
GECCO 2013 Tutorial:
Cartesian Genetic
Programming

Julian F. Miller
Dept of Electronics

University of York, UK
julian.miller@york.ac.uk

Copyright is held by the author/owner(s).
GECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
ACM 978-1-4503-1964-5/13/07.

Evolved pictureEvolved picture

Abstract
Cartesian Genetic Programming (CGP) is an increasingly popular and efficient form of

Genetic Programming. Cartesian Genetic Programming is a highly cited technique
that was developed by Julian Miller in 1999 and 2000 from some earlier joint work
of Julian Miller with Peter Thomson in 1997.

In its classic form, it uses a very simple integer based genetic representation of a
program in the form of a directed graph. Graphs are very useful program
representations and can be applied to many domains (e.g. electronic circuits, neural
networks). In a number of studies, CGP has been shown to be comparatively
efficient to other GP techniques. It is also very simple to program.

Since then, the classical form of CGP has been developed made more efficient in
various ways. Notably by including automatically defined functions (modular CGP)
and self-modification operators (self-modifying CGP). SMCGP was developed by
Julian Miller, Simon Harding and Wolfgang Banzhaf. It uses functions that cause the
evolved programs to change themselves as a function of time. Using this technique it
is possible to find general solutions to classes of problems and mathematical
algorithms (e.g. arbitrary parity, n-bit binary addition, sequences that provably
compute pi and e to arbitrary precision, and so on).

This tutorial is will cover the basic technique, advanced developments and applications
to a variety of problem domains. The first edited book on CGP was published by
Springer in September 2011. CGP has its own dedicated website
http://www.cartesiangp.co.uk

Contents

Classic CGP
Modular CGP
Self-modifying CGP
Developmental CGP
Cyclic CGP
Applications
Resources
Bibliography

Genetic Programming

The automatic evolution of computer
programs
• Tree-based, Koza 1992
• Stack-based, Perkis 1994, Spector 1996

onwards (push-pop GP)
• Linear GP, Nordin and Banzhaf 1996
• Cartesian GP, Miller 1997
• Parallel Distributed GP, Poli 1996
• Grammatical Evolution, Ryan 1998
• Lots of others…

715

Origins of Cartesian Genetic
Programming (CGP)
Grew out of work in the evolution of digital

circuits, Miller and Thomson 1997. First actual
mention of the term Cartesian Genetic
Programming appeared at GECCO in 1999.
Originally, represents programs or circuits as a

two dimensional grid of program primitives.
This is loosely inspired by the architecture of

digital circuits called FPGAs (field
programmable gate arrays)

What defines CGP?

 The genotype is a list of integers (and possibly parameters)
that represent the program primitives and how they are
connected together
• CGP represents programs as graphs in which there are non-

coding genes
The genes are

• Addresses in data (connection genes)
• Addresses in a look up table of functions
• Additional parameters

This representation is very simple, flexible and
convenient for many problems

CGP General form

r rows

c columns
m outputs

node

Note: Nodes in the same column are not allowed to be connected to each
other

n inputs
Levels-back

Allelic constraints for directed acyclic
graphs

All function genes fi must takes allowed function alleles

0 ≤ fi ≤ nf

Nodes connections Cij of a node in column j, and levels-back l, must obey (to
retain directed acyclicity)

j ≥ l n + (j-l)r ≤ Cij ≤ n + jr

j < l 0 ≤ Cij ≤ n + jr

Output genes (can connect to any previous node or input)

0 ≤ 0i ≤ n + cr -1

716

Types of graphs easily controlled
 Depending on rows, columns and levels-back a wide range of

graphs can be generated

When rows =1 and levels-back = columns arbitrary directed
graphs can be created with a maximum depth
• In general choosing these parameters imposes the least constraints. So

without specialist knowledge this is the best and most general choice

CGP genotype

f0 C0 0 … C0 a … f (c+1)r C(c+1)r 0 … C(c+1)r a O1,…Om

Connection genes
Usually, all functions have as many inputs as the maximum function arity

Unused connections are ignored

Output genesfunction genes

Example

0 0 1 1 0 0 1 3 1 2 0 1 0 4 4 2 5 4 2 5 7 3

Encoding of graph as a list of integers (i.e. the genotype)

Example: Function look up table

The function genes are the addresses in a user-defined lookup
table of functions

0 + Add the data presented to inputs

1 - Subtract the data presented to inputs

2 * Multiply data presented to inputs

3 / Divide data presented to inputs (protected)

717

Obtaining the graph

0 0 1 1 0 0 1 3 1 2 0 1 0 4 4 2 5 4 2 5 7 3

Encoding of graph as a list of integers (i.e. the genotype)

So what does the graph represent?

What happened to the node whose output
label is 6?

0 0 1 1 0 0 1 3 1 2 0 1 0 4 4 2 5 4 2 5 7 3
The node was not used so the genes are silent or non-coding

The CGP genotype-phenotype map

When you decode a CGP genotype many nodes and
their genes can be ignored because they are not
referenced in the path from inputs to outputs

These genes can be altered and make no difference to
the phenotype, they are non-coding

Clearly there is a many-to-one genotype to phenotype
map

How redundant is the mapping?

718

A mathematical aside:
CGP and Stirling numbers
 Assume that a CGP graph has the following parameters
 Number of rows_= 1
 Levels-back = num_cols = n
 Arity of functions = 1
 There is one input
 Assume that the output is taken from the last node

The number of genotypes, G, that have a phenotype of size k(nodes) can be
shown to obey a recurrence relation obeyed by unsigned Stirling numbers of the
first kind.

