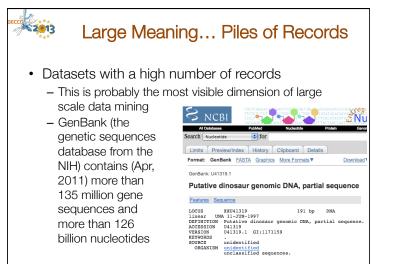
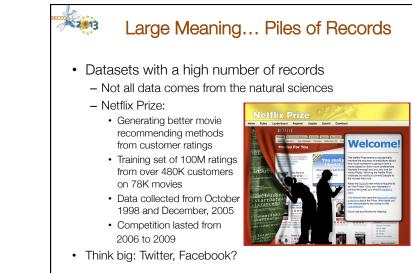


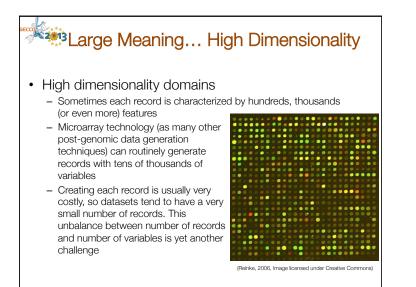
2013

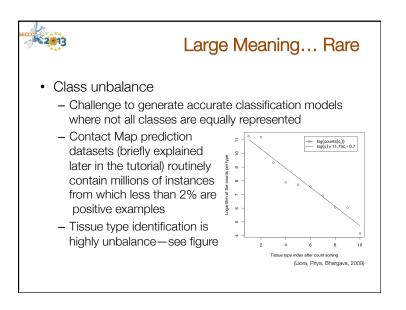
What Does Large Scale Mean?

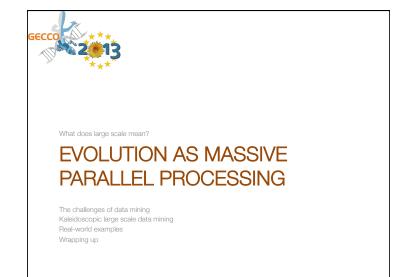
- Many scientific disciplines are currently experiencing a massive "data deluge"
- Vast amounts of data are available thanks to initiatives such as the human genome project or the virtual human physiome
- Data mining technologies need to deal with large volumes of data, scale accordingly, extract accurate models, and provide new insight
- So, what does large mean?

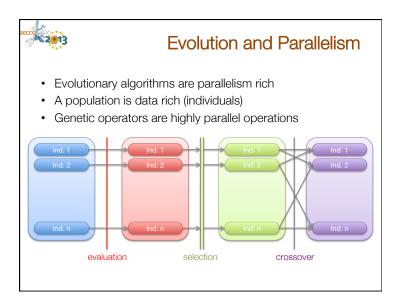


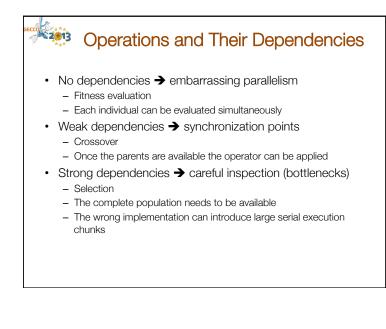












Other Perks

- Evaluation can be costly
- Some evolutionary models
 - Mimic natural evolution introducing spatial relations (remember Darwin' s islands?)
 - Are model after decentralized models (cellular automata like)
- Based on the nature of evolutionary algorithms and the above ingredients there multiple parallelization models has been proposed (Cantu-Paz, 2000; Alba, 2005)



The Challenges of Data Mining

• We have seen in the previous slides how evolutionary algorithms have a natural tendency for parallel processing, hence being suitable for large-scale data mining

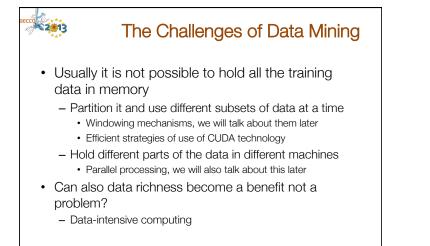
2013

• However, data mining presents a challenge that goes beyond pure optimization, which is that evaluation is based on *data*, not just on a fitness formula

2013

The Challenges of Data Mining

- Holding the data is the first bottleneck that largescale data mining needs to face
 - Efficiently parsing the data
 - Proper data structures to achieve the minimum memory footprint
 - It may sound like just a matter of programming, but it can make a difference
 - Specially important when using specialized hardware (e.g. CUDA)
 - Optimized publicly available data handling libraries exist (e.g. the HDF5 library)



2013

The Challenges of Data Mining

- Preprocessing
 - Lot of work in getting high-quality data
 - Getting the representation right
 - Both require that the data miners and the end users understand each other
- Classic challenges of machine learning
 - Over-learning
 - Our models need to have good predictive capacity
 - Generating interpretable solution
 - Discovering useful new knowledge inside the data

Large Scale Data Mining Using GBML

- Efficiency enhancement techniques
- Hardware acceleration techniques
- Parallelization models
- Data-intensive computing

