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Abstract
Cartesian Genetic Programming (CGP) is an increasingly popular and efficient form of 

Genetic Programming. Cartesian Genetic Programming is a highly cited technique 
that was developed by Julian Miller in 1999 and 2000 from some earlier joint work 
of Julian Miller with Peter Thomson in 1997. 

In its classic form, it uses a very simple integer based genetic representation of a 
program in the form of a directed graph. Graphs are very useful program 
representations and can be applied to many domains (e.g. electronic circuits, neural 
networks). In a number of studies, CGP has been shown to be comparatively 
efficient to other GP techniques. It is also very simple to program. 

Since then, the classical form of CGP has been developed made more efficient in 
various ways. Notably by including automatically defined functions (modular CGP) 
and self-modification operators (self-modifying CGP). SMCGP was developed by 
Julian Miller, Simon Harding and Wolfgang Banzhaf. It uses functions that cause the 
evolved programs to change themselves as a function of time. Using this technique it 
is possible to find general solutions to classes of problems and mathematical 
algorithms (e.g. arbitrary parity, n-bit binary addition, sequences that provably 
compute pi and e to arbitrary precision, and so on). 

This tutorial is will cover the basic technique, advanced developments and applications 
to a variety of problem domains. The first edited book on CGP was published by 
Springer in September 2011. CGP has its own dedicated website 
http://www.cartesiangp.co.uk
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Genetic Programming

The automatic evolution of computer 
programs
• Tree-based, Koza 1992
• Stack-based, Perkis 1994, Spector 1996 

onwards (push-pop GP)
• Linear GP, Nordin and Banzhaf  1996
• Cartesian GP, Miller 1997
• Parallel Distributed GP, Poli 1996
• Grammatical Evolution, Ryan 1998
• Lots of others…
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Origins of Cartesian Genetic 
Programming (CGP)
Grew out of work in the evolution of digital 

circuits, Miller and Thomson 1997. First actual 
mention of the term Cartesian Genetic 
Programming appeared at GECCO in 1999.
Originally, represents programs or circuits as a 

two dimensional grid of program primitives.
This is loosely inspired by the architecture of 

digital circuits called FPGAs (field 
programmable gate arrays)

What defines CGP?

 The genotype is a list of integers (and possibly parameters)  
that represent the program primitives and how they are 
connected together
• CGP represents programs as graphs in which there are non-

coding genes
The genes are

• Addresses in data (connection genes)
• Addresses in a look up table of functions
• Additional parameters

This representation is very simple, flexible and 
convenient for many problems

CGP General form

r rows

c columns
m outputs

node

Note: Nodes in the same column are not allowed to be connected to each 
other

n inputs
Levels-back

Allelic constraints for directed acyclic 
graphs

All function genes fi must takes allowed function alleles

0  ≤  fi ≤  nf

Nodes connections Cij of a node in column j, and levels-back l, must obey (to 
retain directed acyclicity)

j ≥ l n + (j-l)r  ≤ Cij  ≤ n + jr 

j < l 0 ≤  Cij ≤ n + jr 

Output genes (can connect to any previous node or input)

0  ≤  0i ≤  n + cr -1 
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Types of graphs easily controlled
 Depending on rows, columns and levels-back a wide range of 

graphs can be generated

When rows =1 and levels-back = columns arbitrary directed 
graphs can be created with a maximum depth
• In general choosing these parameters imposes the least constraints. So 

without specialist knowledge this is the best and most general choice

CGP genotype

f0 C0 0 … C0 a …     f (c+1)r C(c+1)r  0 … C(c+1)r a O1,…Om

Connection genes
Usually, all functions have as many inputs as the maximum function arity

Unused connections are ignored

Output genesfunction genes

Example

0 0  1    1 0  0     1 3  1    2 0  1    0 4  4    2 5  4              2   5  7   3

Encoding of graph as a list of integers (i.e. the genotype)

Example: Function look up table

The function genes are the addresses in a user-defined lookup 
table of functions

0 +  Add the  data presented to inputs

1 - Subtract the  data presented to inputs

2 *  Multiply data presented to inputs

3 /  Divide data presented to inputs (protected)
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Obtaining the graph

0 0  1    1 0  0     1 3  1    2 0  1    0 4  4    2 5  4              2   5  7   3

Encoding of graph as a list of integers (i.e. the genotype)

So what does the graph represent?

What happened to the node whose output 
label is 6?

