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%23 Machine Learning and Data Mining
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Core of Data Mining =» Machine
learning: How to construct programs
that automatically learn from
experience [Mitchell, 1997]
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Jaume Bacardit

Did my PhD in evolutionary learning
Postdoc in Protein Structure Prediction
2005-2007

Since 2008 lecturer in Bioinformatics at the
University of Nottingham

Research interests

— Large-scale data mining

— Biodata mining

lecco;

<2813

What Will We Cover?

What does large scale mean?

Evolution as massive parallel processing
The challenges of data mining
Kaleidoscopic large scale data mining
Real examples

Summary and further directions




MEAN?

%23 | arge Meaning. .. Piles of Records

» Datasets with a high number of records

— This is probably the most visible dimension of large
scale data mining

— GenBank (the
genetic sequences
database from the
NIH) contains (Apr,
2011) more than
135 million gene
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What Does Large Scale Mean?

* Many scientific disciplines are currently
experiencing a massive “data deluge”

* Vast amounts of data are available thanks to
initiatives such as the human genome project or
the virtual human physiome

* Data mining technologies need to deal with large
volumes of data, scale accordingly, extract
accurate models, and provide new insight

* So, what does large mean?

GECCO,

~23 | arge Meaning... Piles of Records

» Datasets with a high number of records
— Not all data comes from the natural sciences

— Netflix Prize:

» Generating better movie
recommending methods
from customer ratings

* Training set of 100M ratings
from over 480K customers
on 78K movies

« Data collected from October
1998 and December, 2005

« Competition lasted from
2006 to 2009

+ Think big: Twitter, Facebook?
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%2#3| arge Meaning... High Dimensionality

* High dimensionality domains

— Sometimes each record is characterized by hundreds, thousands
(or even more) features

— Microarray technology (as many other
post-genomic data generation
techniques) can routinely generate
records with tens of thousands of
variables

— Creating each record is usually very
costly, so datasets tend to have a very
small number of records. This
unbalance between number of records
and number of variables is yet another
challenge

(Reinke, 2006, Image licensed under Creative Commons)

]
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Naw3 Large Meaning... Rare

e Class unbalance

— Challenge to generate accurate classification models
where not all classes are equally represented

— Contact Map prediction S ENE
datasets (briefly explained -
later in the tutorial) routinely
contain millions of instances
from which less than 2% are
positive examples

— Tissue type identification is
highly unbalance—see figure . . .+ .+ %

Tissue type index after count sorting
(Uora, Priya, Bhargava, 2009)

o log(counts(c))
— logly) = 11.73¢,-0.7

Logarithm of the counts per type
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What does large scale mean?

EVOLUTION AS MASSIVE
PARALLEL PROCESSING

l
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K3 Evolution and Parallelism

« Evolutionary algorithms are parallelism rich
» A population is data rich (individuals)
» Genetic operators are highly parallel operations
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evaluation selection crossover




%23 Operations and Their Dependencies

» No dependencies = embarrassing parallelism
— Fitness evaluation
— Each individual can be evaluated simultaneously
» Weak dependencies = synchronization points
— Crossover
— Once the parents are available the operator can be applied
» Strong dependencies =» careful inspection (bottlenecks)
— Selection
— The complete population needs to be available

— The wrong implementation can introduce large serial execution
chunks

s But?

* What about the data”?

744
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Roag3 Other Perks

» Evaluation can be costly

» Some evolutionary models
— Mimic natural evolution introducing spatial relations (remember
Darwin’ s islands?)
— Are model after decentralized models (cellular automata like)
» Based on the nature of evolutionary algorithms and the
above ingredients there multiple parallelization models has
been proposed (Cantu-Paz, 2000; Alba, 2005)
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arallel processing
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THE CHALLENGES OF DATA
MINING

Kaleidoscopi
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Evolution
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e data mining




Raw3 The Challenges of Data Mining

* We have seen in the previous slides how
evolutionary algorithms have a natural tendency
for parallel processing, hence being suitable for
large-scale data mining

* However, data mining presents a challenge that
goes beyond pure optimization, which is that
evaluation is based on data, not just on a fitness
formula