G(n+1, k) = nG(n,k) + G(n, k-1)

How many genotypes of length n
map to a phenotypes of length k?

n
k

1 2 3 4 5 6 7 8 9

1 1

2 1 1

3 2 3 1

4 6 11 6 1

5 24 50 35 10 1

6 120 274 225 85 15 1

7 720 1764 1624 735 175 21 1

8 5040 13068 13132 6759 1960 322 28 1

9 40320 109584 118124 67284 22449 4536 546 36 1

Average number of active nodes in a genotype of length 9 is 2.83

Clearly, with say a genotype of 100 nodes, the number of genotypes that map to a
phenotype with say about 10 nodes is an astronomical number

// L = MaxGraph.Length
// I = Number of program inputs
// N = Number of program outputs
bool ToEvaluate[L]
double NodeOutput[L+I]
int NodesUsed[M]

1

// identify initial nodes that need to be evaluated
p = 0
do

ToEvaluate[OutputGene[p]] = true
p = p + 1

while (p < N)
// determine nodes used
p = L-1
q=0
do

if (ToEvaluate[p])
x = Node[p].Connection1
y = Node[p].Connection2

ToEvaluate[x] = true
ToEvaluate[y] = true
q=q+1
NodesUsed[q]=p;

endif
p = p - 1

while (p >= 0)

2

// load input data values
p = 0
do

NodeOutput[p] = InputData[p]
p = p + 1

while (p < I)

3

//Execute graph
for p = I to p < q+I

x = Node[NodesUsed[p]].Connection1
y = Node[NodesUsed[p]].Connection2
z = Node[NodesUsed[p]].Function
NodeOutput[p] = ComputeNode(NodeOutput[x], NodeOutput[y],z)

endfor

4

Decoding CGP chromosomes is easy Point mutation
 Most CGP implementations only use

mutation.
 Carrying out mutation is very simple. It

consists of the following steps. The genes
must be chosen to be valid alleles
//Decide how many genes to change:num_mutations
while (mutation_counter < num_mutations)
{

get random gene to change
if (gene is a function gene)

change gene to randomly chosen new valid function
else if (gene is a connection gene)

change gene to a randomly chosen new valid connection
else

change gene to a new valid output connection
}

719

A new parameter less mutation procedure
 Goldman and Punch 2013, Eurogp2013 (see refs)
 Exactly one active gene is mutated for all offspring.
 Active genes will be mutated more frequently than inactive

• Zero or more inactive genes can be mutated
 No mutation rate is required!

//mutate randomly until active gene changed: single active strategy
gene_is_active = false
do
{

get random gene to change
if (gene is a function gene)

change gene to randomly chosen new valid function
else if (gene is a connection gene)

change gene to a randomly chosen new valid connection
else

change gene to a new valid output connection
if (gene is active) gene_is_active = true

}
while (gene_is_active = false)

Single active gene mutation strategy: results

 Normal = standard CGP
 Skip: set offspring’s fitness to parent if identical
 Accumulate: apply mutation operator until an offspring is

generated with some active gene changed.
 Single 29% less real-computation than Normal!

3bit parallel
multiplier
• Multiples two three-

bit numbers in
parallel

• Hard problem

Evolutionary Strategy
CGP often uses a variant of a simple

algorithm called (1 + 4) Evolutionary
Strategy
• However, an offspring is always chosen if it is

equally as fit or has better fitness than the parent

Crossover or not?

 Recombination doesn’t seem to add
anything (Miller 1999, “An empirical
study…”)

 However if there are multiple chromosomes
with independent fitness assessment then it
helps a LOT (Walker, Miller, Cavill 2006,
Walker, Völk, Smith, Miller, 2009)

 Some work using a floating point
representation of CGP has suggested that
crossover might be useful (Clegg, Walker,
Miller 2007)

720

Silent mutations and their effects
Original

Silent mutations and their effects

No change in phenotype but it changes the
programs accessible through subsequent
mutational change

After silent
mutation

Non-silent mutations and their effects

Massive change in phenotype is
possible through simple mutation

Original

Non-silent mutations and their effects

Massive change in
phenotype is possible
through simple mutation

After active
mutation

721

Neutral search is fundamental to success
of CGP

A number of studies have been carried
out to indicate the importance to
neutral search
• Miller and Thomson 2000, Vassilev and

Miller 2000, Yu and Miller 2001, Miller
and Smith 2006)

Neutral search and the three bit multiplier
problem (Vassilev and Miller 2000)

Importance of neutral search
can be demonstrated by
looking at the success rate in
evolving a correct three-bit
digital parallel multiplier
circuit.

Graph shows final fitness
obtained in each of 100 runs of
10 million generations with
neutral mutations enabled
compared with disabled neutral
mutations.

In CGP, large genotypes and small mutation evolve
solutions to problems more quickly (Miller and
Smith 2006)

Two-bit multiplier with gate set

{AND, OR, NAND, NOR}.
Even 3 parity with gate set

{AND, OR, NAND, NOR}.

•However big genotypes does NOT mean big phenotypes
(programs)….

Phenotype length versus genotype length
(two-bit multiplier)

SEARCH MOST EFFECTIVE
WHEN 95% OF ALL GENES ARE
INACTIVE!!

NO BLOAT

Average proportion of active nodes in
genotype at the conclusion of
evolutionary run for all mutation rates
versus genotype length

Average phenotype length for
the initial population
contrasted with the average
phenotype length at conclusion
of evolutionary run versus
genotype length with 1%
mutation

722

Length bias in CGP: Where should the junk be?

In standard CGP junk is unevenly distributed
• It increases toward the right

In standard CGP there is a powerful bias
toward small phenotypes. This may not be
useful in some problems.
Goldman and Punch have a paper examining

this issue in the GP track (Goldman and Punch
2013)

Modular/Embedded CGP (Walker, Miller 2004, 2008)

 So far have described a form of CGP (classic) that does not
have an equivalent of Automatically Defined Functions (ADFs)

Modular CGP allows the use of modules (ADFs)

• Modules are dynamically created and destroyed

• Modules can be evolved

• Modules can be re-used

MCGP Example

Genotype

Module List Module
Creation
Module
Re‐use
Module
Evolution
Module

Destruction

MCGP Example

Genotype

Module List Module
Creation

723

Representation Modification 1

Each gene encoded by two integers in M-
CGP
• Function/module number and node type
• Node index and node output

– nodes can have multiple outputs

Representation Modification 2

M-CGP has a bounded variable length genotype
• Compression and expansion of modules

– Increases/decreases the number of nodes

• Varying number of module inputs
– Increases/decreases the number of genes in a node

Modules

 Same characteristics as M-
CGP
• Bounded variable length

genotype

• Bounded variable length
phenotype

Modules also contain
inactive genes as in CGP

Modules can not contain
other modules!