Prelude: Efficiency Enhancement

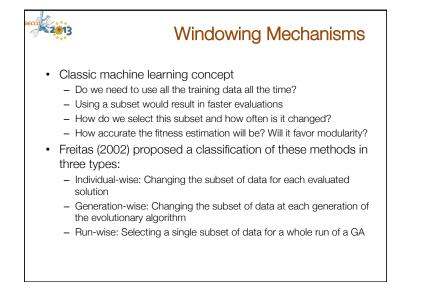
Review of methods and techniques explicitly designed for data mining purposes

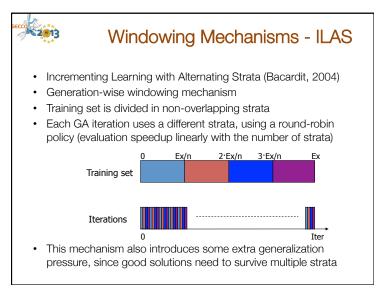
2013

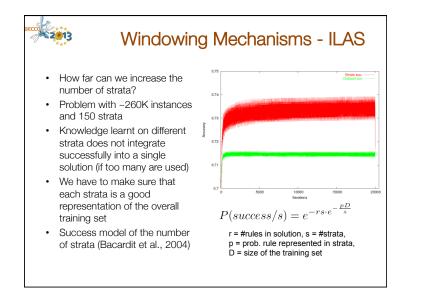
- Evolutionary computation efficiency enhancement techniques could also be applied (and we show some examples of this too)
- For a good tutorial on efficiency enhancement methods, please see GECCO 2005 Tutorial on efficiency enhancement by Kumara Sastry at
 - http://www.slideshare.net/kknsastry/principled-efficiency-enhancement-techniques.

Efficiency Enhancement Techniques

- Goal: Modify the data mining methods to improve their efficiency without special/parallel hardware
- Remember:
 - An individual can be a rule, or a rule set, or a decision tree...
 - Individuals parameters need to be estimated (accuracy, generality...)
- Included in this category are:
 - Windowing mechanisms
 - Exploiting regularities in the data
 - Fitness surrogates
 - Hybrid methods

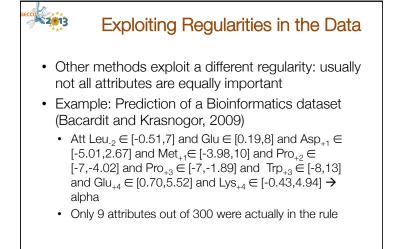






Exploiting Regularities

- The instances in the training set do not usually cover uniformly the search space
- Instead, there are some recurrent patterns and regularities, that can be exploited for efficiency purposes
- (Giraldez et al., 2005) proposed a method that
 precomputes the possible classifications of a rule
- As they only dealt with discrete/discretized attributes, they generate a tree structure to efficiently know which examples belong to each value of each attribute
- Finally the matches of a rule are the intersection of all these subsets of examples



2:13

Exploiting Regularities in the Data

Function match (instance x, rule r)
 Foreach attribute att in the domain
 If att is relevant in rule r and
 (x.att < r.att.lower or x.att > r.att.upper)
 Return false
 End!f
 EndFor
 Return true

 Given the previous example of a rule, 293
 iterations of this loop are wasted !!

Exploiting Regularities in the Data

· How to exploit this phenomenon?

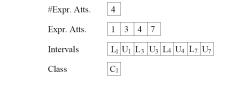
2013

- Reordering the attributes in the domain from specific to general (Butz et al., 2008)
 - Afterwards, starting the match process with the most specific one
 - The most specific attributes are usually those that make the process break. Thus, reducing usually the number of iterations in the match loop
 - Still, in the cases where a whole rule matches, the irrelevant attributes need to be evaluated

2013

Exploiting Regularities in the Data

- Could we completely get rid of the irrelevant attributes?
 - The attribute list knowledge representation (ALKR) (Bacardit, Burke and Krasnogor, 2009)
 - This representation *automatically identifies* which are the relevant/specific attributes for each rule
 - Only tracks information about them



Exploiting Regularities in the Data

- In ALKR two operators (specialize and generalize) add or remove attributes from the list with a given probability, hence exploring the *rule-wise* space of the relevant attributes
- ALKR match process is more efficient, however crossover is costlier and it has two extra operators
- Since ALKR chromosome only contains relevant information, the exploration process is more efficient. On large data sets it managed to generate better solutions

2013

2013

Fitness Surrogates

- In evolutionary algorithms, we can construct a function that *estimates* the evaluation of our solutions using the training set. This is usually known as a *fitness surrogate*
- Two recent works (Orriols et al., 2007) and (Llorà et al., 2007) use the structural information extracted from the model building process of competent genetic algorithms to build such a function
- Cheap surrogates can help avoid costly evaluations that tend to dominate execution time