< Waen3 The Challenges of Data Mining

» Usually it is not possible to hold all the training
data in memory
— Partition it and use different subsets of data at a time
« Windowing mechanisms, we will talk about them later
« Efficient strategies of use of CUDA technology
— Hold different parts of the data in different machines
« Parallel processing, we will also talk about this later
» Can also data richness become a benefit not a
problem?
— Data-intensive computing
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“Weaws The Challenges of Data Mining

* Holding the data is the first bottleneck that large-
scale data mining needs to face
— Efficiently parsing the data
— Proper data structures to achieve the minimum memory
footprint

« It may sound like just a matter of programming, but it can
make a difference

» Specially important when using specialized hardware (e.g.
CUDA)
— Optimized publicly available data handling libraries exist
(e.g. the HDF5 library)

w213

The Challenges of Data Mining

* Preprocessing
— Lot of work in getting high-quality data
— Getting the representation right
— Both require that the data miners and the end users understand
each other
* Classic challenges of machine learning
— QOver-learning
» Our models need to have good predictive capacity
— Generating interpretable solution
« Discovering useful new knowledge inside the data




The challengs

KALEIDOSCOPIC LARGE SCALE
DATA MINING

d examples

Rae3 Prelude: Efficiency Enhancement

* Review of methods and techniques explicitly
designed for data mining purposes

+ Evolutionary computation efficiency enhancement
techniques could also be applied (and we show
some examples of this too)

» For a good tutorial on efficiency enhancement

methods, please see GECCO 2005 Tutorial on
efficiency enhancement by Kumara Sastry at

—  http://www.slideshare.net/kknsastry/principled-efficiency-enhancement-techniques
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%23 | grge Scale Data Mining Using GBML

« Efficiency enhancement techniques
» Hardware acceleration techniques
Parallelization models
Data-intensive computing

%2 Ffficiency Enhancement Techniques

* Goal: Modify the data mining methods to improve
their efficiency without special/parallel hardware

* Remember:
— An individual can be a rule, or a rule set, or a decision tree...
— Individuals parameters need to be estimated (accuracy, generality...)

* Included in this category are:
— Windowing mechanisms
— Exploiting regularities in the data
— Fitness surrogates
— Hybrid methods




Windowing Mechanisms

» Classic machine learning concept
— Do we need to use all the training data all the time?
— Using a subset would result in faster evaluations
— How do we select this subset and how often is it changed?
— How accurate the fitness estimation will be? Will it favor modularity?

» Freitas (2002) proposed a classification of these methods in
three types:

— Individual-wise: Changing the subset of data for each evaluated
solution

— Generation-wise: Changing the subset of data at each generation of
the evolutionary algorithm

— Run-wise: Selecting a single subset of data for a whole run of a GA

Cw2m13

Windowing Mechanisms - ILAS

* How far can we increase the
number of strata?

*  Problem with ~260K instances
and 150 strata

» Knowledge learnt on different
strata does not integrate

Accumcy

successfully into a single »
solution (if too many are used)

*  We have to make sure that

each strata is a good ‘ o ons e
representation of the overall g2
training set P(success/s) = e

» Success model of the number
of strata (Bacardit et al., 2004)

r = #rules in solution, s = #strata,
p = prob. rule represented in strata,
D = size of the training set

747
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Windowing Mechanisms - ILAS

* Incrementing Learning with Alternating Strata (Bacardit, 2004)
» Generation-wise windowing mechanism
» Training set is divided in non-overlapping strata

» Each GA iteration uses a different strata, using a round-robin
policy (evaluation speedup linearly with the number of strata)

0 Ex/n 2°Ex/n 3-Ex/n Ex
Training set
Iterations - l

0 Iter

» This mechanism also introduces some extra generalization
pressure, since good solutions need to survive multiple strata

secce i‘\? 1843

Exploiting Regularities

» The instances in the training set do not usually cover
uniformly the search space

* Instead, there are some recurrent patterns and regularities,
that can be exploited for efficiency purposes

» (Giraldez et al., 2005) proposed a method that
precomputes the possible classifications of a rule

» As they only dealt with discrete/discretized attributes, they
generate a tree structure to efficiently know which
examples belong to each value of each attribute

» Finally the matches of a rule are the intersection of all
these subsets of examples
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Exploiting Regularities in the Data

» Other methods exploit a different regularity: usually
not all attributes are equally important

+ Example: Prediction of a Bioinformatics dataset
(Bacardit and Krasnogor, 2009)

+ AttLeu, €[-0.51,7] and Glu € [0.19,8] and Asp, , €
[-5.01,2.67] and Met,,€ [-3.98,10] and Pro_, €
[-7,-4.02] and Pro,; € [-7,-1.89] and Trp,; € [-8,13]
and Glu,, € [0.70,5.52] and Lys,, € [-0.43,4.94] >
alpha

* Only 9 attributes out of 300 were actually in the rule

213

Exploiting Regularities in the Data

» How to exploit this phenomenon?