Node Types
Three node types:

• Type 0
– Primitive function

• Type I
– Module created by compress operator

• Type II
– Module replicated by genotype point-mutation

Control excessive code growth
• Genotype can return to original length at any time

724

Creating and Destroying a Module

Created by the compress operator
• Randomly acquires sections of the genotype into a module

– Sections must ONLY contain type 0 nodes
Destroyed by the expand operator

• Converts a random type I module back into a section of the
genotype

7 module inputs, 4 module outputs

re‐label module
contents

Capture module

Re‐label genotype

Module Survival

Twice the probability of a module being
destroyed than created
Modules have to replicate to improve their

chance of survival
• Lower probability of being removed

Modules must also be associated with a
high fitness genotype in order to survive
• Offspring inherit the modules of the

fittest parent

Evolving a Module I

Structural mutation
• Add input
• Remove input
• Add output
• Remove output

Evolving a Module II

Module point-
mutation operator
• Restricted version of

genotype point-
mutation operator

– Uses only primitive
functions

725

Re-using a Module

 Genotype point-mutation operator
• Modified CGP point-mutation operator

 Allows modules to replicate in the genotype
• Primitive (type 0) module (type II)
• Module (type II) module (type II)
• Module (type II) primitive (type 0)

 Does NOT allow type I modules to be mutated into
primitives (type 0) or other modules (type II)
• Type I modules can only be destroyed by Expand

Experimental parameters

 NOTES: ◊ these parameters only apply to Modular
(Embedded) CGP

 Results heavily dependent on the maximum number of
nodes allowed. Much better results are obtained when
larger genotype lengths are used.

Even Parity Results

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

60,000,000

70,000,000

80,000,000

3-bit 4-bit 5-bit 6-bit 7-bit 8-bit

Parity

C
E

CGP M-CGP(5) GP GP ADF EP EP ADF

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

30,000,000

35,000,000

3-bit 4-bit 5-bit 6-bit 7-bit 8-bit

Parity

C
E

CGP M-CGP(5) GP ADF EP ADF

Digital Multiplier

 Two digital multiplier problems:
• 2-bit and 3-bit

 Function set:
• AND, AND (one input inverted),

XOR, OR

 Fitness Function:
• Number of phenotype output bits that

differ from the perfect n-bit digital
multiplier solution

• Perfect solution has a fitness of zero
 Results are averaged over fifty

independent runs

ha

a b

z

2x1

ha

c

y

d

2x1

x
w

726

Multiplier Results

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

30,000,000

2-bit 3-bit

Multiplier

C
E

CGP M-CGP(5)

0

10,000

20,000

30,000

40,000

50,000

60,000

2-bit

Symbolic Regression

 Two problems:
 x6 - 2x4 + x2

 x5 - 2x3 + x

 Function set:
 +, -, *, / (protected)

 Fitness Function:
 Absolute error over all fifty points in the input set
 Solution found when absolute error is within 0.01 of each

point

 Results averaged over fifty independent runs

*

‐

x

1

*

*

Out

Symbolic Regression Results

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

x6-2x4+x2 x5-2x3+x

C
E

CGP M-CGP(3) M-CGP(5) M-CGP(8) GP GP ADFs

x6 – 2x4 + x2 x5 – 2x3 + x

Self-modifying Cartesian Genetic
programming

A developmental form of CGP
• Includes self modification functions in addition to

computational functions
• ‘General purpose’ GP system
• Phenotype can vary over time (with iteration)
• Can switch off its own self-modification

Some representational changes from classic
CGP…

727

Changes to CGP: relative
addressing

Replaced direct node addressing with
relative addressing
• Always use 1 row (not rectangular)
• Connection genes say how many nodes back

0

1

2

3
1

5
2

4
3

6
0

Changes to CGP: Inputs

Replace input calls with a function.
• We call these functions INP, INPP, SKIPINP

Pointer keeps track of ‘current input’.
• Call to INP returns the current input, and moves

the pointer to the next input.
Connections beyond graph are assigned

value 0.

Removed output nodes.
Genotype specifies which nodes are

outputs.
If no OUTPUT function then last active

node is used
• Other defaults are used in situations where the number

of outputs does not match the number required

Changes to CGP: Outputs

Nodes also contain a number of
‘arguments’.
• 3 floating point numbers
• Used in various self-modification

instructions
• Cast to integers when required

Changes to CGP: Arguments

728

SMCGP Nodes: summary

Each node contains:
• Function type
• Connections as relative addresses
• 3 floating point numbers

SMCGP: Functions

Two types of functions:
• Computational

– Usual GP computational functions

• Self-modifying
– Passive computational role (see later)

Some Self-Modification
Functions

Operator Parameters:
use node address and the
three node arguments

Function

MOVE Start, End, Insert Moves each of the nodes between
Start and End into the position
specified by Insert

DUP Start, End, Insert Inserts copies of the nodes
between Start and End into the
position specified by Insert

DELETE Start, End Deletes the nodes between Start
and End indexes

CHF Node, New Function Changes the function of a
specified node to the specified
function

CHC Node, Connection1,
Connection2

Changes the connections in the
specified node

SMCGP Execution

Important first step:
• Genotype is duplicated to phenotype.
• Phenotypes are executed:
 Self modifications are only made to the

phenotype.

729

Self Modification Process: The To Do list

Programs are iterated.
If triggered, self modification instruction is

added to a To Do list.
At the end of each iteration, the instructions on

this list are processed.
The maximum size of the To Do list can be

predetermined

Computation of a SM node

Functions can be appended to the To Do list
under a variety of conditions
• If active
• If value(first input) > value(the second input.

And:
• The To Do list isn’t too big.

Publications using SMCGP

General Parity Problem (CEC 2009)

Mathematical Problems (EuroGP 2009, GECCO 2007)

Learning to Learn (GECCO 2009)

Generating Arbitrary Sequences (GECCO 2007)

Computing the mathematical constants
pi and e (GECCO 2010)

General adder and many other problems
(GPEM Tenth Anniversary Special Issue, 2010)

Authors: Harding, Miller, Banzhaf

Evolving Parity

Each iteration of program should produce the
next parity circuit.
• On the first iteration the program has to solve 2 bit

parity. On the next iteration, 3 bit ... up to 22 parity
• Fitness is the cumulative sum of incorrect bits

Aim to find general solution
• Solutions can be proved to general

– See GPEM 2010 paper

CGP or GP cannot solve this problem as they
have a finite set of inputs (terminals)

730

Parity results: SMCGP versus CGP and ECGP Scaling behaviour of SMCGP

Evolving pi

Iterate a maximum of 10 times
If program output does not get closer to pi at the

next iteration, the program is stopped and large
fitness penalty applied

Fitness at iteration, i, is absolute difference of
output at iteration i and pi

One input: the numeric constant 1.