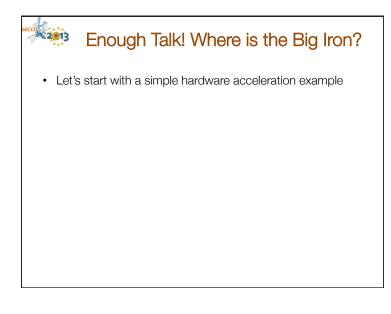
2013

Hybrid Methods

- The Memetic Pittsburgh Learning Classifier Systems (MPLCS) (Bacardit and Krasnogor, 2009) combines the classic GA exploration operators with local search (LS) methods.
 - The LS operators use information extracted from the evaluation process
 - After evaluating a rule set we know
 - Which rules are good and which rules are bad
 - Which parts of each rule are good and which parts are bad

Hybrid Methods

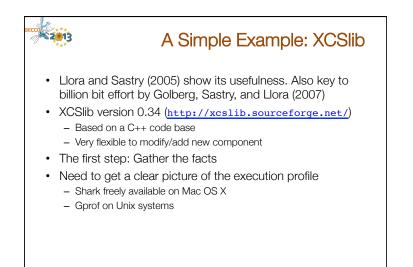
- Two kinds of LS operators
 - Rule set-wise operator
 - Takes N parents (N can be > 2) and generates a single offspring with the best rules of all of them
 - Rule-wise operators that edit rules
 - Rule cleaning drop conditions that misclassify
 - Rule splitting find the exact spot where a rule can be splitted and the generated rules cleaned
 - Rule generalizing –update a rule so it can correctly classify more examples
- Not only during the learning process. LS methods can also be used for post-processing the final rule sets (Franco et al., 2012)

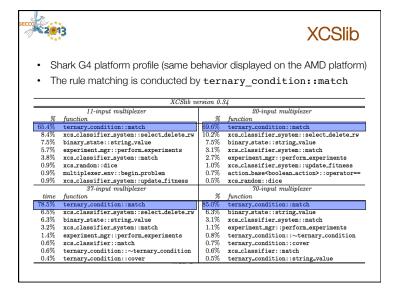


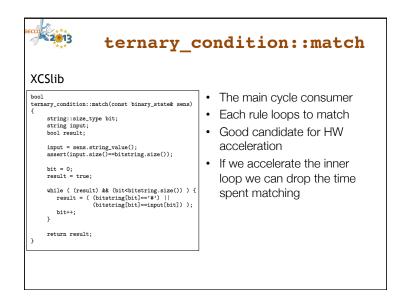
2013

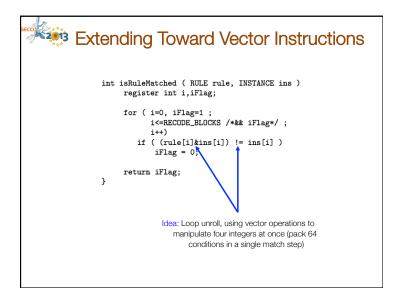
Hardware Acceleration Techniques

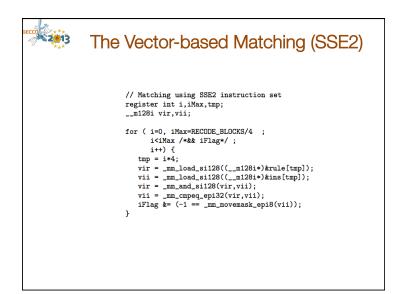
- Commodity hardware provides simple vectorized operations
- Result of the gaming world
- Usually operate over 128 bits (4 floats)
- Vector units are able to execute ops in 1 cycle
- IBM implemented Altivec
- Intel started with MMX and then SSE and derivates
- AMD 3DNow!, 3DNow+!