» Reordering the attributes in the domain from
specific to general (Butz et al., 2008)
— Afterwards, starting the match process with the most
specific one
— The most specific attributes are usually those that make

the process break. Thus, reducing usually the number
of iterations in the match loop

— Still, in the cases where a whole rule matches, the
irrelevant attributes need to be evaluated

748

“Ra#3  Eyploiting Regularities in the Data

» Function match (instance x, rule )
Foreach attribute att in the domain
If att is relevant in rule r and
(x.att < r.att.lower or x.att > r.att.upper)

Return false
Endlf

EndFor
Return true

» Given the previous example of a rule, 293
iterations of this loop are wasted !!

w213

Exploiting Regularities in the Data

» Could we completely get rid of the irrelevant
attributes?
— The attribute list knowledge representation (ALKR)
(Bacardit, Burke and Krasnogor, 2009)

— This representation automatically identifies which are the
relevant/specific attributes for each rule

— Only tracks information about them

HExpr. Atts.
Expr. Atts.

Intervals |L]u Ls [us [t L s |

Class




X213 Exploiting Regularities in the Data

* In ALKR two operators (specialize and generalize)
add or remove attributes from the list with a given
probability, hence exploring the rule-wise space of
the relevant attributes

* ALKR match process is more efficient, however
crossover is costlier and it has two extra operators

+ Since ALKR chromosome only contains relevant
information, the exploration process is more
efficient. On large data sets it managed to
generate better solutions

R Hybrid Methods

* The Memetic Pittsburgh Learning Classifier
Systems (MPLCS) (Bacardit and Krasnogor, 2009)
combines the classic GA exploration operators
with local search (LS) methods.

— The LS operators use information extracted from the
evaluation process
— After evaluating a rule set we know
« Which rules are good and which rules are bad
« Which parts of each rule are good and which parts are bad

749

N3 Fitness Surrogates

* In evolutionary algorithms, we can construct a
function that estimates the evaluation of our
solutions using the training set. This is usually
known as a fitness surrogate

» Two recent works (Orriols et al., 2007) and (Llora
et al., 2007) use the structural information
extracted from the model building process of
competent genetic algorithms to build such a
function

» Cheap surrogates can help avoid costly
evaluations that tend to dominate execution time

hoag3 Hybrid Methods

» Two kinds of LS operators

— Rule set-wise operator
» Takes N parents (N can be > 2) and generates a single
offspring with the best rules of all of them
— Rule-wise operators that edit rules
* Rule cleaning — drop conditions that misclassify

» Rule splitting — find the exact spot where a rule can be splitted
and the generated rules cleaned

» Rule generalizing —update a rule so it can correctly classify
more examples
* Not only during the learning process. LS methods can also
be used for post-processing the final rule sets (Franco et
al., 2012)




%283 Enough Talk! Where is the Big Iron?

» Let’s start with a simple hardware acceleration example

“Waws A Simple Example: XCSlib

» Llora and Sastry (2005) show its usefulness. Also key to
billion bit effort by Golberg, Sastry, and Llora (2007)

* XCSlib version 0.34 (attp://xcslib.sourceforge.net/)
— Based on a C++ code base
— Very flexible to modify/add new component

» The first step: Gather the facts

* Need to get a clear picture of the execution profile
— Shark freely available on Mac OS X
— Gprof on Unix systems

750

%23 Hardware Acceleration Techniques

» Commodity hardware provides simple vectorized
operations

* Result of the gaming world

» Usually operate over 128 bits (4 floats)

» Vector units are able to execute ops in 1 cycle

* IBM implemented Altivec

* Intel started with MMX and then SSE and derivates
* AMD 3DNow!, 3DNow-+!