Evolving pi: an evolved solution

An evolved solution

f(10) is correct to the first 2048 digits of pi
It can be proved that f(i) rapidly converges to

pi in the limit as i tends to infinity

731

Further results
Other mathematically provable results found

so far:
• Evolved a program that can carry out the bitwise

addition of an arbitrary number of inputs
• Evolved a sequence that converges to e

Other results
• Evolved a sequence function that generates the

first 10 Fibonacci numbers
• Evolved a power function x n
• Bioinformatics classification problem (finite

inputs)
– SMCGP performed no worse than CGP

Two dimensional SMCGP (SMCGP2)

Active nodes

output node

Harding, Miller
and Banzhaf 2011

SMCGP2: genes
• Function
• Connections
• Numeric Constant

Arguments are now
2 D vectors
• SM size (SMS)
• SM location (SML)

SMCGP2: Vector relative addressing and Empty
nodes

 There are empty nodes are
represented by X

 The relative address from C to B is
(2, 1)
• meaning 2 nodes to the left, and one

node up.

 The relative address of C to A is
(4,1).

 Note how the empty nodes are not
counted when computing how
many nodes back to connect.

SMCGP2: Self Modifying Functions

Simplified SM function set
• Duplicate section, insert elsewhere.
• Duplicate section, overwrite elsewhere.
• Crop to a section.
• Delete a section.
• Add a row or column.
• Delete a row or column.
• NULL

732

SMCGP2: Solving even-n parity

Time

n = 2 n = 3 n = 4 n = 5

n = 12

SMCGP2 versus SMCGP: Results

Parity
• Two functions sets used:

– FULL: All 2-input Boolean functions used
– REDUCED: only AND, OR, NAND, NOR used

• SMCGP2 solves general parity 6.3 times faster than
SMCGP using the FULL functions set but is slower
for the REDUCED function set

N bit binary adder
• SMCGP2 solves it approximately 6 times faster than

SMCGP

SMCGP:Some observations

In SMCGP there are implicit
• Loops
• Recursion
• Modules/functions
• Halting (telomeres)

Also have “partial” loops/recursion

Multi-type CGP (MT-CGP)
Genotype pretty much classic CGP (Harding et al

2011)
• Genotype is a (partly connected, feed-forward) graph
• Graph is a list of nodes

– Each node contains:
- Function (from a function set)
- Two connections (to other nodes)
- real number (to use for parameters)

Handles multiple data types
• So far: reals and vectors

Adds lots of functionality
• Domain knowledge

733

MT-CGP: Example MT-CGP

Has a big function set
Trying to incorporate domain knowledge

• Easy to add new functions to help with a
particular problem

Functions deal with multiple data types
• Functions are overloaded
• Attempts are made at human readable consistency

Application 1:
Digital circuit synthesis with CGP

Digital Circuits with hundreds of variables can be
optimized using CGP (Vassicek and Sekanina
2011)
• Won the $3000 silver award in human competitive

workshop at GECCO 2011

The method employs a SAT solver to identify
whether two circuits are logically equivalent
• In many cases this can be done in polynomial time

Circuit equivalence checking and SAT

If C1 and C2 are not functionally equivalent
then there is at least one assignment of the
inputs for which the output of G is 1.

734

CGP for optimizing conventionally
synthesized circuits

The seed for CGP is provided by using the logic synthesis
package, ABC (http://www.eecs.berkeley.edu/~alanmi/abc/)

The fitness function is as follows:
 Use a SAT solver to decide whether candidate circuit Ci and

reference circuit C1 are functionally equivalent.
• If so, then fitness(Ci) = the number of nodes – number of gates in Ci;
• Otherwise: fitness(Ci) = 0.

Conventional synthesis
ABC, SIS CGP

Circuit C1 Optimized
circuit Ci

A seed for
initial CGP
population

Application 2: Evolving Image Filters with
CGP

Detecting/locating objects with the
iCub cameras
Done by evolving image filters that

take a camera image, and return
only the objects of interest

Input Target

Evolved
filter

Grey

Red

Green

Blue

Hue

Saturation

Luminosity

Image from camera

Split colour image is used as inputs

Evolved
filter

Input data

1 23 OUTINP INP INP

3
-1
-2

4.3

Function
Connection 1
Connection 2
A real number

Genotype representation (like
SMCGP but no SM functions)

735

NOP LOG TRIANGLES

INP MAX LINES

INPP MIN SHIFTDOWN

SKIP EQ SHIFTUP

ADD GAMMA SHIFTLEFT

SUB GAUSS SHIFTRIGHT

CONST SOBELX SIFTa

MUL SOBELY GABOR

ADDC AVG NORMALIZE

SUBC UNSHARPEN RESCALE

MULC THRESHOLD GRABCUT

ABSDIFF THRESHOLDBW MINVALUE

CANNY SMOOTHMEDIAN MAXVALUE

DILATE GOODFEATURESTOTRACK AVGVALUE

ERODE SQUARES RESCALE

LAPLACE CIRCLES RESIZETHENGABOR

Large Function Set

•Fitness = sum of mean square error of pixel values
between each input/target

Fitness

Evolved Filter code

Output

Inputs

Evolved Filter
Dataflow

736

Things we can do already:
Generate different filters for other objects.

• Recently, allowing icub to detect its fingers
(Leitner et al 2013)

Find fast running filters.
Find them quickly.
Show that filters are robust.
Transfer code from offline learning to yarp

module.
• Software emits C# and C++ code
• Running on Windows/Linux/Mac.