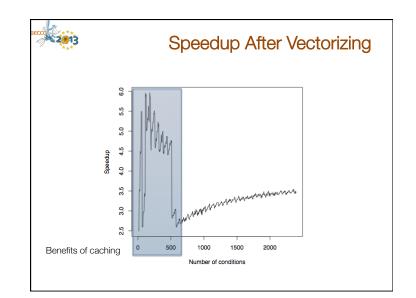


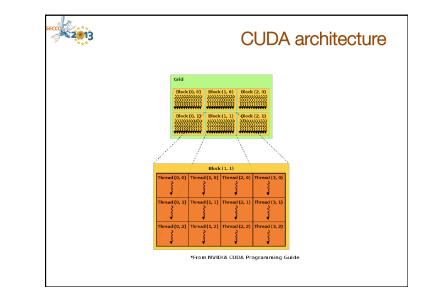




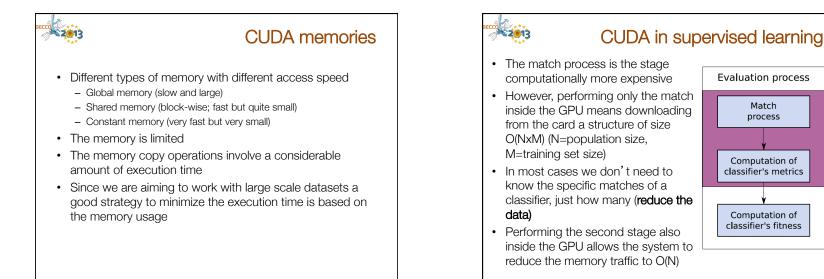


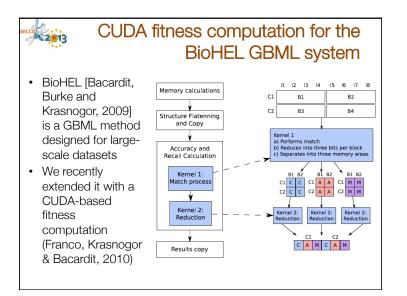




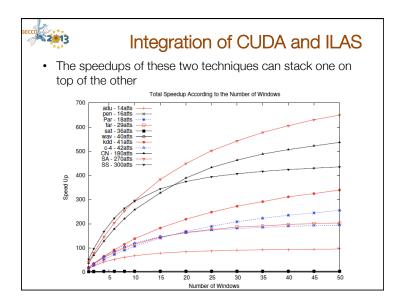


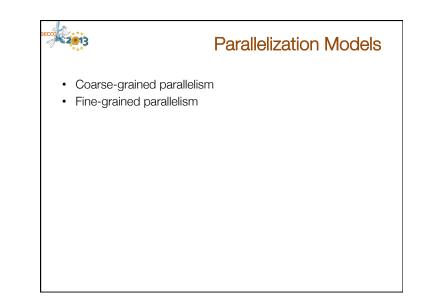
GPGPU





•	m	/e us iemo	sed C	UD, nd c	A in a comp	a Tes barec	sla C I the	BioHEL L C1060 card wit e run-time to th	h 4GB of gl	obal
•		Name	T	#Att	#Disc	#Cont	#CI	T. Serial (s)	T.CUDA (s)	Speed Up
-	Cont.	sat wav pen SS CN	5790 4539 9892 75583 234638	36 40 16 300 180	0 0 0 0	36 40 16 300 180	6 3 10 3 2	$\begin{array}{ccc} 0.03 \pm & 0.01 \\ 75.47 \pm & 9.38 \\ 149.70 \pm & 19.93 \\ 347979.80 \pm & 60982.74 \\ 821464.70 \pm 167542.04 \end{array}$	$\begin{array}{c} 25.91 \pm & 2.45 \\ 24.69 \pm & 0.81 \\ 40.04 \pm & 2.94 \\ 5992.28 \pm 247.50 \\ 18644.31 \pm 943.98 \end{array}$	3.7 3.1 3.7 58.1 44.1
	Mixed	adu far kdd SA Par c-4	43960 90868 444619 493788 235929 60803	14 29 41 270 18 42	8 24 15 26 18 42	6 5 26 244 0 0	2 8 23 2 2 3	$\begin{array}{rrrr} 5422.78 \pm & 1410.71 \\ 2471.28 \pm & 701.83 \\ 76442.32 \pm 23533.21 \\ 1252976.80 \pm 203186.55 \\ 524706.70 \pm & 98949.46 \\ 52917.95 \pm & 8059.55 \end{array}$	$\begin{array}{r} 271.73\pm \ 26.03\\ 94.99\pm \ 41.53\\ 2102.414\pm 191.34\\ 28759.71\pm 552.00\\ 19559.79\pm 671.70\\ 2417.83\pm 170.19\end{array}$	20.0 26.0 36.4 38.3 26.8 21.9
•	sp R	pecia	ally in ime fo	dor	nain	s wit	h cơ	l in large proble ontinuous attrib aset reduced f	outes	





Coarse-grained Parallelism

- The most extreme case of coarse-grained parallelism is executing independently several runs
- In which situations can we do this?

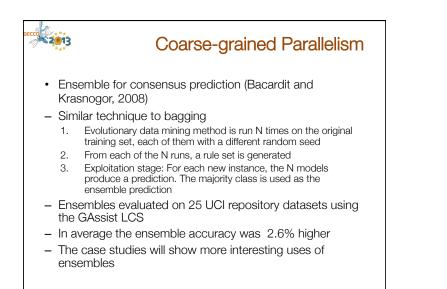
2013

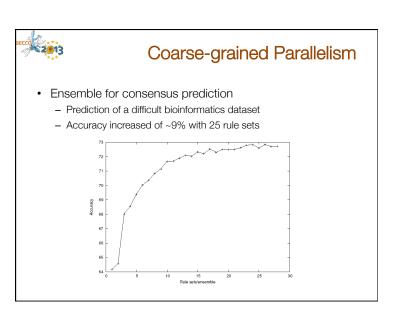
 Evolutionary algorithms are stochastic methods, we need to run always our methods several times. If we have the parallel hardware, this is a trivial way of gaining efficiency