GECCO,

Raws XCSlib

« Shark G4 platform profile (same behavior displayed on the AMD platform)
* The rule matching is conducted by ternary condition::match

XCSlib version 0.34

11-input multiplezer 20-input multiplezer

%__function % nction
65.4 ternary.condition: :match || 69.6% ternary.condition: :match

84% xcs.classifier_system::select.deleterw | 10.2% xcs_classifier.system::select.delete_rw

7.5% binary.state::string.value 7.5% binary.state::string value
5.7% experiment.mgr::perform_experiments 3.1% xcsclassifier_system::match
3.8% xcs.classifier_system::match 2.7% experiment.mgr::perform_experiments
0.9% xcsrandom: :dice 1.0% xcs_classifier_system: :update_fitness
0.9% multiplexer_env::begin_problem 0.7% action base<boolean_action>::operator==
0.9% xcsclassifier-systen: :update_fitness 0.5% _xcs_random: :dice
87-input multiplezer 70-input multiplezer
time  function %  function
[[785% _ternary_condition::match | FS,O% ternary.condition: :match
6.5% xcsclassifier-systen::select-deleterw | 6.3% binary-state::string-value
6.3% binary_state::string.value 3.1% xcs_classifier_system: :match
3.2% xcs_classifier_system: :match 1.1% experiment._mgr: :perform_experiments
1.4% experiment_mgr::perform_experiments 0.8% ternary_condition::~ternary_condition
0.6% xcs_classifier::match 0.7% ternary_condition::cover
0.6% ternary_condition::~ternary_condition 0.6% xcs_classifier::match
0.4% ternary-condition::cover 0.5% ternary-condition::string-value
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XCSlib

‘bool

ternary_condition: :match(const binary_statek sens)

string::size_type bit;
string input;
bool result;

input = sens.string_value();
assert (input.size()==bitstring.size());

bit = 0;
result = true;

while ( (result) && (bit<bitstring.size()) ) {
result = ( (bitstringlbit]l=="#") ||
(bitstring[bit]==input[bit]) );

return result;

ternary condition::match

The main cycle consumer
Each rule loops to match
Good candidate for HW
acceleration

If we accelerate the inner
loop we can drop the time
spent matching

]
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The Vector-based Matching (SSE2)

// Matching using SSE2 instruction set
register int i,iMax,tmp;

_-m128i vir,vii;

for ( i=0, iMax=RECODE_BLOCKS/4 ;
i<iMax /*&& iFlag*/ ;

i++) {
tmp = ix4;
vir = _mm_load_sil128((__m128i*)&rule[tmp]);
vii = _mm_load_sil128((__m128i*)&ins [tmp]);
vir = _mm_and_si128(vir,vii);
vii = _mm_cmpeq_epi32(vir,vii);
iFlag &= (-1 == _mm_movemask_epi8(vii));

751
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~*2#3 Extending Toward Vector Instructions

int isRuleMatched ( RULE rule, INSTANCE ins )
register int i,iFlag;

for ( i=0, iFlag=1 ;
i<=RECODE_BLOCKS /*&& iFlag*/ ;

i++)
if ( (rulel[il&ins[i]) != ins[i] )
iFlag = 0}
return iFlag;
}
Idea: Loop unroll, using vector operations to
manipulate four integers at once (pack 64
conditions in a single match step)
L E
281 o
3 Speedup After Vectorizing
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Hardware Acceleration On Steroids

NVIDIA" s Computer Unified Device Architecture (CUDA) is
a parallel computing architecture that exploits the capacity
within NVIDIA’ s Graphic Processor Units

CUDA runs thousands of threads at the same time >
Single Program, Multiple Data paradigm

In the last few years GPUs have been extensively used in
the evolutionary computation field
— Many papers and applications are available at
http://www.gpgpgpu.com
The use of GPGPUs in Machine Learning involves a
greater challenge because it deals with more data but this
also means it is potentially more parallelizable

CUDA memories

Different types of memory with different access speed
— Global memory (slow and large)

— Shared memory (block-wise; fast but quite small)

— Constant memory (very fast but very small)

The memory is limited

The memory copy operations involve a considerable
amount of execution time

Since we are aiming to work with large scale datasets a
good strategy to minimize the execution time is based on
the memory usage

752
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“Wam3 CUDA architecture

Grid

Block (0, 0) | Block(1,0) | Block (2, 0)

Block (0, 1)1 Block (1, 1) ™Block 2, 1)

