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ABSTRACT

This work studies the effects of population size on perfor-
mance scalability of the Adaptive ε-Sampling and ε-Hood
evolutionary many-objective algorithm.

Categories and Subject Descriptors

I.2.8 [ARTIFICIAL INTELLIGENCE]: Problem Solv-
ing, Control Methods, and Search—Heuristic methods

General Terms

Algorithms, Design, Performance, Verification

Keywords

Population size, Scalability, Many-objective optimization

1. INTRODUCTION
The population size greatly influences the dynamics of a

multi-objective evolutionary algorithm. However, its effects
on large dimensional objectives spaces are not well under-
stood, particularly its correlation to the fidelity of selection
to retain optimal solutions and not drop them in favor of
inferior solutions that appear non-dominated in the popula-
tion.

In this work we study the effects of population size on per-
formance scalability of the Adaptive ε-Sampling and ε-Hood
evolutionary many-objective algorithm (AεSεH) [1]. We are
particularly interested on understanding the relationship be-
tween the size of the Pareto optimal set, a characteristic of
the many-objective problem at hand, the population size
the algorithm uses, and the ability of the algorithm to re-
tain true Pareto optimal solutions in its population, which
is directly correlated to the effectiveness of survival selec-
tion and the maintenance of selection pressure to find new
optimal solutions.

In our study we use a MNK-landscape [2] randomly gener-
ated with m = 5, objectives, n = 20 bits, and k = 1 epistatic
bit. The motivation to use small landscapes with minimum
non-linearity is that it should be relatively simple for the
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algorithm to hit the optimal set. In addition, it is feasible
to enumerate these small landscapes. So, we can easily ver-
ify the ability of the algorithm to retain optimal solutions
in the population. Precisely, we analyze the dynamics of
the algorithm observing the number of true Pareto optimal
solutions found at each generation and their accumulated
number found during evolution.

2. THE AεSεH ALGORITHM
AεSεH [1] is an elitist evolutionary many-objective algo-

rithm that applies ε-dominance principles both for survival
selection and for clustering and mating solutions located
close by in objective space. Firstly, during extinctive selec-
tion AεSεH computes dominance among solutions and elim-
inates dominated ones. Then, it applies ε-sampling to the
large set of non-dominated solutions. Here, randomly sam-
pled non-dominated solutions survive and those ε-dominated
by the samples are eliminated. The aim is to get a set
of surviving solutions spaced according to the distribution

implicit in the mapping function f(x) 7→ǫ f
′

(x) used for
ε-dominance. After survival selection, in AεSεH there is
not an explicit ranking that could be used to bias mating.
Rather, the algorithm uses a procedure called ε-hood cre-

ation to cluster solutions in objective space. This method
is also based on ε-dominance. Here, a randomly sampled
solution from the surviving population and its ε-dominated
solutions determine a neighborhood. Mating for recombina-
tion is implemented by the procedure ε-hood mating, where
neighborhoods formed by ε-hood creation are considered to
be elements of a list. To select two mates, first a neighbor-
hood from the list is specified deterministically in a round-
robin schedule. Then, two individuals are selected randomly
within the specified neighborhood, so that an individual will
recombine with other individual that is located close by in
objective space. The motivation to restrict mating is to en-
hance the effectiveness of recombination in many-objective
problems, where the difference in variable space between in-
dividuals in the population is expected to be larger than
in multi-objective problems and therefore more disruptive
for recombination. The number of sampled solutions by ε-
sampling and the number of neighborhoods created by ε-
hood creation depend on the value of ε used for ε-dominance,
εs and εh (≥ 0), respectively. The algorithm adapts both
parameters at each generation, so that the number of solu-
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(b) |P| = 100
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(c) |P| = 200

Figure 1: Non-dominated solutions F1 and true Pareto optimal solutions F T

1 in the population P.

tions sampled with εs is close to the size of the population
and the number of neighborhoods created with εh is close
to a number specified by the user. AεSεH in this work uses
two point crossover with rate pc = 1.0 and bit flip mutation
with rate pm = 1/n. The reference neighborhood size is set

to 20 individuals. The mapping function f (x) 7→ǫ f
′

(x)
used for ε-dominance in ε-sampling and ε-hood creation is

additive f
′

i = fi + ε, i = 1, 2, · · · ,m.

3. RESULTS AND DISCUSSION
Fig.1 shows the number of non-dominated solutions |F1|

and the number of true Pareto optimal solutions |F T

1 | (True
POS) in the population after survival selection over the
generations, running AǫSǫH for 100 generations with three
small population sizes |P| = 50, 100 and 200. Note that
after few generations all solutions in the population are non-
dominated, |F1| = |P|. However, note that the number of
true Pareto optimal solutions is smaller than the number of
non-dominated solutions, |F T

1 | < |F1|, and fluctuates up and
down. This shows that optimal solutions are dropped from
the population when survival selection is applied, especially
in very small populations. Fig.2 (a) shows the accumulated
number of true Pareto optimal solutions |AF T

1 | found by
AεSεH during evolution for the same populations, together
with those found by NSGA-II for comparison. Note that
a substantially larger number of true Pareto optimal solu-
tions are accumulated by AεSεH than by NSGA-II. This is
because AεSεH retains more optimal solutions than NSGA-
II, which in turns keeps a stronger selection pressure that
enables the algorithm to find more new optimal solutions.

Fig.2 (b) shows AF T

1 by AεSεH and NSGA-II using pop-
ulation sizes that correspond approximately to 1/3, 2/3 and
4/3 of the true Pareto optimal solutions set POST of the
landscape. Note that when a population larger than |POST | =
6265 is used both algorithms perform similarly in terms of
the accumulated number of true Pareto optimal solutions
found. This is because such a huge population can cover
a broad region of objective space, eliminating the effect of
dropping optimal solutions, which enhances selection. How-
ever, for smaller populations, AεSεH is more effective and
efficient due to its ability to retain optimal solutions.

4. CONCLUSIONS
We showed that optimal solutions are dropped from the

population during survival selection in many-objective op-
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(a) |P| = 50, 100, and 200
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(b) |P| = 1/3, 2/3 and 4/3 of |POST | = 6265

Figure 2: Accumulated number of true Pareto opti-

mal solutions AF T

1 by AεSεH and NSGA-II.

timization. Larger populations reduce this undesired effect
and improve the performance of the optimizer. AεSεH uses
ε-sampling to induce a uniform distribution of the surviv-
ing solutions. This enhances selection fidelity when small
populations are used and improves the effectiveness of the
algorithm.
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