Tea-box filter: demonstration

Application 3: CGP encoded Artificial
Neural Networks (CGPANN)
 CGP has been used to encode both feed-forward ANNs

and recursive ANNs. The nodes genes consist of:
• Connection genes (as usual)
• Function genes (two)

– Sigmoid, hyperbolic tangent
• Weights

– Each connection gene carries a real-numbered weight

 Pole balancing, Arm Throwing
• Very competitive results with other TWEANN methods (Khan,

Khan and Miller 2010, Turner and Miller 2013)
 Breast cancer detection (GECCO 2012, 2013 proceedings)

Cyclic CGP
When outputs are allowed to connect to

inputs through a clocked delay (flip-flop) it is
possible to allow CGP to include feedback.

By feeding back outputs generated by CGP to
an input, it is possible to get CGP to generate
sequences
• In this way iteration is possible

There are a couple of recent publications
using recursion or iteration in CGP (Khan,
Khan and Miller 2010, Walker, Liu,
Tempesti,Tyrrell 2010)

737

Applications of CGP
 Digital Circuit Design

• ALU, parallel multipliers, digital filters, analogue circuits
 Mathematical functions

• Prime generating polynomials
 Control systems

• Maintaining control with faulty sensors, helicopter control, general control, simulated
robot controller

 Image processing
• Image filters
• Mammary Tumour classification

 Robotics
• gait

 Bio-informatics
• Molecular Post-docking filters

 Artificial Neural Networks
 Developmental Neural Architectures

• Wumpus world, checkers, maze solving
 Evolutionary Art
 Artificial Life

• Regenerating ‘organisms’
 Optimization problems

• Applying CGP to solve GA problems

CGP Resources:
http://www.cartesiangp.co.uk
 Julian Miller: C implementations of CGP and SMCGP

available at
http://www.cartesiangp.co.uk

 David Oranchak has implemented CGP in Java. Documentation
is available at
http://oranchak.com/cgp/doc/

 Brian Goldman has implemented CGP in Python
https://github.com/brianwgoldman/ReducingWastedEvaluationsCGP

 Jordan Pollack has implemented symbolic regression in CGP
with Matlab
• See CGP web site

 Cartesian Genetic Programming book
• Published in 2011 by Springer

Conclusions
Cartesian Genetic Programming is a graph based

GP method capable of representing many
computational structures
• programs, circuits, neural networks, systems of

equations…

Genetic encoding is compact, simple and easy to
implement and can handle multiple outputs easily.

The unique form of genetic redundancy in CGP
makes mutational search highly effective

The effectiveness of CGP has been compared with
many other GP methods and it is very competitive

References
Ashmore L. An investigation into cartesian genetic programming within the field of evolutionary art.

http://www.emoware.org/evolutionary_art.asp, Department of Computer Science, University of
Birmingham (2000)

Clegg J., Walker J. A., Miller J. F. A New Crossover Technique for Cartesian Genetic Programming. Proceedings
of Genetic and Evolutionary Computation Conference, ACM Press (2007) 1580-1587.

DiPaola S., Gabora L. Incorporating characteristics of human creativity into an evolutionary art algorithm, Genetic
Programming and Evolvable Machines (2009) Vol. 10. For further info see: http://dipaola.org/evolve/

DiPaolo S. Evolving Creative Portrait Painter Programs using Darwinian Techniques with an Automatic Fitness
Function. Electronic Visualizationa and the Arts Conference (2005)

Gajda, Z., Sekanina, L.. Gate-Level Optimization of Polymorphic Circuits Using Cartesian Genetic Programming,
Proceedings of Congress on Evolutionary Computation. IEEE Press (2009)

Gajda Z., Sekanina, L.. Reducing the Number of Transistors in Digital Circuits Using Gate-Level Evolutionary
Design, Proceedings of Genetic and Evolutionary Computation Conference. ACM, (2007) 245-252.

Garmendia-Doval B., Miller J.F., Morley S.D. Post Docking Filtering using Cartesian Genetic Programming.
Genetic Programming Theory and Practice II. O'Reilly U-M., Yu T., Riolo R., Worzel B. (Eds.).
University of Michigan Illinois USA. Springer (2004).

Glette K., Torresen J., Paul Kaufmann P., Platzner., M. A Comparison of Evolvable Hardware Architectures for
Classification Tasks. In Proceedings of the 8th International Conference on Evolvable Systems: From
Biology to Hardware, Springer LNCS 5216 (2008) 22-33.

Goldman, B. W., Punch, W. F. Reducing Wasted Evaluations in Cartesian Genetic Programming, Proceedings of
European Conference on Genetic Programming, Springer LNCS 7831 (2013) pp. 61–72.

Harding S. L., Leitner, J., Schmidhuber, J.. Cartesian Genetic Programming for Image Processing, Genetic
Programming Theory and Practice, University of Michigan Illinois USA. Springer. 2012

Harding, S., Graziano, V., Leitner, J., Schmidhuber. J. MT-CGP: Mixed Type Cartesian Genetic Programming,
Proceedings of the Genetic and Evolutionary Computation Conference (2011) pp 751-758.

Harding, S., Miller, J. F., Banzhaf, W. SMCGP2: Self Modifying Cartesian Genetic Programming in Two
Dimensions, Proceedings of the Genetic and Evolutionary Computation Conference (2011) pp 1491-
1498.

Harding S. L., Miller J. F. Banzhaf W. Developments in Cartesian Genetic Programming: Self-modifying CGP.
Genetic Programming and Evolvable Machines, Vol. 11 (3/4) (2010) pp 397-439.

738

Harding S. L., Miller J. F. Banzhaf W. Self Modifying Cartesian Genetic Programming: Finding algorithms that
calculate pi and e to arbitrary precision, Proceedings of the Genetic and Evolutionary Computation
Conference, 2010.

Harding S. L., Miller J. F., Banzhaf W. A Survey of Self-Modifying CGP. Genetic Programming Theory and
Practice, Riolo R., (Eds.). University of Michigan Illinois USA. Springer. 2010

Harding S. L., Miller J. F. Banzhaf W. Self Modifying Cartesian Genetic Programming: Parity. Proceedings of
Congress on Evolutionary Computation, IEEE Press (2009) 285-292

Harding S. L., Miller J. F. Banzhaf W. Self Modifying Cartesian Genetic Programming: Fibonacci, Squares,
Regression and Summing, Proceedings of the 10th European Conference on Genetic Programming,
Springer LNCS (2009) 133-144

Harding S. L., Miller J. F., Banzhaf W. Self-Modifying Cartesian Genetic Programming, Proceedings of Genetic
and Evolutionary Computation Conference, ACM Press, (2007) 1021-1028.