Block (1, 1)

*rom NVIDIA CUDA Programming Guide

23 CUDA in supervised learning

» The match process is the stage
computationally more expensive

» However, performing only the match
inside the GPU means downloading
from the card a structure of size
O(NxM) (N=population size,
M=training set size)

 In most cases we don’ t need to
know the specific matches of a
classifier, just how many (reduce the
data) Computation of

» Performing the second stage also classifier's fitness
inside the GPU allows the system to

Evaluation process

Match
process

Computation of
classifier's metrics

reduce the memory traffic to O(N)

GPGPU
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» BioHEL [Bacardit,
Burke and
Krasnogor, 2009]
is a GBML method
designed for large-
scale datasets

* We recently
extended it with a
CUDA-based
fitness
computation
(Franco, Krasnogor
& Bacardit, 2010)

CUDA fitness computation for the

BioHEL GBML system

Memory calculations

Structure Flatenning
and Copy

Y

Accuracy and
Recall Calculation

Kerne| 1:
Match process

¥

Kernel 2:
Reduction

Results copy

L _ Kernel 2:
Reduction

n 2 13 14 15 16 17 18

c1 Bl B2

c2 B3 B4

Kernel 1

a) Performs match

b) Reduces into three bits per block
<) Separates into three memory areas

AR TR

B1 B2 B1 B2
afe]e] o [ATa] o [ulu]
c2fc c2[a]a] c2[m[m]

Kernel 2: Kernel 2:
Reduction | | Reduction

C1 c2
[cTaTm]cTaTw]
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Integration of CUDA and ILAS

» The speedups of these two techniques can stack one on

top of the other

Total Speedup According to the Number of Windows

700 . .
adu - 14atts —+—
pen - 16atts ——
Par - 18atts ---*

600 - far - 29atts —&

sat - 36alts —m—

500 b C-4 - 42atts
CN - 180atts ——

SA - 270atts —

SS - 300atts —»—

Speed Up

20 25 30
Number of Windows

40 45 50

753

%2#3 performance of BioHEL using CUDA

» We used CUDA in a Tesla C1060 card with 4GB of global
memory, and compared the run-time to that of Intel Xeon

E5472 3.0GHz processors

Name IT| #Att #Disc #Cont #Cl T. Serial (s) T.CUDA (s) Speed Up

sat 5790 36 0 36 6 0.03+ 0.01 25.91+ 245 37

wav 4539 40 0 40 3 75.47+ 9.38 24.69+ 0.81 3.1

€ pen 9892 16 ] 16 10 149.70+ 19.93 40.04+ 2.94 37
8 SSs 75583 300 0 300 3 347979.80+ 60982.74 5992.281247.50 58.1
CN 234638 180 0 180 2 821464.70£167542.04 18644.31+943.98 44.1

adu 43960 14 8 6 2 542278+ 1410.71 271.73+ 26.03 20.0

far 90868 29 24 5 8 2471.28+  701.83 94.991 41.53 26.0

3 kdd 444619 41 15 26 23 76442.32+ 23533.21 2102.414+191.34 36.4
= SA 493788 270 26 244 2  1252976.80+203186.55 28759.71+552.00 38.3
= Par 235929 18 18 0 2 524706.70+ 98949.46 19559.79+671.70 26.8
c-4 60803 42 42 0 3 52917.95+ 8059.55 2417.83£170.19 21.9

« Biggest speedups obtained in large problems (|T| or #Att),
specially in domains with continuous attributes

» Run time for the largest dataset reduced from 2 weeks to

8 hours

GECCO
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» Coarse-grained parallelism
* Fine-grained parallelism

Parallelization Models




Rae Coarse-grained Parallelism

* The most extreme case of coarse-grained
parallelism is executing independently several runs

* In which situations can we do this?