0 0  1    1 0  0     1 3  1    2 0  1    0 4  4 2 5  4              2   5  7   3
The node was not used so the genes are silent or non-coding

The CGP genotype-phenotype map

When you decode a CGP genotype many nodes and 
their genes can be ignored because they are not 
referenced in the path from inputs to outputs

These genes can be altered and make no difference to 
the phenotype, they are non-coding

Clearly there is a many-to-one genotype to phenotype 
map

How redundant is the mapping?
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A mathematical aside: 
CGP and Stirling numbers
 Assume that a CGP graph has the following parameters
 Number of rows_= 1
 Levels-back = num_cols = n
 Arity of functions = 1
 There is one input
 Assume that the output is taken from the last node

The number of genotypes, G, that have a phenotype of size k(nodes) can be 
shown to obey a recurrence relation obeyed by unsigned Stirling numbers of the 
first kind.

G(n+1, k) = nG(n,k) + G(n, k-1)

How many genotypes of length n
map to a phenotypes of length k?

n
k

1 2 3 4 5 6 7 8 9

1 1

2 1 1

3 2 3 1

4 6 11 6 1

5 24 50 35 10 1

6 120 274 225 85 15 1

7 720 1764 1624 735 175 21 1

8 5040 13068 13132 6759 1960 322 28 1

9 40320 109584 118124 67284 22449 4536 546 36 1

Average number of active nodes in a genotype of length 9 is 2.83

Clearly, with say a genotype of 100 nodes, the number of genotypes that map to a 
phenotype with say about 10 nodes is an astronomical number

// L  = MaxGraph.Length
// I   = Number of program inputs
// N = Number of program outputs
bool ToEvaluate[L]
double NodeOutput[L+I]
int  NodesUsed[M]

1

// identify initial nodes that need to be evaluated
p = 0
do

ToEvaluate[OutputGene[p]] = true
p = p + 1

while (p < N)
// determine nodes used
p = L-1
q=0
do

if (ToEvaluate[p])
x = Node[p].Connection1
y = Node[p].Connection2

ToEvaluate[x] = true  
ToEvaluate[y] = true
q=q+1
NodesUsed[q]=p;

endif
p = p - 1

while ( p >= 0)

2

// load input data values
p = 0
do

NodeOutput[p] = InputData[p]
p = p + 1

while (p < I)

3

//Execute graph
for  p = I to p < q+I

x = Node[NodesUsed[p]].Connection1 
y = Node[NodesUsed[p]].Connection2
z = Node[NodesUsed[p]].Function
NodeOutput[p] = ComputeNode(NodeOutput[x], NodeOutput[y],z)

endfor

4

Decoding CGP chromosomes is easy Point mutation
 Most CGP implementations only use 

mutation. 
 Carrying out mutation is very simple. It 

consists of the following steps. The genes 
must be chosen to be valid alleles
//Decide how many genes to change:num_mutations
while (mutation_counter < num_mutations)
{

get random gene to change
if (gene is a function gene)

change gene to randomly chosen new valid function
else if (gene is a connection gene)

change gene to a randomly chosen new valid connection
else

change gene to a new valid output connection
}
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A new parameter less mutation procedure
 Goldman and Punch 2013, Eurogp2013 (see refs)
 Exactly one active gene is mutated for all offspring.
 Active genes will be mutated more frequently than inactive

• Zero or more inactive genes can be mutated
 No mutation rate is required!

//mutate randomly until active gene changed: single active strategy
gene_is_active = false
do
{

get random gene to change
if (gene is a function gene)

change gene to randomly chosen new valid function
else if (gene is a connection gene)

change gene to a randomly chosen new valid connection
else

change gene to a new valid output connection
if (gene is active) gene_is_active = true

}
while (gene_is_active = false)

Single active gene mutation strategy: results

 Normal = standard CGP
 Skip: set offspring’s fitness to parent if identical
 Accumulate: apply mutation operator until an offspring is 

generated with some active gene changed.
 Single 29% less real-computation than Normal!

3bit parallel 
multiplier
• Multiples two three-

bit numbers in 
parallel

• Hard problem

Evolutionary Strategy
CGP often uses a variant of a simple 

algorithm called (1 + 4) Evolutionary 
Strategy
• However, an offspring is always chosen if it is 

equally as fit or has better fitness than the parent

Crossover or not?