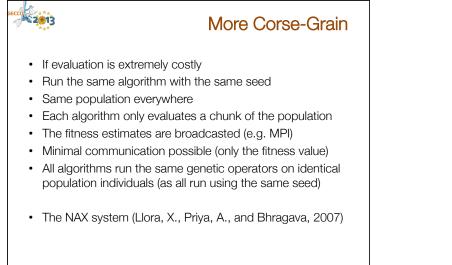
2013

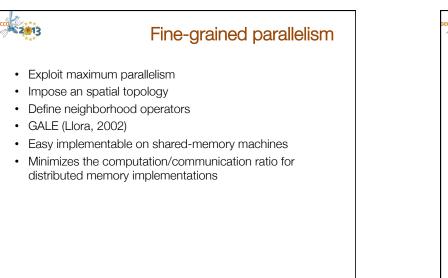
Coarse-grained Parallelism

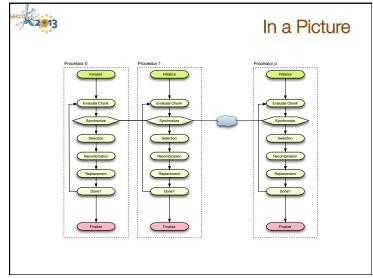
- There is, however, a more defined way of performing coarse-grain parallelism: ensemble learning
- These techniques integrate the collective predictions of a set of models in some principled fashion
- These models can be trained independently