— Evolutionary algorithms are stochastic methods, we
need to run always our methods several times. If we
have the parallel hardware, this is a trivial way of gaining
efficiency

Ram3 Coarse-grained Parallelism

* Ensemble for consensus prediction (Bacardit and
Krasnogor, 2008)

— Similar technique to bagging

1. Evolutionary data mining method is run N times on the original
training set, each of them with a different random seed

2. From each of the N runs, a rule set is generated
3.  Exploitation stage: For each new instance, the N models
produce a prediction. The majority class is used as the
ensemble prediction
— Ensembles evaluated on 25 UCI repository datasets using
the GAssist LCS

— In average the ensemble accuracy was 2.6% higher

— The case studies will show more interesting uses of
ensembles

754

* There is, however, a more defined way of performing
coarse-grain parallelism: ensemble learning

* These technigues integrate the collective predictions of a
set of models in some principled fashion

* These models can be trained independently

w3 Coarse-grained Parallelism

* Ensemble for consensus prediction
— Prediction of a difficult bioinformatics dataset
— Accuracy increased of ~9% with 25 rule sets

0 5 10 15 20 25 30
Rule sets/ensemble
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“Rawi More Corse-Grain

 If evaluation is extremely costly

* Run the same algorithm with the same seed

» Same population everywhere

» Each algorithm only evaluates a chunk of the population
» The fitness estimates are broadcasted (e.g. MPI)

» Minimal communication possible (only the fitness value)

» All algorithms run the same genetic operators on identical
population individuals (as all run using the same seed)

» The NAX system (Llora, X., Priya, A., and Bhragava, 2007)

fseccq,

Rz Fine-grained parallelism

» Exploit maximum parallelism

* Impose an spatial topology

» Define neighborhood operators

* GALE (Llora, 2002)

« Easy implementable on shared-memory machines

* Minimizes the computation/communication ratio for
distributed memory implementations

755
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Processor 0 Processor 1

In a Picture

Processor p

D Empty cell . Occupied cell (1 ind)

GALE: Topology

A cell contains 0 or 1 individual

A cell is surrounded by 8 neighbors
Subpopulations spatially defined by the
adjacent cells
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Raw3

* Merge

1. Choose a neighbor

2. Recombine the genetic material

3. Replace the individual

GALE: Merge

lecco;

“Waws GALE: Split

» Split

1. Replicate and mutate

2. Occupy

— Empty cell with higher
number of neighbors

— Occupied cell with the worst
neighbor (no empty cell -
available)

fsecco,
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e 7-8 Neighbors

! e 2-6 Neighbors

* 0-1 Neighbors

GALE: Survival

Isolated

ps(ind) fitness proportional
death = leave cell empty

Spongy
psAind) related to neighbors
death = leave cell empty

Crowded

ps(ind) = 0
death = replace by the best

lecco;

“Wam3 Data-intensive Computing

» Usually refers to:
— Infrastructure
— Programming techniques/paradigms
» Google made it main stream after their MapReduce model
» Yahoo! provides and open source implementation
— Hadoop (MapReduce)
— HDFS (Hadoop distributed filesystem)
— Mahout (Machine Learning methods)
» Engineered to store petabytes reliably on commodity
hardware (fault tolerant)
* Map: Equivalent to the map operation on functional
programming
» Reduce: The reduction phase after maps are computed




s Meandre: NCSA’ s
Data-Intensive Infrastructure

» Extend the programming limitation of MapReduce

* Execution Paradigms
— Conventional programs perform computational tasks by
executing a sequence of instructions.
— Data driven execution revolves around the idea of
applying transformation operations to a flow or stream
of data when it is available.

fseccq,

a3 Meandre: Flow (Complex Tasks)

» Aflow is a collection of connected components

Dataflow execution

757
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~%2#3  Meandre: The Dataflow Component

Data dictates component execution semantics

Outputs

Component ®

The component
implementation

Descriptor in RDF
of its behavior

leccofe >

“Waw Your Point Being?

» Evolutionary algorithms can be modeled using data-
intensive modeling
* Imagine a stream of individuals being process by
components
* A single model implementation automatically parallelizable
where needed
sbp uchps print

soed noit

eps twrops
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wam3 Collecting The Benefits
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[ Ram3 Real-World Examples

» Example to present
— Protein Structure & Contact Map Prediction (Bacardit et al., 2009)

— Uncovering new regulators in seed germination (Bassel et al.,
2011)

» A set of LCS applications to Data Mining is collected in
(Bull et al., 2008)

758
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What does large scale mean?

sive parallel processing
The challenges of data mining
Kaleidoscopic large scale data mining

Real-World Examples

Wrapping up
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a3 Protein Structure Prediction

