
Biased Random-key Genetic Algorithm for
Linearly-constrained Global Optimization

Ricardo M. A. Silva
Centro de Informática, Universidade Federal de Pernambuco, Recife, PE, Brazil. email:rmas@cin.ufpe.br

Mauricio G. C. Resende
Algorithms and Optimization Research Dep., AT&T Labs Research, NJ, USA. email:mgcr@research.att.com

Panos M. Pardalos
Department of Industrial and Systems Engineering, University of Florida, FL, USA. email:pardalos@ufl.edu

João L. Facó
Instituto de Matemática, Universidade Federal do Rio de Janeiro, RJ, Brazil. email:jldfaco@ufrj.br

ABSTRACT

In this paper, we propose a biased random key genetic algo-
rithm for finding approximate solutions for bound-constrained
continuous global optimization problems subject to linear
constraints. Experimental results illustrate its effectiveness
on the g01 and g14 problems from CEC2006 benchmark [5].

Categories and Subject Descriptors

G.1.6 [Optimization]: Global Optimization; I.2.8 [Problem

Solving, Control Methods, and Search]: Heuristic

Keywords

Linear constraints, global optimization, continuous optimiza-
tion, heuristic, biased random key genetic algorithm.

1. INTRODUCTION
Continuous global minimization optimization seeks a solu-

tion x∗ ∈ S ⊆ Rn such that f(x∗) ≤ f(x), ∀ x ∈ S, where S
is some region of Rn and the objective function f is defined
by f : S → R. In this paper, we consider the domain S as the
intersection between a set of linear constraints and a hyper-
rectangle Ω = {x = (x1, . . . , xn) ∈ Rn : ℓ ≤ x ≤ u}, where
ℓ ∈ Rn and u ∈ Rn such that ui ≥ li, for i = 1, . . . , n, in
order to present a BRKGA heuristic for bound-constrained
continuous global optimization problems subject to linear
constraints: min f(x), subject to Ax ≤ b where Ω = {x =
(x1, . . . , xn) ∈ Rn : ℓ ≤ x ≤ u}, A ∈ Rm×n is the matrix
whose rows are the vectors: a1 = (a1,1, . . . , a1,n), . . . , am =
(am,1, . . . , am,n), and b = (b1, . . . , bm) ∈ Rm.
Given that the constraints can be written as equalities

with the introduction of them slack variables xn+1,. . .,xn+m:
(
∑n

j=1
aijxj)+xn+i = bi, i = 1, . . . ,m, with xk ≥ 0, k = n+

1, . . . , n+m, the original problem can be reduced to the fol-
lowing global optimization problem: min F (x1, . . . , xn+m) =
[f(x1, . . . , xn)−f∗]2+

∑m

i=1
[(
∑n

j=1
aijxj)+xn+i−bi]

2, sub-
ject to: li ≤ xi ≤ ui, i = 1, . . . , n, and xk ≥ 0, k = n +
1, . . . , n +m, where f∗ is a known optimum value of prob-
lem, or the best known value in the literature.

Copyright is held by the author/owner(s).
GECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
ACM 978-1-4503-1964-5/13/07.

2. BIASEDRANDOM-KEYGENETICALGS.
A BRKGA [2] evolves a population of random-key vectors

over a number of iterations, called generations. The initial
population is made up of p vectors of random-keys. Each
component of the solution vector is generated independently
at random in the real interval [0, 1]. After the fitness of each
individual is computed by the decoder in generation k, the
population is partitioned into two groups of individuals: a
small group of pe elite individuals, i.e. those with the best
fitness values, and the remaining set of p − pe non-elite in-
dividuals. To evolve the population, a new generation of
individuals must be produced. All elite individual of the
population of generation k are copied without modification
to the population of generation k + 1. BRKGAs implement
mutation by introducing mutants into the population. A
mutant is simply a vector of random keys generated in the
same way that an element of the initial population is gener-
ated. At each generation, a small number (pm) of mutants
is introduced into the population. With the pe elite indi-
viduals and the pm mutants accounted for population k+1,
p − pe − pm additional individuals need to be produced to
complete the p individuals that make up the new population.
This is done by producing p− pe − pm offspring through the
process of mating or crossover. The mechanism of mating
in BRKGAs is the parameterized uniform crossover [6].