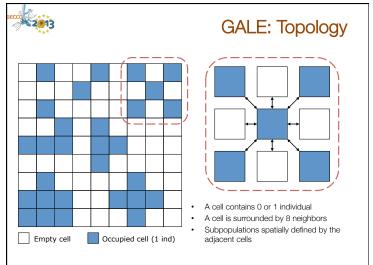


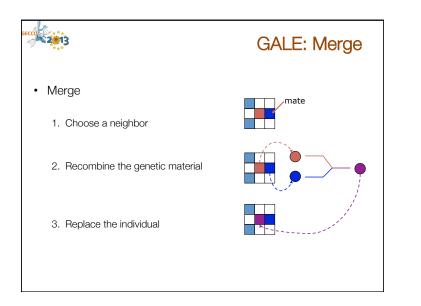


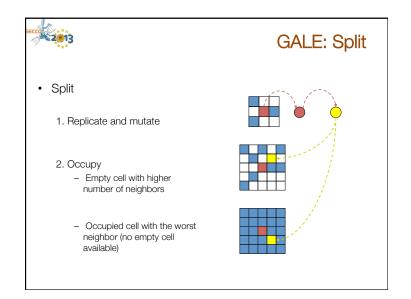


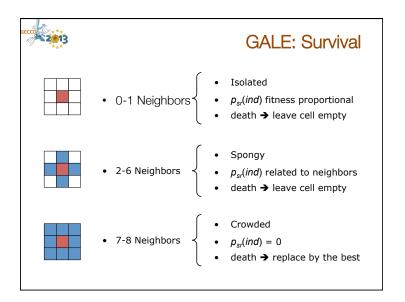


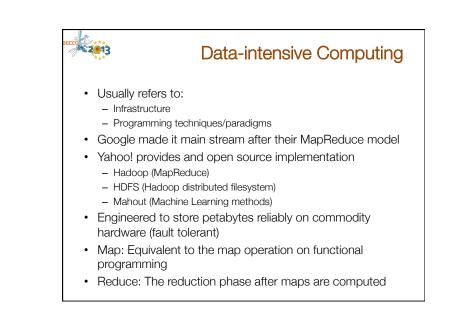


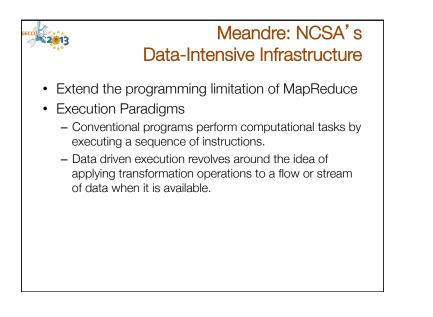


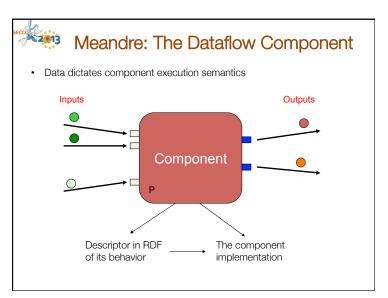


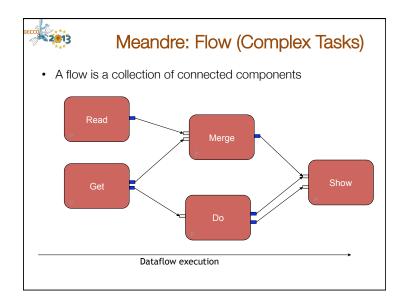


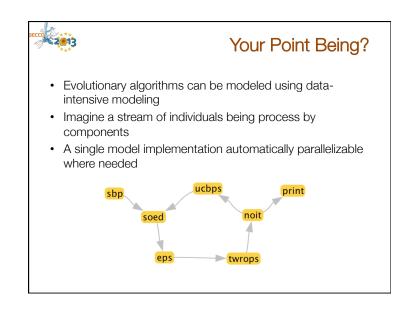


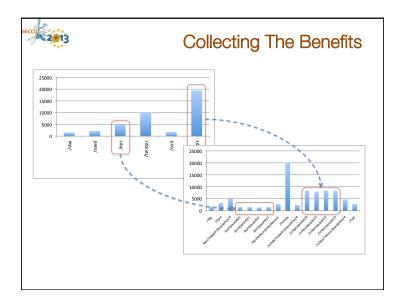


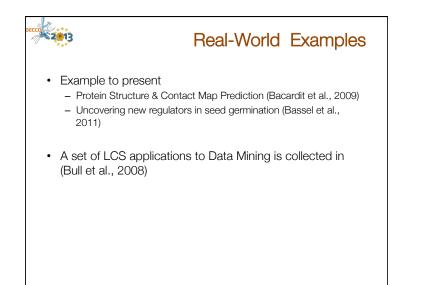


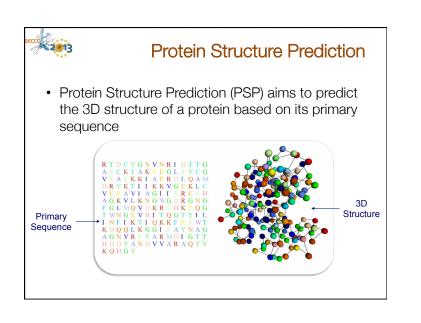


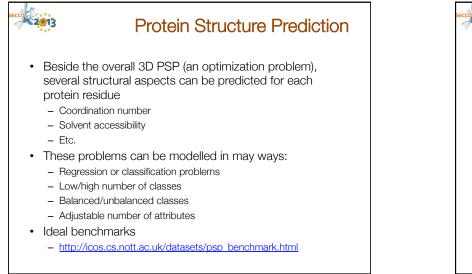


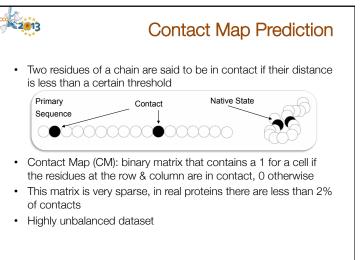


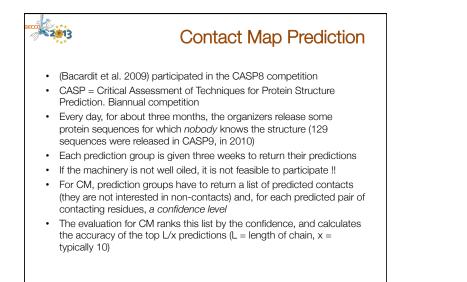


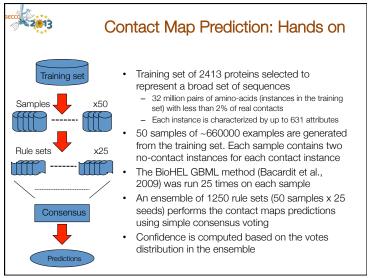


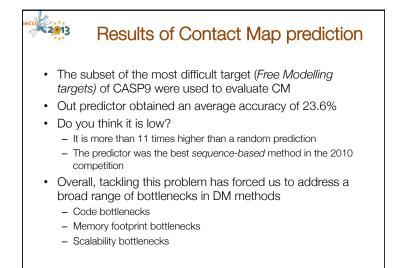












Functional Network Reconstruction for seed germination

- Microarray data obtained from seed tissue of Arabidopsis
 Thaliana
- 122 samples represented by the expression level of almost 14000 genes
- It had been experimentally determined whether each of the seeds had germinated or not
- Can we learn to predict germination/dormancy from the microarray data?
- [Bassel et al., 2011]

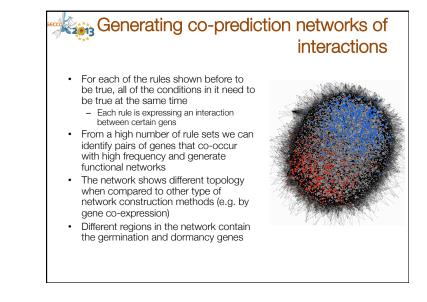
×2013	Generating rule	e sets
	Method	Accuracy
 BioHEL was able to predict the outcome of the samples with 93.5% accuracy (10 x 10-fold cross-validat Learning from a scrambled dataset (labels randomly assigned to sample produced ~50% accuracy 	iON C4.5 SVM	93.5 ± 1.0 92.4 ± 1.1 88.0 ± 2.4 79.8 ± 3.0 82.4 ± 0.4
If At1g27595>100.87 and At3g49000>68. germination If At4g34710>349.67 and At4g37760>150 germination If At3g03050>37.90 and At2g20630>96.0 germination If At5g54910>45.03 and At4g18975>16.7).75 and At1g30135>17.66 ↔ 1 and At3g02885>9.66 → P	→ Predict redict