* Protein Structure Prediction (PSP) aims to predict
the 3D structure of a protein based on its primary

seqguence
RT ( GNVNRI rG
A KTAK GL G
VSASKKI AERDLQA
R KTI I KKV G K1
\'% AVI AGI 1 R
AGKVLKNG G RGN
FGL Qv KR K QC 3D
Primary TWNGEVHI TQGTTI Structure
— I NFI KTI QKK
Sequence KDQQLKGGI S AYNAC
AGNVR A R TGTT
1 A N VVARAQ
KQHG
N\
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N3 Protein Structure Prediction

» Beside the overall 3D PSP (an optimization problem),
several structural aspects can be predicted for each
protein residue

— Coordination number
— Solvent accessibility
- Etc.
* These problems can be modelled in may ways:
— Regression or classification problems
Low/high number of classes
— Balanced/unbalanced classes
— Adjustable number of attributes
 |deal benchmarks
— http://icos.cs.nott.ac.uk/datasets/psp_benchmark.html

]
”
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N3 Contact Map Prediction

* (Bacardit et al. 2009) participated in the CASP8 competition

» CASP = Critical Assessment of Techniques for Protein Structure
Prediction. Biannual competition

« Every day, for about three months, the organizers release some
protein sequences for which nobody knows the structure (129
sequences were released in CASP9, in 2010)

» Each prediction group is given three weeks to return their predictions

« If the machinery is not well oiled, it is not feasible to participate !!

» For CM, prediction groups have to return a list of predicted contacts
(they are not interested in non-contacts) and, for each predicted pair of
contacting residues, a confidence level

» The evaluation for CM ranks this list by the confidence, and calculates
the accuracy of the top L/x predictions (L = length of chain, x =
typically 10)
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w3 Contact Map Prediction

» Two residues of a chain are said to be in contact if their distance
is less than a certain threshold

Primary Contact Native State (
SequenV l \ X (‘
O C00 ®O0C0 95

» Contact Map (CM): binary matrix that contains a 1 for a cell if
the residues at the row & column are in contact, O otherwise

» This matrix is very sparse, in real proteins there are less than 2%
of contacts

» Highly unbalanced dataset

l
L-LLLUF

K3 Contact Map Prediction: Hands on

- » Training set of 2413 proteins selected to

represent a broad set of sequences
Samples ‘ x50

— 32 million pairs of amino-acids (instances in the training
set) with less than 2% of real contacts
. ------- . — Each instance is characterized by up to 631 attributes
» 50 samples of ~660000 examples are generated
‘ from the training set. Each sample contains two
Rule sets x25 ) .
no-contact instances for each contact instance
* The BioHEL GBML method (Bacardit et al.,
2009) was run 25 times on each sample
* Anensemble of 1250 rule sets (50 samples x 25
seeds) performs the contact maps predictions
using simple consensus voting
» Confidence is computed based on the votes
distribution in the ensemble




Na#13  Results of Contact Map prediction

» The subset of the most difficult target (Free Modelling
targets) of CASP9 were used to evaluate CM
» Qut predictor obtained an average accuracy of 23.6%
* Do you think it is low?
— Itis more than 11 times higher than a random prediction
— The predictor was the best sequence-based method in the 2010
competition
» Overall, tackling this problem has forced us to address a
broad range of bottlenecks in DM methods
— Code bottlenecks
— Memory footprint bottlenecks
— Scalability bottlenecks

Kaei3 Generating rule sets
Method Accuracy
= BioHEL was able to predict the BioHEL-germination 935+ 1.0
outcome of the samples with 93.6% e pae 0" e
accuracy (10 x 10-fold cross-validation cas 79.8 + 36

82.4 + 0.4

= Learning from a scrambled dataset
(labels randomly assigned to samples)
produced ~50% accuracy

If At1927595>100.87 and At3g49000>68.13 and At2g40475>55.96 > Predict
germination

If At4g34710>349.67 and At4g37760>150.75 and At1g30135>17.66 - Predict
germination

If At3g03050>37.90 and At2g20630>96.01 and At3g02885>9.66 - Predict
germination

If At5g54910>45.03 and At4g18975>16.74 and At3g28910>52.76 and
At1g48320>56.80 > Predict germination

Everything else - Predict dormancy
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“Waa3  Hunctional Network Reconstruction for

seed germination

= Microarray data obtained from seed tissue of Arabidopsis
Thaliana

122 samples represented by the expression level of almost

14000 genes

It had been experimentally determined whether each of the

seeds had germinated or not

= Can we learn to predict germination/dormancy from the
microarray data?