Harding S., Banzhaf W. Fast Genetic Programming on GPUs. Proceedings of 10th European Conference on
Genetic Programming, Springer LNCS 4445 (2007) 90-101

Harding S. L., Miller J. F. Evolution of Robot Controller Using Cartesian Proceedings of the 6th European
Conference on Genetic Programming, Springer LNCS 3447 (2005) 62-72.

Hirayama Y., Clarke T, Miller J. F. Fault Tolerant Control Using Cartesian Genetic Programming, Proceedings
of Genetic and Evolutionary Computation Conference, ACM Press, (2008) 1523-1530 .

Kalganova T., Miller J. F., Evolving More Efficient Digital Circuits by Allowing Circuit Layout Evolution and
Multi-Objective Fitness. Proceedings of the First NASA/DOD Workshop on Evolvable Hardware,
IEEE Computer Society (1999) 54-63.

Kalganova T., Miller J. F., Fogarty T. C. Some Aspects of an Evolvable Hardware Approach for Multiple-
Valued Combinational Circuit Design Proceedings of the 2nd International Conference on Evolvable
Systems: From Biology to Hardware. Springer LNCS 1478 (1998) 78-89.

Kaufmann P., Platzner M. Advanced Techniques for the Creation and Propagation of Modules in Cartesian
Genetic Programming. Proceedings of the Genetic and Evolutionary Computation Conference, ACM
Press, (2008) 1219-1226.

Kaufmann P., Platzner M. MOVES: A Modular Framework for Hardware Evolution. In Proceedings of the
NASA/ESA Conference on Adaptive Hardware and Systems, IEEE Computer Society Press (2007)
447-454

Kaufmann P., Platzner M. Toward Self-adaptive Embedded Systems: Multiobjective Hardware Evolution.
In Proceedings of the 20th International Conference on Architecture of Computing Systems,
Springer, LNCS 4415 (2007) 119-208.

Khan, G. M., Miller, J. F., Halliday, D. M. Evolution of Cartesian Genetic Programs for Development of
Learning Neural Architecture, Evolutionary Computation, Vol. 19, No. 3 (2011) pp 469-523

Khan, M. M., Khan, G. M., J. F. Miller, J. F. “Efficient representation of recurrent neural networks for
markovian/non-markovian non-linear control problems,” in Proceedings of the 10th International
Conference on Intelligent Systems Design and Applications (ISDA2010) (2010) 615–620

Khan, G. M., Miller J. F., Khan, M. M. Evolution of Optimal ANNs for Non-Linear Control Problems Using
Cartesian Genetic Programming. Proceedings of International Conference on Artificial Intelligence
(ICAI 2010)

Khan, G. M., Halliday, D. M., Miller, J. F.,Intelligent agents capable of developing memory of their
environment, Angelo Loula A., Queiroz, J. (Eds.) Advances in Modelling Adaptive and Cognitive
Systems, Editora UEFS (2010)

Khan G. M., Halliday D. M., Miller J. F. In Search of Intelligent Genes: The Cartesian Genetic Programming
Neuron. Proceedings of Congress on Evolutionary Computation, IEEE Press (2009)

Khan G. M., Halliday D. M., Miller J. F. Breaking the synaptic dogma: evolving a neuro-inspired developmental
network. Proceedings of 7th International Conference on Simulated Evolution and Learning, LNCS,
5361 (2008) 11-20

Khan G. M., Halliday D. M., Miller J. F. Coevolution of neuro-developmental programs that play checkers.
Evolvable Systems: From Biology to Hardware. Springer LNCS 5216 (2008) 352 - 361.

Khan G. M., Halliday D. M., Miller J. F. Coevolution of Intelligent Agents using Cartesian Genetic
Programming. Proceedings of Genetic and Evolutionary Computation Conference, ACM Press, (2007)
269-276.

Kuyucu T., Trefzer M. A., Miller J. F., Tyrrell. A. M. On the Properties of Artificial Development and Its Use in
Evolvable Hardware. Proceedings of Symposium on Artificial Life , Part of IEEE Symposium on
Computational Intelligence, IEEE Press (2009).

Liu H., Miller J. F., Tyrrell A. M. , Intrinsic evolvable hardware implementation of a robust biological
development model for digital systems, Proceedings of the NASA/DOD Evolvable Hardware
Conference, IEEE Computer Society (2005) 87-92.

Liu H., Miller J. F., Tyrrell A. M. A Biological Development Model for the Design of Robust Multiplier.
Applications of Evolutionary Computing: EvoHot 2005, Springer LNCS 3449 (2005) 195-204

Liu H., Miller J. F., Tyrrell A. M. An Intrinsic Robust Transient Fault-Tolerant Developmental Model for
Digital Systems. Workshop on Regeneration and Learning in Developmental Systems, Genetic and
Evolutionary Computation Conference (2004).

Sekanina, L. Evolvable Components - From Theory to Hardware Implementations, Springer (2003)
Sekanina, L. Image Filter Design with Evolvable Hardware, Proceedings of Evolutionary Image Analysis and

Signal Processing, Springer LNCS 2279 (2002) 255-266.
Sekanina, L, Vašíček Z. On the Practical Limits of the Evolutionary Digital Filter Design at the Gate Level,

Proceedings of EvoHOT, Springer, LNCS 3907 (2006) 344-355.
Miller J. F. Cartesian Genetic Programming, Springer 2011.
Miller J.F., Smith S.L. Redundancy and Computational Efficiency in Cartesian Genetic Programming. IEEE

Transactions on Evolutionary Computation, 10 (2006) 167-174.
Miller J. F. Evolving a self-repairing, self-regulating, French flag organism. Proceedings of Genetic and

Evolutionary Computation Conference, Springer LNCS 3102 (2004) 129-139.
Miller J. F., Thomson P. Beyond the Complexity Ceiling: Evolution, Emergence and Regeneration. Workshop

on Regeneration and Learning in Developmental Systems, Genetic and Evolutionary Computation
Conference (2004).