 Recombination doesn’t seem to add 
anything (Miller 1999, “An empirical 
study…”)

 However if there are multiple chromosomes 
with independent fitness assessment then it 
helps a LOT  (Walker, Miller, Cavill 2006, 
Walker, Völk, Smith, Miller, 2009)

 Some work using a floating point 
representation of CGP has suggested that 
crossover might be useful (Clegg, Walker, 
Miller 2007)
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Silent mutations and their effects
Original

Silent mutations and their effects

No change in phenotype but it changes the 
programs accessible through subsequent 
mutational change

After silent 
mutation

Non-silent mutations and their effects

Massive change in phenotype is 
possible through simple mutation

Original

Non-silent mutations and their effects

Massive change in 
phenotype is possible 
through simple mutation

After active 
mutation
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Neutral search is fundamental to success 
of CGP

A number of studies have been carried 
out to indicate the importance to 
neutral search 
• Miller and Thomson 2000, Vassilev and 

Miller 2000, Yu and Miller 2001, Miller 
and Smith 2006)

Neutral search and the three bit multiplier 
problem (Vassilev and Miller 2000)

Importance of neutral search 
can be demonstrated by 
looking at the success rate in 
evolving a correct three-bit 
digital parallel multiplier 
circuit.

Graph shows final fitness 
obtained in each of 100 runs of 
10 million generations with 
neutral mutations enabled 
compared with disabled neutral 
mutations.

In CGP, large genotypes and small mutation evolve 
solutions to problems more quickly (Miller and 
Smith 2006)

Two-bit multiplier with gate set 

{AND,  OR, NAND, NOR}.
Even 3 parity with gate set 

{AND,  OR, NAND, NOR}.

•However big genotypes does NOT mean big phenotypes 
(programs)….

Phenotype length versus genotype length 
(two-bit multiplier)

SEARCH MOST EFFECTIVE 
WHEN 95% OF ALL GENES ARE 
INACTIVE!!

NO BLOAT

Average proportion of active nodes in 
genotype at the conclusion of 
evolutionary run for all mutation rates 
versus genotype length

Average phenotype length for 
the initial  population 
contrasted with the average 
phenotype length at conclusion 
of evolutionary run versus 
genotype length with 1% 
mutation 

722



Length bias in CGP: Where should the junk be?

In standard CGP junk is unevenly distributed
• It increases toward the right

In standard CGP there is a powerful bias 
toward small phenotypes. This may not be 
useful in some problems.
Goldman and Punch have a paper examining 

this issue in the GP track (Goldman and Punch 
2013)

Modular/Embedded CGP (Walker, Miller 2004, 2008)

 So far have described a form of CGP (classic) that does not 
have an equivalent of Automatically Defined Functions (ADFs)

Modular CGP allows the use of modules (ADFs)

• Modules are dynamically created and destroyed

• Modules can be evolved

• Modules can be re-used

MCGP Example

Genotype

Module List Module 
Creation
Module 
Re‐use
Module 
Evolution
Module 

Destruction

MCGP Example

Genotype

Module List Module 
Creation
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Representation Modification 1

Each gene encoded by two integers in M-
CGP
• Function/module number and node type
• Node index and node output 

– nodes can have multiple outputs

Representation Modification 2

M-CGP has a bounded variable length genotype
• Compression and expansion of modules

– Increases/decreases the number of nodes

• Varying number of module inputs
– Increases/decreases the number of genes in a node

Modules

 Same characteristics as M-
CGP
• Bounded variable length 

genotype

• Bounded variable length 
phenotype

Modules also contain 
inactive genes as in CGP

Modules can not contain 
other modules!

Node Types
Three node types:

• Type 0
– Primitive function

• Type I
– Module created by compress operator

• Type II
– Module replicated by genotype point-mutation

Control excessive code growth
• Genotype can return to original length at any time
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Creating and Destroying a Module

Created by the compress operator
• Randomly acquires sections of the genotype into a module

– Sections must ONLY contain type 0 nodes
Destroyed by the expand operator

• Converts a random type I module back into a section of the 
genotype

7 module inputs, 4 module outputs

re‐label module 
contents

Capture module

Re‐label genotype

Module Survival

Twice the probability of a module being 
destroyed than created
Modules have to replicate to improve their 

chance of survival
• Lower probability of being removed

Modules must also be associated with a 
high fitness genotype in order to survive
• Offspring inherit the modules of the 

fittest parent

Evolving a Module I

Structural mutation
• Add input
• Remove input
• Add output
• Remove output

Evolving a Module II

Module point-
mutation operator
• Restricted version of 

genotype point-
mutation operator

– Uses only primitive 
functions
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Re-using a Module

 Genotype point-mutation operator
• Modified CGP point-mutation operator

 Allows modules to replicate in the genotype
• Primitive (type 0)   module (type II)
• Module (type II)   module (type II)
• Module (type II)   primitive (type 0)

 Does NOT allow type I modules to be mutated into 
primitives (type 0) or other modules (type II)
• Type I modules can only be destroyed by Expand

Experimental parameters

 NOTES: ◊ these parameters only apply to Modular 
(Embedded) CGP

 Results heavily dependent on the maximum number of 
nodes allowed. Much better results are obtained when 
larger genotype lengths are used.

