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ABSTRACT 
In this paper, we propose a general methodology to automatically 
compose a good portfolio from a set of selected EAs. As a single 
EA is a degenerate portfolio, our method also provides an answer 
to when a portfolio of two or more EAs are beneficial. Our 
method has the nice property of being parameter-less; it does not 
introduce extra parameters. Hence there is no need for parameter 
control, which is well known to be a thorny research issue. To 
illustrate our idea, we show how a portfolio that is constructed by 
considering five state of the art EAs as candidates is automatically 
constructed from ten CEC 2005 benchmark functions. It is found 
that the resulting portfolio enjoys excellent, and equally 
importantly, stable ranking. Thus the new portfolio algorithm has 
the property of being a robust algorithm, which is a highly 
desirable property in practical applications. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, 
and Search – Heuristic methods; G.1.6 [Numerical Analysis]: 
Optimization – Global optimization.  

General Terms 
Algorithms, Experimentation 

Keywords 
Evolutionary algorithm, portfolio, global optimization 

1. INTRODUCTION 
In the companion paper [1], we report a novel algorithm portfolio 
approach called Multiple Evolutionary Algorithm (MultiEA). The 
portfolio is composed ABC, CMA-ES, CoDE, PSO and SaDE.  

The present paper is a novel extension of MultiEA. We report a 
method that chooses algorithms to compose the portfolio 
automatically, in a parameter-less manner. Note that our method 
will automatically find out the situation if there is no need for a 
portfolio, i.e., only one EA is enough or equivalently, a portfolio 
of one algorithm is the best. 

Both our ideas of MultiEA and the novel portfolio composing 
method are generic. They can be applied to any algorithms that 
can compute a predicted performance, be they EAs or non-EAs, 
though in this paper our portfolio is exclusively composed of EAs; 
hence the bracket (  ) in the title. 

2. A NOVEL ALGORITHM THAT COM- 
POSES A PORTFOLIO AUTOMATICALLY 
Given ݍ EAs, this novel algorithm returns a portfolio ܲܣ that 
contains either one algorithm that presents on average the best 

performance or a MultiEA that presents the best average 
performance by combining several EAs.  

What is the “best” algorithm depends on the requirements of 
applications. In this paper, we use a simple heuristic that the best 
algorithm is one that gives the lowest average rank on a suite of 
benchmarks. 

We run the given ݍ EAs on the suite and then rank them based on 
the procedure of Friedman’s test. The full algorithm is as follows: 

Algorithm (Portfolio composition algorithm). 
Input:  

A set of ݍ EAs ൛ܣଵ, … ,  ܵ ௤ൟ; a set of benchmark functionsܣ
with dimension ܦ; maximum number of evaluations ܰ.  

Step 1:  
 Run ܣ௜, ݅ = 1,2, … ,  .on benchmark set ܵ for ܰ evaluations ݍ
 Calculate the ranks of all algorithms on ܵ. 
Step 2:  ܲܣ = ሼܲ1ܣሽ, where ܲ1ܣ is the algorithm with the lowest 

average rank. 
Step 3: 
 Calculate the ݍ ×  .of ranks ݒ݋ܥ covariance matrix ݍ
Step 4: 

Find ܲ2ܣ such that ݒ݋ܥሺܲ1ܣ,   .2ሻ is the smallestܣܲ
Step 5: 

Set up MultiEA= ሼܲ1ܣ,  2ሽ. Treat this algorithm as a newܣܲ
individual algorithm ܣ௤ାଵ. 
Run ܣ௤ାଵ on benchmark set ܵ. 

Step 6: 
 Calculate the ranks of all ݍ + 1 algorithms on ܵ. 

If ܣ௤ାଵ is the algorithm with the lowest average rank 
 Set ܲ1ܣ =  .௤ାଵܣ
 Set ݍ ← ݍ + 1 and go to Step 3. 

 Otherwise return ܲܣ =  .1ܣܲ
Output: 
 Portfolio ܲܣ.  

3. NUMERICAL EXPERIMENTS 

Functions ଵ݂ − ଵ݂଴ in the CEC 2005 are taken and ܦ is set to 30. 
25 independent runs are conducted for each algorithm and each 
test function. The termination criteria are to terminate the 
algorithm when one of the following conditions is satisfied: 

1. The maximum number of function evaluations (maxFE) is 
reached (maxFE = 10000 ×  ;(ܦ

2. |݂ሺ࢞ሻ − ݂ሺ࢞∗ሻ| ≤ 10ି଺. 

Based on the experimental results of the 5 EAs, the ranks are 
shown in the table below. The best results are shown in bold.  

function ABC CMA-ES CoDE PSO SaDE ଵ݂ 3 1 5 2 4 ଶ݂ 5 1 3 2 4 
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ଷ݂ 5 1 2 3 4 ସ݂ 5 1 2 3 4 ହ݂ 5 1 2 4 3 ଺݂ 3 1 2 5 4 ଻݂ 3 1 2 5 4 ଼݂  3 5 1 2 4 ଽ݂ 1 5 3 4 2 ଵ݂଴ 5 4 1 3 2 
Avg 3.8 2.1 2.3 3.3 3.5 
Var 1.96 3.21 1.34 1.34 0.72 

It is clearly observed that CMA-ES performs badly for functions ଼݂ − ଵ݂଴; whereas CoDE and ABC are remarkably good on these 
functions. Hence, for a problem which we have no knowledge 
about, recommending CMA-ES to the user may not be a good 
strategy. Our proposed algorithm can remedy this by finding a 
portfolio consisting of more than one EA. 