= [Bassel et al., 2011]

“Wawi3 |dentifying regulators

» Rule building process is stochastic
= Generates different rule sets each time the
system is run
= But if we run the system many times, we
can see some patterns in the rule sets
= Genes appearing quite more frequent than the
rest
= Some associated to dormancy
= Some associated to germination




|
P TN Known regulators appear with high ieamiz Generating co-prediction networks of
frequency in the rules interactions
AGI Annotation Node Score Degree
Known Regulators in Nongermination Rules Nongermination » For each of the rules shown before to
sy . e > be true, all of the conditions in it need to
:ggg;;g XERIco ne s be true at the same time
At5g07200 Gibberelin 20-oxidase3 104 12 — Each rule is expressing an interaction
At1g33060 ANACO14 100 19 between Certain gens
At1g03790 SOMNUS 81 13 .
A2g26300 G Protein Alpha Suburitt 80 14 » From a high number of rule sets we can
At1g30040 AtGA20x2 80 3 . . A
AtBg45640 AMPK3 76 7 identify pairs of genes that co-occur
At3g24650 ABI3 68 14 i i
Aﬁgom o & " with hlgh frequency and generate
Attgs5255 HUB2 53 16 functional networks
At5g25900 GA3 53 14 .
Atdg25420 ans 50 36 » The network shows different topology
pondidied N - » when compared to other type of
Jogseo . PYLO o 67 network construction methods (e.g. by
i inati il inati R
privieoraaai sPa1 P 2 gene co-expression)
:Zlgg o o i » Different regions in the network contain
Al556860 ane 48 L the germination and dormancy genes
Regulatory genes displayed are present within the top 2.5% of node scores for each ination and ion. AGI, Arabidopsis Genome

secco z/
2#13

Experimental validation

= \We have experimentally verified this analysis
= By ordering and planting knockouts for the highly
ranked genes
= We have been able to identify four new regulators of o e Timmesg ng
germination, with different phenotype from the wild type 2

lata mining

scale data mining

al-world exa
E F Real-world exar
100 o & 100 100
colo g N = = ¢
. £ o5 g = oo g P .
osg52 < soxs2 N o7 <
: ‘ =) rappin
| 7\ ~.
5
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\\t'; = 8 1 8, }},\‘ 8,
13 5 1 O35 3 5 10 1 3 5
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N2m13 Wrapping Up

* We have shown in this tutorial how GBML methods have
high potential for mining large-scale datasets

* They are natural parallel processing machines

* Recent improvements in many dimensions of the learning
process
— Representations
— Learning paradigms
— Inference mechanisms
— Hybridization

e The Game Has a New Name

* The exception is becoming norm
— Efficient parallel designs
— Efficiency enhancement methods
— Hardware support (SSE, CUDA, etc.)

* However, all these components cannot be used
blindly, they have to be adjusted properly,
accordingly to the characteristics/dimensions of
the problem
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wam3 Global summary of techniques

5 criteria: Positive (Pos)/negative (Neg) effect on learning
capacity, Run-time reduction by means of: efficiency
enhancement (Enh), hardware solutions (HW) or parallel
models (Par)

Windowing mechanisms y y y n n
Rule match precomputing n n |y n n
Reordering attributes by specificity n n y n n
Attribute List Knowledge representation y n |y n n
Hybrid methods y n y n n
Fitness surrogates n y y n n
Vectorial matching n n y y n
GPGPU matching n n n y n
Ensemble mechanisms. y |n | n | n y
Master-slave parallel models n n n n y
Fine-grained parallel models y % n n y
Data-intensive computing nn|n|n y
R2m3 i
Better Understanding

» Theoretical analysis of the different facets of a GBML
system can help

* Understand better why/when can the components
perform well

» Design robust policies that can take the best of the
techniques at hand

» Provide insight on parameterization of methods
— If we would like the community to use GBML methods, we have to

make them easy to use

* Some work already exists (Butz, 2006; Franco et al.,

2011), but we still have a long road ahead of us




w2m13

Do not Be Shy

* GBML systems are highly flexible, with good
explanatory power, and can have good scalability

+ Go and give it a shoot!

Cw2m13
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