Even Parity Results
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C
E
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Digital Multiplier

 Two digital multiplier problems:
• 2-bit and 3-bit

 Function set:
• AND, AND (one input inverted), 

XOR, OR

 Fitness Function:
• Number of phenotype output bits that 

differ from the perfect n-bit digital 
multiplier solution

• Perfect solution has a fitness of zero
 Results are averaged over fifty 

independent runs

ha

a b

z

2x1

ha

c

y

d

2x1

x
w
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Multiplier Results
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Symbolic Regression

 Two problems:
 x6 - 2x4 + x2

 x5 - 2x3 + x

 Function set:
 +, -, *, / (protected)

 Fitness Function:
 Absolute error over all fifty points in the input set
 Solution found when absolute error is within 0.01 of each 

point

 Results averaged over fifty independent runs

*

‐

x

1

*

*

Out

Symbolic Regression Results

0
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x6 – 2x4 + x2 x5 – 2x3 + x

Self-modifying Cartesian Genetic 
programming

A developmental form of CGP
• Includes self modification functions in addition to 

computational functions
• ‘General purpose’ GP system 
• Phenotype can vary over time (with iteration)
• Can switch off its own self-modification

Some representational changes from classic 
CGP…
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Changes to CGP: relative 
addressing

Replaced direct node addressing with 
relative addressing
• Always use 1 row (not rectangular)
• Connection genes say how many nodes back

0

1

2

3
1

5
2

4
3

6
0

Changes to CGP: Inputs

Replace input calls with a function.
• We call these functions INP, INPP, SKIPINP

Pointer keeps track of ‘current input’.
• Call to INP returns the current input, and moves 

the pointer to the next input.
Connections beyond graph are assigned 

value 0.

Removed output nodes. 
Genotype specifies which nodes are 

outputs.
If no OUTPUT function then last active 

node is used
• Other defaults are used in situations where the number 

of outputs does not match the number required

Changes to CGP: Outputs

Nodes also contain a number of 
‘arguments’.
• 3 floating point numbers
• Used in various self-modification 

instructions
• Cast to integers when required

Changes to CGP: Arguments
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SMCGP Nodes: summary

Each node contains:
• Function type
• Connections as relative addresses
• 3 floating point numbers

SMCGP: Functions

Two types of functions:
• Computational

– Usual GP computational functions

• Self-modifying
– Passive computational role (see later)

Some Self-Modification 
Functions

Operator Parameters: 
use node address and the 
three node arguments

Function

MOVE Start, End, Insert Moves each of the nodes between 
Start and End into the position 
specified by Insert

DUP Start, End, Insert Inserts copies of the nodes 
between Start and End into the 
position specified by Insert 

DELETE Start, End Deletes the nodes between Start 
and End indexes

CHF Node, New Function Changes the function of a 
specified node to the specified 
function

CHC Node, Connection1, 
Connection2

Changes the connections in the 
specified node

SMCGP Execution

Important first step:
• Genotype is duplicated to phenotype.
• Phenotypes are executed:
 Self modifications are only made to the 

phenotype.
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Self Modification Process: The To Do list

Programs are iterated.
If triggered, self modification instruction is 

added to a To Do list.
At the end of each iteration, the instructions on 

this list are processed.
The maximum size of the To Do list can be 

predetermined

Computation of a SM node

Functions can be appended to the To Do list 
under a variety of conditions
• If active
• If  value(first input) > value(the second input.

And:
• The To Do list isn’t too big.