Miller J.F., Banzhaf W., Evolving the Program for a Cell From French Flags to Boolean Circuits. Kumar S.,
Bentley P. On Growth, Form and Computers. Elsevier Academic Press (2003).

Miller J. F., Thomson P. A Developmental Method for Growing Graphs and Circuits. Proceedings of the 5th
International Conference on Evolvable Systems: From Biology to Hardware, Springer LNCS 2606
(2003) 93-104.

Miller J. F. Evolving developmental programs for adaptation, morphogenesis, and self-repair. Proceedings of the
7th European Conference on Artificial Life, Springer LNAI 2801 (2003) 256-265.

Miller J. F. What bloat? Cartesian Genetic Programming on Boolean problems. Genetic and Evolutionary
Computation Conference, Late breaking paper (2001) 295 - 302.

Miller J. F., Hartmann M. Evolving messy gates for fault tolerance: some preliminary findings. Proceedings of
the 3rd NASA/DOD Workshop on Evolvable Hardware. IEEE Computer Society (2001) 116-123.

Miller J. F., Hartmann M. Untidy evolution: Evolving messy gates for fault tolerance. Proceedings of the 4th
International Conference on Evolvable Systems: From Biology to Hardware. Springer LNCS 2210
(2001) 14-25.

Miller J.F., Kalganova T., Lipnitskaya N., Job D. The Genetic Algorithm as a Discovery Engine: Strange
Circuits and New Principles. Creative Evolutionary Systems. Morgan Kaufmann (2001).

Miller J.F., Job D., Vassilev V.K. Principles in the Evolutionary Design of Digital Circuits - Part I. Journal of
Genetic Programming and Evolvable Machines, 1 (2000) 8-35.

Miller J.F., Job D., Vassilev V.K. Principles in the Evolutionary Design of Digital Circuits - Part II. Journal of
Genetic Programming and Evolvable Machines, 3 (2000) 259-288.

Miller J. F., Thomson P. Cartesian Genetic Programming. Proceedings of the 3rd European Conference on
Genetic Programming. Springer LNCS 1802 (2000) 121-132.

Miller J. F. On the filtering properties of evolved gate arrays. Proceedings of the First NASA/DOD Workshop
on Evolvable Hardware. IEEE Computer Society (1999) 2-11.

Miller J. F. Digital Filter Design at Gate-level using Evolutionary Algorithms. Proceedings of the 1st Genetic
and Evolutionary Computation Conference. Morgan Kaufmann (1999) 1127-1134.

Miller J. F. An empirical study of the efficiency of learning boolean functions using a Cartesian Genetic
Programming Approach. Proceedings of the 1st Genetic and Evolutionary Computation Conference.
Morgan Kaufmann (1999) 1135-1142.

Miller J. F. Evolution of Digital Filters using a Gate Array Model. Proceedings of the First Workshop on Image
Analysis and Signal Processing. Springer LNCS 1596 (1999) 17-30.

Miller J. F., Kalganova T., Lipnitskaya N., Job D. The Genetic Algorithm as a Discovery Engine: Strange
Circuits and New Principles. Proceedings of the workshop on the AISB Symposium on Creative
Evolutionary Systems. AISB (1999) 65-74.

Miller J. F., Thomson P. Aspects of Digital Evolution: Evolvability and Architecture. Proceedings of The Fifth
International Conference on Parallel Problem Solving from Nature. Springer LNCS 1498 (1998) 927-
936.

Miller J. F., Thomson P. Aspects of Digital Evolution: Geometry and Learning. Proceedings of the 2nd
International Conference on Evolvable Systems: From Biology to Hardware. Springer LNCS 1478
(1998) 25-25.

Miller J. F., Thomson P. Evolving Digital Electronic Circuits for Real-Valued Function Generation using a
Genetic Algorithm . Proceedings of the 3rd Conference on Genetic Programming. Morgan Kaufmann
(1998) 863-868.

Miller J.F., Thomson P., Fogarty T.C. Designing Electronic Circuits Using Evolutionary Algorithms:
Arithmetic Circuits: A Case Study. Genetic Algorithms and Evolution Strategies in Engineering and
Computer Science: Recent Advancements and Industrial Applications. Quagliarella, D., Periaux J.,
Poloni C., Winter G. (Eds.). Wiley (1997)

Payne, A. J., Stepney, S.. Representation and Structural biases in CGP, Proceedings of Congress on
Evolutionary Computation, IEEE Press (2009)

739

Rothermich J., Wang F., Miller J. F. Adaptivity in Cell Based Optimization for Information Ecosystems.
Proceedings of the Congress on Evolutionary Computation. IEEE Press (2003) 490-497.

Rothermich J., Miller J. F. Studying the Emergence of Multicellularity with Cartesian Genetic Programming in
Artificial Life. Proceedings of the 2002 U.K. Workshop on Computational Intelligence (2002).

Seaton, T, Miller, J. F. , Clarke, T. Semantic Bias in Program Coevolution. Proceedings of the European
Conference on Genetic Programming, (Krawiec, K et al. (Eds.) pp. 193-204, Springer, LNCS Vol.
7831, 2013.

Seaton, T, Miller, J. F. , Clarke, T. An Ecological Approach to Measuring Locality in Linear Genotype to
Phenotype Maps. Proceedings of the European Conference on Genetic Programming, pp. 170-181,
Springer, LNCS Vol. 7244 2012.

Seaton, T., Brown G., Miller J. F.., Analytic Solutions to Differential Equations under Graph-based Genetic
Programming. Proceedings of the 13th European Conference on Genetic Programming. Springer LNCS
6021 (2010) 232-243

Kisung Seo, K., Hyun, S. Toward Automatic Gait Generation for Quadruped Robots Using Cartesian Genetic
Programming. EvoApplications 2013, LNCS Vol. 7835, pp. 599–605.

Vašíček Z, Sekanina L. Hardware Accelerators for Cartesian Genetic Programming, Proc. Eleventh European
Conference on Genetic Programming, Springer LNCS Vol. 4971 (2008) 230-241

Vašíček, Z. Sekanina, L.. Formal verification of candidate solutions for post-synthesis evolutionary optimization
in evolvable hardware. Genetic Programming and Evolvable Machines, 12(3) (2011) 305-327, 2011.