To describe a BRKGA for linearly-constrained global op-
timization problem, one needs to show how solutions are
encoded and how these vectors are decoded to feasible solu-
tions. A solution is encoded as a vector χ = (χ1, ..., χn) of
size n, where χi is a random number in the interval [0, 1],
for i = 1, . . . , n. The i-th component of χ corresponds to
the i-th dimension of hyper-rectangle Ω. A decoder takes
as input the vector of random keys χ and returns a solution
x ∈ Ω with xi = li +χi · (ui − li), for i = 1, . . . , n. After ob-
taining the solution x ∈ Ω, we proceed by trying to improve
it using the local search described in the next subsection.
The solutions produced by the local search usually disagree
with the genes initially supplied in the vector of random
keys to the decoder. In these cases, in order to reflect the
changes made by the local search phase of the decoder, the
heuristic replaces the initial chromosome with the returned
by the local search procedure, where χi = (xi− li)/(ui− li),
for i = 1, . . . , n.

79

2.1 Local improvement procedure
Let x̄ ∈ R

n be the current solution and h be the current
grid discretization parameter. Define Sh(x̄) = {x ∈ Ω | ℓ ≤
x ≤ u, x = x̄ + τ · h, τ ∈ Zn} to be the set of points in Ω
that are integer steps (of size h) away from x̄. Let Bh(x̄) =
{x ∈ Ω | x = x̄+h·(x′−x̄)/‖x′−x̄‖, x′ ∈ Sh(x̄)\{x̄}} be the
projection of the points in Sh(x̄)\{x̄} onto the hyper-sphere
centered at x̄ of radius h. The h-neighborhood of the point
x̄ is defined as the set of points in Bh(x̄). The procedure

procedure LocalImprovement(x, f(·), hs, he, ℓ, u, MaxPointsToExamine)
1 x∗ ← x;
2 f∗ ← f(x);
3 h ← hs;
4 Impr ← false;
5 while h ≥ he do

6 NumPointsExamined ← 0;
7 while NumPointsExamined ≤ MaxPointsToExamine do

8 x ← RandomlySelectElement(Bh(x∗));
9 if ℓ ≤ x ≤ u and f(x) < f∗ then

10 x∗ ← x;
11 f∗ ← f(x);
12 NumPointsExamined ← 0;
13 Impr ← true;
14 end if

15 NumPointsExamined ← NumPointsExamined + 1;
16 end while

17 if Impr = true then

18 return x∗;
19 else

20 h ← h/2;
21 end if

22 end while

23 return x∗;
end LocalImprovement;

Figure 1: Pseudo-code for local improvement phase.

takes as input a starting solution x ∈ Ω ⊆ R
n, the objective

function f(·), lower and upper bound vectors ℓ and u, as well
as the parameters hs and he, the starting and ending grid
discretization densities, respectively. The maximum num-
ber of points MaxPointsToExamine ≤

∏n

i=1
⌈(ui − ℓi)/h⌉ in

Bh(x
∗) that are to be examined is also taken as an input

parameter. If all of these points are examined and no im-
proving point is found, the current solution x∗ is considered
an h-local minimum.
The current best local improvement solution x∗ is initial-

ized to x in line 1. In line 2, the objective function value
f∗ of the best solution found is initialized to f(x). Next,
the parameter h, that controls the discretization density of
the search space, is initialized to hs in line 3, and in line 4
the variable Impr is set to false. Starting at the point x∗, in
the loop in lines 7–16, the algorithm randomly selects points
in Bh(x

∗) (line 8), one at a time. In line 9, if the current
point x selected from Bh(x

∗) is feasible and is better than
x∗, then x∗ is set to x (line 10), f∗ is set to f(x) (line 11),
NumPointsExamined is set to zero (line 12), Impr is set to
true (line 13), and the loop in lines 7–16 restarts with x∗

as the starting solution. In line 17, if the variable Impr is
still set to false, then in line 20 the grid density is increased
by halving h, and the loop in lines 7–16 is re-initialized if
h ≥ he. Local improvement is terminated if an h-local min-

imum solution x∗ is found. At that point, x∗ is returned
from the local improvement procedure in line 18 or 23.