Publications using SMCGP

General Parity Problem (CEC 2009)

Mathematical Problems (EuroGP 2009, GECCO 2007)

Learning to Learn (GECCO 2009)

Generating Arbitrary Sequences (GECCO 2007)

Computing the mathematical constants 
pi and e (GECCO 2010)

General adder and many other problems 
(GPEM Tenth Anniversary Special Issue, 2010)

Authors: Harding, Miller, Banzhaf

Evolving Parity

Each iteration of program should produce the 
next parity circuit.
• On the first iteration the program has to solve 2 bit 

parity. On the next iteration, 3 bit ... up to 22 parity
• Fitness is the cumulative sum of incorrect bits

Aim to find general solution
• Solutions can be proved to general

– See GPEM 2010 paper

CGP or GP cannot solve this problem as they 
have a finite set of inputs (terminals)

730



Parity results: SMCGP versus CGP and ECGP Scaling behaviour of SMCGP

Evolving pi 

Iterate a maximum of 10 times
If program output does not get closer to pi at the 

next iteration, the program is stopped and large 
fitness penalty applied

Fitness at iteration, i,  is absolute difference of 
output at iteration i and pi

One input:  the numeric constant 1.

Evolving pi: an evolved solution

An evolved solution

f(10) is correct to the first 2048 digits of pi
It can be proved that f(i) rapidly converges to 

pi in the limit as i tends to infinity
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Further results
Other mathematically provable results found 

so far:
• Evolved a program that can carry out the bitwise 

addition of an arbitrary number of inputs
• Evolved a sequence that converges to e

Other results
• Evolved a sequence function that generates the 

first 10 Fibonacci numbers
• Evolved a power function x n
• Bioinformatics classification problem (finite 

inputs)
– SMCGP performed no worse than CGP

Two dimensional SMCGP (SMCGP2)

Active nodes

output node

Harding, Miller 
and Banzhaf 2011

SMCGP2: genes
• Function
• Connections
• Numeric Constant

Arguments are now 
2 D vectors
• SM size (SMS)
• SM location (SML)

SMCGP2: Vector relative addressing and Empty 
nodes

 There are empty nodes are 
represented by X

 The relative address from C to B is 
(2, 1)
• meaning 2 nodes to the left, and one 

node up.

 The relative  address of C to A is 
(4,1). 

 Note how the empty nodes are not 
counted when computing how 
many nodes back to connect.

SMCGP2: Self Modifying Functions

Simplified SM function set
• Duplicate section, insert elsewhere.
• Duplicate section, overwrite elsewhere.
• Crop to a section.
• Delete a section.
• Add a row or column.
• Delete a row or column.
• NULL
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SMCGP2: Solving even-n parity

Time

n = 2 n = 3 n = 4 n = 5

n = 12

SMCGP2 versus SMCGP: Results

Parity
• Two functions sets used: 

– FULL: All 2-input Boolean functions used
– REDUCED: only AND, OR, NAND, NOR used

• SMCGP2 solves general parity 6.3 times faster than 
SMCGP using the FULL functions set but is slower 
for the REDUCED function set

N bit binary adder
• SMCGP2 solves it approximately 6 times faster than 

SMCGP

SMCGP:Some observations

In SMCGP there are implicit
• Loops
• Recursion
• Modules/functions
• Halting (telomeres)

Also have “partial” loops/recursion

Multi-type CGP (MT-CGP)
Genotype pretty much classic CGP (Harding et al 

2011)
• Genotype is a (partly connected, feed-forward) graph
• Graph is a list of nodes

– Each node contains:
- Function (from a function set)
- Two connections (to other nodes)
- real number (to use for parameters)

Handles multiple data types
• So far: reals and vectors

Adds lots of functionality
• Domain knowledge
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MT-CGP: Example MT-CGP

Has a big function set
Trying to incorporate domain knowledge

• Easy to add new functions to help with a 
particular problem

Functions deal with multiple data types
• Functions are overloaded 
• Attempts are made at human readable consistency

Application 1: 
Digital circuit synthesis with CGP

Digital Circuits with hundreds of variables can be 
optimized using CGP (Vassicek and Sekanina 
2011)
• Won the $3000 silver award in human competitive 

workshop at GECCO 2011

The method employs a SAT solver to identify 
whether two circuits are logically equivalent 
• In many cases this can be done in polynomial time

Circuit equivalence checking and SAT

If C1 and C2 are not functionally equivalent 
then there is at least one assignment of the 
inputs for which the output of G is 1.
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CGP for optimizing conventionally 
synthesized circuits

The seed for CGP is provided by using the logic synthesis 
package, ABC (http://www.eecs.berkeley.edu/~alanmi/abc/ )

The fitness function is as follows:
 Use a SAT solver to decide whether candidate circuit Ci and 

reference circuit C1 are functionally equivalent.
• If so, then fitness(Ci) = the number of nodes – number of gates in Ci;
• Otherwise: fitness(Ci) = 0.