Vassilev V. K., Miller J. F. Scalability Problems of Digital Circuit Evolution. Proceedings of the 2nd
NASA/DOD Workshop on Evolvable Hardware. IEEE Computer Society (2000) 55-64.

Vassilev V. K., Miller J. F. The Advantages of Landscape Neutrality in Digital Circuit Evolution. Proceedings
of the 3rd International Conference on Evolvable Systems: From Biology to Hardware. Springer LNCS
1801 (2000) 252-263.

Vassilev V. K., Miller J. F. Towards the Automatic Design of More Efficient Digital Circuits. Proceedings of
the 2nd NASA/DOD Workshop on Evolvable Hardware. IEEE Computer Society (2000) 151-160.

Vassilev V. K., Miller J. F., Fogarty T. C. Digital Circuit Evolution and Fitness Landscapes. Proceedings of the
Congress on Evolutionary Computation. IEEE Press (1999) 1299-1306.

Vassilev V. K., Miller J. F., Fogarty T. C. On the Nature of Two-Bit Multiplier Landscapes. Proceedings of the
First NASA/DOD Workshop on Evolvable Hardware. IEEE Computer Society (1999) 36-45.

Voss M. S. Social programming using functional swarm optimization. In Proceedings of IEEE Swarm
Intelligence Symposium (2003)

Voss M. S., Howland, J. C. III.Financial modelling using social programming. Financial Engineering and
Applications (2003)

Völk K., Miller J. F., Smith, S. L. Multiple Networks CGP for the Classification of Mammograms. Proceedings
of the 11th European Workshop on Image Analysis and Signal Processing (EvoIASP), Springer
LNCS (2009).

Walker J. A., Liu Y., Tempesti G., Tyrrell A. M., “Automatic Code Generation on a MOVE Processor Using
Cartesian Genetic Programming,” in Proceedings of the International Conference on Evolvable
Systems: From Biology to Hardware, Springer LNCS vol. 6274 (2010) 238–249

Walker J.A., Völk, K. , Smith, S. L., Miller, J. F. Parallel evolution using multi-chromosome cartesian genetic
programming, Genetic Programming and Evolvable Machines, 10 (4), (2009) pp 417-445

Walker J. A., Hilder, J. A., Tyrrell. A. M. Towards Evolving Industry-feasible Intrinsic Variability Tolerant
CMOS Designs, Proceedings of Congress on Evolutionary Computation, IEEE Press (2009)

Walker J.A., Miller J.F. The Automatic Acquisition, Evolution and Re-use of Modules in Cartesian Genetic
Programming. IEEE Transactions on Evolutionary Computation, 12 (2008) 397-417.

Walker J. A. Modular Cartesian Genetic Programming. PhD thesis, University of York, 2008.
Walker J. A., Miller J. F. Solving Real-valued Optimisation Problems using Cartesian Genetic Programming.

Proceedings of Genetic and Evolutionary Computation Conference, ACM Press (2007) 1724-1730.
Walker J. A., Miller J. F. Changing the Genospace: Solving GA Problems using Cartesian Genetic

Programming, Proceedings of 10th European Conference on Genetic Programming, Springer LNCS
4445 (2007) 261-270.

Walker J. A., Miller J. F. Predicting Prime Numbers using Cartesian Genetic Programming, Proceedings of 10th
European Conference on Genetic Programming. Springer LNCS 4445, (2007) 205-216

Walker J. A., Miller J. F., Cavill R. A Multi-chromosome Approach to Standard and Embedded Cartesian
Genetic Programming, Proceedings of the 2006 Genetic and Evolutionary Computation Conference.
ACM Press, (2006) 903-910.

Walker J. A., Miller J. F. Embedded Cartesian Genetic Programming and the Lawnmower and Hierarchical-if-
and-only-if Problems, Proceedings of the 2006 Genetic and Evolutionary Computation Conference.
ACM Press, (2006) 911-918.

Walker J. A., Miller J. F. Improving the Evolvability of Digital Multipliers Using Embedded Cartesian Genetic
Programming and Product Reduction. Proceedings of 6th International Conference in Evolvable
Systems. Springer, LNCS 3637 (2005) 131-142.

Walker J. A., Miller J. F. Investigating the performance of module acquisition in Cartesian Genetic
Programming, Proceedings of the 2005 conference on Genetic and Evolutionary Computation. ACM
Press (2005) 1649-1656.

Walker J. A., Miller J. F. Evolution and Acquisition of Modules in Cartesian Genetic Programming. Proceedings
of the 7th European Conference on Genetic Programming. Springer LNCS 3003 (2004) 187-197.

Yu T., Miller J.F., Through the Interaction of Neutral and Adaptive Mutations Evolutionary Search Finds a Way.
Artificial Life, 12 (2006) 525-551.

Yu T., Miller J. F. Finding Needles in Haystacks Is Not Hard with Neutrality. Proceedings of the 5th European
Conference on Genetic Programming. Springer LNCS 2278 (2002) 13-25.

Yu T., Miller J. F. Neutrality and Evolvability of a Boolean Function Landscape, Proceedings of the 4th
European Conference on Genetic Programming. Springer LNCS, 2038, (2001) 204-217.

Zhan S., J.F. Miller, A. M., Tyrrell. An evolutionary system using development and artificial Genetic Regulatory
Networks for electronic circuit design, Biosystems, 96 (3) (2009) pp 176-192

Zhan S., Miller J. F., Tyrrell A. M. Obtaining System Robustness by Mimicking Natural Mechanisms .
Proceedings of Congress on Evolutionary Computation. IEEE Press (2009)

Zhan S., Miller J. F., Tyrrell A. M. A Development Gene Regulation Network For Constructing Electronic
Circuits . Evolvable Systems: From Biology to Hardware. LNCS 5216 (2008) 177 – 188

Zhan S., Miller J. F., Tyrrell A. M. An Evolutionary System using Development and Artificial Genetic
Regulatory Networks Proceedings of 9th IEEE World Congress on Computational Intelligence.
Congress on Evolutionary Computation. IEEE Press (2008) 815-822.

740