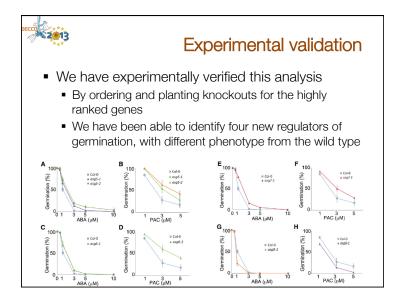
2:13

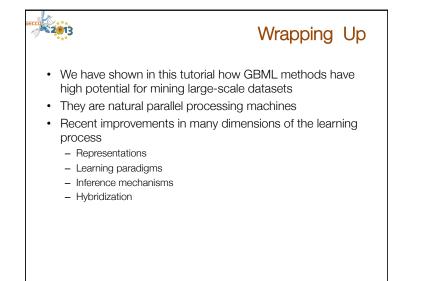
Identifying regulators

- Rule building process is stochastic
 - Generates different rule sets each time the system is run
- But if we run the system many times, we can see some patterns in the rule sets
 - Genes appearing quite more frequent than the rest
 - Some associated to dormancy
 - Some associated to germination

			the rules
AGI	Annotation	Node Score	Degree
Known Regulators in Nongermination Rules		Nongermination	
At2g28350	ARF10	206	22
At3g24220	NCED6	159	1
At2g04240	XERICO	112	8
At3g62090	PIL2	106	6
At5g07200	Gibberellin 20-oxidase3	104	12
At1g33060	ANAC014	100	19
At1g03790	SOMNUS	81	13
At2g26300	G Protein Alpha Subunit1	80	14
At1g30040	AtGA2ox2	80	3
At3g45640	AtMPK3	76	7
At3g24650	ABI3	68	14
At1g09570	PHY A	67	11
At1g55255	HUB2	53	16
At5g25900	GA3	53	14
At4g25420	GA5	50	36
At2g18790	PHYB	48	76
At1g50420	SCL3	47	72
At1g01360	PYL9	46	67
Known Regulators in Germination Rules		Germination	
At2g46340	SPA1	141	29
At5g11260	HY5	71	17
At2g40220	ABI4	67	19
At5g56860	GNC	45	76







2013

Global summary of techniques

 5 criteria: Positive (Pos)/negative (Neg) effect on learning capacity, Run-time reduction by means of: efficiency enhancement (Enh), hardware solutions (HW) or parallel models (Par)

Technique	Pos	Neg	Enh	HW	Par
Windowing mechanisms	у	У	У	n	n
Rule match precomputing	n	n	У	n	n
Reordering attributes by specificity	n	n	у	n	n
Attribute List Knowledge representation	у	n	У	n	n
Hybrid methods	у	n	у	n	n
Fitness surrogates	n	У	У	n	n
Vectorial matching	n	n	у	у	n
GPGPU matching	n	n	n	у	n
Ensemble mechanisms	у	n	n	n	у
Master-slave parallel models	n	n	n	n	у
Fine-grained parallel models	у	у	n	n	у
Data-intensive computing	n	n	n	n	у

2013

The Game Has a New Name

- The exception is becoming norm
 - Efficient parallel designs
 - Efficiency enhancement methods
 - Hardware support (SSE, CUDA, etc.)
- However, all these components cannot be used blindly, they have to be adjusted properly, accordingly to the characteristics/dimensions of the problem

Better Understanding

- Theoretical analysis of the different facets of a GBML system can help
- Understand better why/when can the components perform well
- Design robust policies that can take the best of the techniques at hand
- Provide insight on parameterization of methods

 If we would like the community to use GBML methods, we have to make them easy to use
- Some work already exists (Butz, 2006; Franco et al., 2011), but we still have a long road ahead of us

Do not Be Shy

- GBML systems are highly flexible, with good explanatory power, and can have good scalability
- · Go and give it a shoot!

2013 References http://www.ncbi.nlm.nih.gov/Genbank/index.html http://www.netflixprize.com/ • V. Reinke, Germline genomics (January 20, 2006), WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.74.1, http:// www.wormbook.org Bernadó, E., Ho, T.K., Domain of Competence of XCS Classifier System in Complexity Measurement Space, IEEE Transactions on Evolutionary Computation, 9: 82-104, 2005. "Physicists brace themselves for Ihc ' data avalanche' ." www.nature.com/news/2008/080722/full/news.2008.967.html · M. Pop and S. L. Salzberg, "Bioinformatics challenges of new sequencing technology," Trends in Genetics, vol. 24, no. 3, pp. 142 - 149, 2008 http://www.hdfgroup.org/HDF5 K. Sastry, "Principled Efficiency-Enhancement Techniques", GECCO-2005 Tutorial A.A. Freitas, "Data Mining and Knowledge Discovery with Evolutionary Algorithms", Springer-Verlag, 2002 • J. Bacardit, Pittsburgh Genetics-Based Machine Learning in the Data Mining era: Representations, generalization, and run-time. PhD thesis, Ramon Llull University, Barcelona, Spain, 2004