Conventional synthesis
ABC, SIS CGP

Circuit C1 Optimized 
circuit Ci

A seed for 
initial CGP 
population

Application 2: Evolving Image Filters with 
CGP

Detecting/locating objects with the 
iCub cameras
Done by evolving image filters that 

take a camera image, and return 
only the objects of interest

Input Target

Evolved
filter

Grey

Red

Green

Blue

Hue

Saturation

Luminosity

Image from camera

Split colour image is used as inputs

Evolved
filter

Input data 

1 23 OUTINP INP INP

3
-1
-2

4.3

Function
Connection 1
Connection 2
A real number

Genotype representation (like 
SMCGP but no SM functions)
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NOP LOG TRIANGLES

INP MAX LINES

INPP MIN SHIFTDOWN

SKIP EQ SHIFTUP

ADD GAMMA SHIFTLEFT

SUB GAUSS SHIFTRIGHT

CONST SOBELX SIFTa

MUL SOBELY GABOR

ADDC AVG NORMALIZE

SUBC UNSHARPEN RESCALE

MULC THRESHOLD GRABCUT

ABSDIFF THRESHOLDBW MINVALUE

CANNY SMOOTHMEDIAN MAXVALUE

DILATE GOODFEATURESTOTRACK AVGVALUE

ERODE SQUARES RESCALE

LAPLACE CIRCLES RESIZETHENGABOR

Large Function Set

•Fitness = sum of mean square error of pixel values 
between  each input/target

Fitness

Evolved Filter code

Output

Inputs

Evolved Filter 
Dataflow
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Things we can do already:
Generate different filters for other objects.

• Recently, allowing icub to detect its fingers 
(Leitner et al 2013)

Find fast running filters.
Find them quickly.
Show that filters are robust.
Transfer code from offline learning to yarp 

module.
• Software emits C# and C++ code
• Running on Windows/Linux/Mac.

Tea-box filter: demonstration

Application 3: CGP encoded Artificial 
Neural Networks (CGPANN)
 CGP has been used to encode both feed-forward ANNs 

and recursive ANNs. The nodes genes consist of:
• Connection genes (as usual)
• Function genes (two)

– Sigmoid, hyperbolic tangent
• Weights

– Each connection gene carries a real-numbered weight

 Pole balancing, Arm Throwing
• Very competitive results with other TWEANN methods (Khan, 

Khan and Miller 2010, Turner and Miller 2013)
 Breast cancer detection (GECCO 2012, 2013 proceedings)

Cyclic CGP
When outputs are allowed to connect to 

inputs through a clocked delay (flip-flop) it is 
possible to allow CGP to include feedback.

By feeding back outputs generated by CGP to 
an input, it is possible to get CGP to generate 
sequences
• In this way iteration is possible

There are a couple of recent publications 
using recursion or iteration in CGP (Khan, 
Khan and Miller 2010, Walker, Liu, 
Tempesti,Tyrrell 2010)
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Applications of CGP
 Digital Circuit Design

• ALU, parallel multipliers, digital filters, analogue circuits
 Mathematical functions

• Prime generating polynomials
 Control systems

• Maintaining control with faulty sensors, helicopter control, general control, simulated 
robot controller

 Image processing
• Image filters
• Mammary Tumour classification

 Robotics
• gait

 Bio-informatics
• Molecular Post-docking filters

 Artificial Neural Networks
 Developmental Neural Architectures

• Wumpus world, checkers, maze solving
 Evolutionary Art
 Artificial Life

• Regenerating ‘organisms’
 Optimization problems

• Applying CGP to solve GA problems

CGP Resources: 
http://www.cartesiangp.co.uk
 Julian Miller: C implementations of CGP and SMCGP 

available at
http://www.cartesiangp.co.uk

 David Oranchak has implemented CGP in Java. Documentation 
is available at
http://oranchak.com/cgp/doc/

 Brian Goldman has implemented CGP in Python
https://github.com/brianwgoldman/ReducingWastedEvaluationsCGP

 Jordan Pollack has implemented symbolic regression in CGP 
with Matlab
• See CGP web site

 Cartesian Genetic Programming book
• Published in 2011 by Springer

Conclusions
Cartesian Genetic Programming is a graph based 

GP method capable of representing many 
computational structures
• programs, circuits, neural networks, systems of 

equations…

Genetic encoding is compact, simple and easy to 
implement and can handle multiple outputs easily.

The unique form of genetic redundancy in CGP 
makes mutational search highly effective

The effectiveness of CGP has been compared with 
many other GP methods and it is very competitive
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