easily

• Does not scale well to large/complex systems

Evolving Modular Programs
With Execution Stack Manipulation

• Code queued for execution is stored on an 
“execution stack”

• Allow programs to duplicate and manipulate 
code that on the stack

• Example: (3 exec.dup (1 integer.+))

• More parsimonious, but same scaling issue

Evolving Modular Programs
With Named Modules

• Uses Push’s “name” stack

• Example:

(plus1 exec.define (1 integer.+))
...
plus1

• Coordinating definitions/references is tricky 
and this never arises in evolution!
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Module Identity

• How are modules recognized by other 
components of a system?

• Where do module identities come from?

• How can module identity co-evolve with 
modular architecture?

Holland’s Tags
• Initially arbitrary identifiers that come to 

have meaning over time

• Matches may be inexact

• Appear to be present in some form in many 
different kinds of complex adaptive systems

• Examples range from immune systems to 
armies on a battlefield

• A general tool for the support of emergent 
complexity

Tag-Based Altruism

• Individuals have tags and tag-difference 
tolerances

• Donate when ∆tags ≤ tolerance

• Riolo et al. (Nature, 2001) showed that tag-
based altruism can evolve; Roberts & 
Sherratt (Nature, 2002) claimed it would not 
evolve under more realistic conditions

Spector, L., and Klein, J. Genetic stability and territorial structure facilitate 
the evolution of tag-mediated altruism. In Artificial Life.
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• Include instructions that tag code (modules)

• Include instructions that recall and execute 
modules by closest matching tag

• If a single module has been tagged then all tag 
references will recall modules

• The number of tagged modules can grow 
incrementally over evolutionary time

• Expressive and evolvable

Evolving Modular Programs
With tags

Tags in Push
• Tags are integers embedded in instruction names

• Instructions like tag.exec.123 tag values

• Instructions like tagged.456 recall values by 
closest matching tag

• If a single value has been tagged then all tag 
references will recall (and execute) values

• The number of tagged values can grow 
incrementally over evolutionary time

Lawnmower Problem

• Used by Koza to demonstrate utility of ADFs 
for scaling GP up to larger problems

>

Lawnmower Instructions
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Lawnmower Effort

8x4 8x6 8x8 8x10 8x12
Problem Size

0

100000

200000

300000

400000

500000

600000

C
om

pu
ta

tio
na

l E
ffo

rt

Basic
Tag
Exec

                          problem size
            8x4       8x6       8x8       8x10       8x12 
instr set
basic     10000     30000    114000     320000     630000    
tag        7000      2000     29000      <1000       5000     
exec      12000      5000     28000       5000      17000  

Lawnmower Effort

Dirt-Sensing, Obstacle-
Avoiding Robot Problem

Like the lawnmower problem but harder and 
less uniform

>

DSOAR Instructions
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DSOAR Effort

8x4 8x6 8x8 8x10 8x12
Problem Size

0

1x108

2x108

3x108

4x108

C
om

pu
ta

tio
na

l E
ffo

rt

Basic
Tag
Exec

                          problem size
            8x4       8x6       8x8       8x10       8x12 
instr set
basic   1584000 430083000       inf        inf        inf     
tag      216000    864000   3420000    2599000    3051000 
exec     450000   2125000   4332000   16644000    7524000     

DSOAR Effort

Evolved DSOAR 
Architecture (in one environment)

Module0

Module1

3 Module2

1

Module4
1

Module3
2 5

Module7

2 2 3

1

Module8

3

2 4

3 8

Module5

3 9

Module6

1 5

Evolved DSOAR 
Architecture (in another environment)

Module0

Module2

1

Module9

1

Module10

1

Module11

1

Module12
1

Module3
2 8

Module13

1 8

Module14

2 6

Module4

2 7

2 6

Module5

3 8

1 1

1 2
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Tags in Trees

• Example:
(progn (tag.123 (+ a b))
       (+ tagged.034 tagged.108))

• Must do something about endless recursion

• Must do something about return values of tagging 
operations and references prior to tagging

• Non-trivial to support arguments in a general way

• Utility not clear from experiments conducted to date

Expressiveness and 
Assessment

• Expressive languages ease representation of 
programs that over-fit training sets

• Expressive languages ease representation of 
programs that work only on subsets of training 
sets

• Lexicase selection may help: Select parents by 
starting with a pool of candidates and then 
filtering by performance on individual fitness 
cases, considered one at a time

Future Work

• Expression of variable scope and local 
environments (implemented in Push, but not yet 
studied systematically)

• Expression of concurrency, parallelism, and time-
based structures

• Applications for which expressiveness is likely to 
be essential, e.g. complete software applications 
and programs for agents in complex, dynamic, 
heterogeneous environments

Conclusions

• GP in expressive languages may allow for the 
evolution of complex software

• Minimal-syntax languages can be expressive, and 
GP systems that evolve programs in such 
languages can be simple

• Push is expressive, evolvable, successful, and 
extensible

• Tags appear to allow for the evolvable expression 
of program modularity
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