The covariance matrix of the ranks of the five algorithms on 
functions ଵ݂ − ଵ݂଴ is shown below. The entry with the smallest 
correlation with CMA-ES is shown in bold. 

Algorithm ABC CMA-ES CoDE PSO SaDE 
ABC 1.96 -1.20 -0.49 -0.49 0.22 

CMA-ES -1.20 3.21 -0.70 -0.37 -0.94 
CoDE -0.49 -0.70 1.34 -0.32 0.17 
PSO -0.49 -0.37 -0.32 1.34 -0.17 

SaDE 0.22 -0.94 0.17 -0.17 0.72 

Based on Step 4 of the proposed algorithm, CMA-ES and ABC 
are chosen and constitute a MultiEA= ሼ1ܲܣ, 2ሽܲܣ = {CMA-ES, 
ABC}. We denote it by MultiEA1. The ranks of the six algorithms 
are given below. 

 ABC CMA-ES CoDE PSO SaDE MultiEA1 ଵ݂ 4 1 6 3 5 2 ଶ݂ 6 1 4 3 5 2 ଷ݂ 6 1 3 4 5 2 ସ݂ 6 1 3 4 5 2 ହ݂ 6 1 3 5 4 2 ଺݂ 4 1 3 6 5 2 ଻݂ 4 1 3 6 5 2 ଼݂  4 6 1 3 5 2 ଽ݂ 1 6 4 5 3 2 ଵ݂଴ 6 5 1 4 2 3 
Avg 4.7 2.4 3.1 4.3 4.4 2.1 
Var 2.68 5.16 2.10 1.34 1.16 0.10 

Seen from the table, CMA-ES is still the algorithm with the most 
1st rank test functions compared with the other algorithms. 
However, MultiEA1 obtains the lowest average rank and the 
smallest variance of ranks on functions  ଵ݂ − ଵ݂଴. Thus MultiEA1 
is remarkably robust on this test function set. It is easy to explain 
why MultiEA1 has no 1st rank case. It includes as one of the 
algorithms CMA-ES, and it would take time to discover CMA-ES 
as the algorithm to run during its execution for the cases of ଵ݂ − ଻݂. Similar arguments hold for ABC for the case of ଽ݂. 

Although MultiEA1 has no 1st rank case amongst the 10 test 
functions, it obtains a much more robust and consistent rank on all 
test functions than the other five EAs. As MultiEA1 is the 
algorithm with the lowest average rank (step 6), the algorithm 
goes to step 3 and obtains the covariance matrix below: 

 ABC CMA-ES CoDE PSO SaDE MultiEA1 
ABC 2.68 -1.87 -0.63 -0.57 0.24 0.14 

CMA-ES -1.87 5.16 -1.60 -0.47 -1.51 0.29 
CoDE -0.63 -1.60 2.10 -0.14 0.51 -0.23 
PSO -0.57 -0.47 -0.14 1.34 -0.13 -0.03 
SaDE 0.24 -1.51 0.51 -0.13 1.16 -0.27 

MultiEA1 0.14 0.29 -0.23 -0.03 -0.27 0.10 

Only the information in the last column is used, and MultiEA2= 
{MultiEA1, SaDE}={CMA-ES, ABC, SaDE}. Running this 
algorithm (step 5), the results are shown below. The algorithm 
stops and MultiEA1 is chosen (step 6). 

 ABC 
CMA-

ES 
CoDE PSO SaDE 

Multi-
EA1 

Multi-
EA2 ଵ݂ 4 1 7 3 5 2 6 ଶ݂ 7 1 5 4 6 2 3 ଷ݂ 7 1 4 5 6 2 3 ସ݂ 7 1 4 5 6 2 3 ହ݂ 7 1 4 6 5 2 3 ଺݂ 5 1 4 7 6 2 3 ଻݂ 5 1 4 7 6 2 3 ଼݂ 5 7 1 3 6 2 4 ଽ݂ 1 7 5 6 4 2 3 ଵ݂଴ 7 6 1 5 2 4 3 

Avg 5.5 2.7 3.9 5.1 5.2 2.2 3.4 
Var 3.83 7.57 3.21 2.10 1.73 0.40 0.93 

As shown in the above table, MultiEA1 attains a much more 
robust and stable rank on all test functions than the other six EAs. 
Therefore the experimental results have demonstrated that the 
proposed algorithm can suggest a suitable portfolio algorithm for 
optimization problems. If we apply MultiEA1 to an unknown 
problem ܲ, we have reason to expect both an outstanding and a 
consistent performance. 

4. CONCLUSIONS 
In this paper, a novel method to compose an evolutionary 
algorithm (EA) portfolio is reported. We offer a solution of when 
an algorithm portfolio is useful and when it is not, and a solution 
on how to compose methodically such a portfolio. It has the 
advantages of being parameter-less and generic. Given a set of 
benchmark problems as input, it delivers a portfolio algorithm 
which has better and more stable rank than any individual 
algorithm running on the benchmark set. 
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