2013

2013

References

- Jaume Bacardit, David E. Goldberg, Martin V. Butz, Xavier Llorà and Josep M. Garrell, Speeding-up Pittsburgh Learning Classifier Systems: Modeling Time and Accuracy, 8th International Conference on Parallel Problem Solving from Nature - PPSN VIII
- D. Song, M.I. Heywood and A.N. Zincir-Heywood, Training genetic programming on half a million patterns: an example from anomaly detection, IEEE Transactions on Evolutionary Computation, vol. 9, no. 3, pp 225-239, 2005
- Llora, X., Priya, A., and Bhragava, R. (2007), Observer-Invariant Histopathology using Genetics-Based Machine Learning. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2007), 2098–2105
- Giráldez R, Aguilar-Ruiz JS, Santos JCR (2005) Knowledge-based fast evaluation for evolutionary learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C 35(2):254–261
- J. Bacardit, E. K. Burke, and N. Krasnogor. Improving the scalability of rule-based evolutionary learning. Memetic Computing, 1(1):55-67, 2009
- M. V. Butz, P. L. Lanzi, X. Llorà, and D. Loiacono. An analysis of matching in learning classifier systems. In GECCO '08: Proceedings of the 10th annual conference on Genetic and evolutionary computation, pp. 1349–1356. ACM, 2008.
- Llorà, X., Sastry, K., Yu, T., and Goldberg, D. E. Do not match, inherit: fitness surrogates for genetics-based machine learning techniques. In Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, pp 1798-1805, ACM, 2007

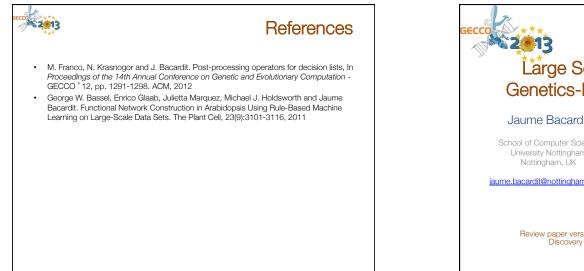
secco

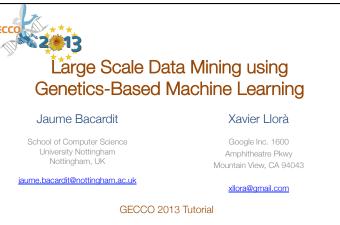
References

- Orriols-Puig, A., Bernadó-Mansilla, E., Sastry, K., and Goldberg, D. E. Substructrual surrogates for learning decomposable classification problems: implementation and first results. 10th International Workshop on Learning Classifier Systems, 2007
- J. Bacardit and N. Krasnogor, Performance and Efficiency of Memetic Pittsburgh Learning Classifier Systems, Evolutionary Computation Journal, 17(3):307-342, 2009
- G. Wilson and W. Banzhaf, "Linear genetic programming gpgpu on microsoft's xbox 360," in Proceedings of the 2008 Congress on Evolutionary Computation, pp. 378-385. IEEE Press, 2008
- <u>http://www.gpgpgpu.com/</u>
- J. Bacardit and N. Krasnogor. "Empirical evaluation of ensemble techniques for a Pittsburgh Learning Classifier System". Learning Classifier Systems. LNAI 4998, pp. 255-268, 2008, Springer
- <u>http://www.infobiotic.net/PSPbenchmarks/</u>
- J. Bacardit, M. Stout, J.D. Hirst, K. Sastry, X. Llorà and N. Krasnogor. Automated Alphabet Reduction Method with Evolutionary Algorithms for Protein Structure Prediction In Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation (GECC02007), pp. 346-353, ACM Press, 2007
- Goldberg, D. E., Sastry, K. and Llora, X. (2007), Toward routine billion-variable optimization using genetic algorithms. Complexity, 12(3), 27–29.

References

- G. Venturini. SIA: A supervised inductive algorithm with genetic search for learning attributesbased concepts. In: Brazdil PB (ed) Machine Learning: ECML-93 - Proc. of theEuropean Conference on Machine Learning, Springer-Verlag, Berlin, Heidelberg, pp 280–296, 1993
- J. Rissanen J. Modeling by shortest data description. Automatica vol. 14:465–471, 1978
- L. Bull, E. Bernadó-Mansilla and J. Holmes (editors), Learning Classifier Systems in Data Mining. Springer, 2008
- · Alba, E., Ed. Parallel Metaheuristics. Wiley, 2007.
- Cantu-Paz, E. Efficient and Accurate Parallel Genetic Algorithms. Springer, 2000.
- Llora, X. E2K: evolution to knowledge. SIGEVOlution 1, 3 (2006), 10–17.
- Llora, X. Genetic Based Machine Learning using Fine-grained Parallelism for Data Mining. PhD thesis, Enginyeria i Arquitectura La Salle. Ramon Llull University, Barcelona, February, 2002.RFC2413, The Dublin Core Metadata Initiative, 2008.
- Llora, X., Acs, B., Auvil, L., Capitanu, B., Welge, M., and Goldberg, D. E. Meandre: Semantic-driven data-intensive flows in the clouds. In Proceedings of the 4th IEEE International Conference on e-Science (2008), IEEE press, pp. 238–245.
- M. Butz, Rule-Based Evolutionary Online Learning Systems: A Principled Approach to LCS Analysis and Design, Studies in Fuzziness and Soft Computing, vol 109. Springe,r, 2006





Review paper version of this tutorial: WIREs Data Mining Knowledge Discovery 2013, 3: 37–61 doi: 10.1002/widm.1078