3. EXPERIMENTAL RESULTS
We made use of the unique linearly-constrained global op-

timization problems available in CEC2006 benchmark [5]:
the test instances g01 [3] and g14 [4], with optimal values
f(x∗) equals to -15 and -47.76488 respectively.

In both problems, we ran BRKGA 200 times (a different
starting random number seed for each run from 270001 to
270200) with p = 100, pe = 0.2p, pm = 0.1p, ρe = 0.7, hs =
0.05, he = 0.00001, rholo = 0.15, MaxPointsToExamine =
1000, and ǫ = 0.00001. At any time during a run, we define
the optimality gap by GAP = |F (x1, . . . , xn+m) − F (z∗)|,
where (x1, . . . , xn+m) is the current best solution found by
the heuristic and F (z∗) = 0. We then say that the heuristic
has solved the problem if GAP ≤ ǫ with ǫ = 0.00001.

We record the time taken to find the optimal (or best
know) solution for each problem, in order to know its run-
time distribution (or time-to-target plots [1]). While about
95% of the runs terminated in less than 45 seconds for g01
problem, in g14 instance 95% of the runs terminated in less
than 653 seconds. In each problem, the BRKGA heuris-
tic was able to find the optimal (or best known) solution
in all 200 running, taking an average of 21.615 and 572.938
seconds to g01 and g14 problems, respectively. The mini-
mum, mean, and maximum times, as well as the standard
deviation, first, second (median), and third quartiles of the
running times spent to find the solutions are (2.760, 13.238,
18.440, 21.615, 25.363, 253.620, 20.324) and (421.650, 539.688,
576.635, 572.938, 602.338, 681.390, 47.864) for g01 and g14

problems, respectively. In the worst (maximum) case, BRKGA
found the target solutions for g01 and g14 problems in less
than 254 and 682 seconds, respectively.

4. CONCLUDING REMARKS
In this paper, we present the BRKGA heuristic for find-

ing approximate solutions for continuous global optimization
problems subject to box and linear constraints. We illus-
trate the approach using the challenging g01 and g14 prob-
lems from CEC2006 benchmark [5]. The promising results
shown here illustrate the potential of BRKGA for linearly-
constrained global optimization problems.

5. ACKNOWLEDGMENTS
The research of R.M.A Silva was partially supported by

the CNPq, FAPEMIG, CAPES, PROPESQ and FACEPE.

6. REFERENCES
[1] R. Aiex, M. Resende, and C. Ribeiro. Prob. distribution

of solution time in GRASP: An experimental
investigation. J. of Heuristics, 8:343–373, 2002.

[2] M. Ericsson, M. Resende, and P. Pardalos. A genetic
algorithm for the weight setting prob. in OSPF routing.
J. of Combinatorial Optimization, 6:299–333, 2002.

[3] C. Floudas and P. Pardalos. Collection of test probs. for

constrained global optimization algs. Springer-Verlag
New York, Inc., New York, NY, USA, 1990.

[4] D. Himmelblau. Applied nonlinear programming.
McGraw-Hill, 1972.

[5] J. J. Liang, T. P. Runarsson, E. M. Montes, M. Clerc,
P. N. Suganthan, C. A. Coello, and D. K. Problem
Definitions and Evaluation Criteria for the CEC 2006
Special Session on Constrained Real-Parameter
Optimization. Technical report, 2006.

[6] W. Spears and K. DeJong. On the virtues of
parameterized uniform crossover. In Proceedings of the

Fourth International Conference on Genetic

Algorithms, pages 230–236, 1991.

80

