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ABSTRACT 
We introduce a new synergistic combination of features, some of 
which have previously been used individually but not together, to 
improve uniformity of spacing in evolved non-dominated sets, 
especially in biobjective problems. On five standard biobjective 
benchmark tests, these features are shown to enhance performance 
in distinct and complementary ways. 

Categories and Subject Descriptors 
G.1.6 [Numerical Analysis]: Optimization – global optimization.  

Keywords 
multiobjective; differential evolution; crowding; uniform spacing. 

1. INTRODUCTION 
Various methods have been proposed to preserve diversity in non-
dominated sets during multiobjective evolution [e.g., 2; 3; 4]. 
However, when we applied existing methods to a real-valued 
biobjective problem in watershed management planning [1], we 
found unacceptable irregularities in solution spacing in this real-
world application where stakeholders need to carefully consider 
the trade-offs between the competing objectives of minimizing 
cost and minimizing contaminant transport. This motivated us to 
develop a new version of multiobjective differential evolution that 
improves the uniformity of solution spacing in the non-dominated 
front. 

2. METHODS 
Our method, referred to as USMDE (Uniform Spacing 
Multiobjective Differential Evolution), comprises a new 
synergistic combination of features, some of which have been 
used individually in other methods, along with a newly modified 
crowding metric designed to explicitly reward for uniformity of 
spacing in M objectives. The details of this method are fully 
described in [1] and summarized here. We initialize the 
population of size N using Latin hypercube sampling, in addition 
to seeding with extremal solutions. For child creation we use 
classic differential evolution (DE), known as DE/rand/1/bin, with 
DE bounce-back [5] and immediately replace dominated solutions 
to increase selection pressure, as in [6]. Each child in USMDE is 
created from three randomly selected solution vectors. If all three 
vectors have equal rank, USMDE chooses the least crowded to be 
used as the “target” (Parent) vector (we refer to this feature as P), 
using the crowding metric from [2]. This metric penalizes 
solutions based on their proximity, so including this in parent 
selection promotes exploration in under-represented areas of the 

non-dominated front, similar to the approach to parent selection 
used in the popular multiobjective genetic algorithm NSGA-II [2]. 
Otherwise, if two of the vectors have equal rank they are chosen 
to be the difference vectors for DE mutation, following [3].  In 
NSGA-II [2], the new generation is created by including all 
solutions from the least dominated ranks that fit in the new 
population, and then including as many of the least crowded 
solutions from the next available rank as needed to achieve 
population size N. Since crowding is not re-evaluated during this 
selection process, this can lead to large gaps and ultimately 
contribute to non-uniformly spaced solutions in the final non-
dominated set. In contrast, USMDE prunes out the most-crowded 
solutions from that same next available rank, but one at a time 
with immediate Re-evaluation of crowding for those solutions that 
had been adjacent to the most recently pruned solution, until the 
population size has been reduced back to N (we refer to this 
feature as R). Implementing this with a heap adds O(M log N) 
time over pruning without re-evaluation, but does not increase the 
overall time complexity of the algorithm. For this crowding-based 
survivor selection, we use a new crowding metric: 
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 where dist1,i and dist2,i are the distances in the ith normalized 
objective between the solution and its first and second closest 
neighbors in that objective, respectively. Uniform spacing is 
achieved when equation (1) is maximized (we refer to the use of 
US_crowding_distance in survivor selection, as opposed to using 
the crowding metric of [2] in survivor selection, as U). 

To demonstrate the synergy of these features, we tested USMDE 
with and without each of the three features R, P, and U, on five 
commonly used real-valued biobjective problems: ZDT1 
(convex), ZDT2 (concave), ZDT3 (discontinuous), ZDT4 
(multimodal), and ZDT6 (nonuniform), corresponding to 
functions T1-T4, and T6 described in [7], using the same parameter 
settings as in [4] and performing repetitions of each method on 
the same 50 random initializations for each problem. Four 
different performance metrics were applied to the resulting non-
dominated sets.  We assessed uniformity of spacing along the 
non-dominated front using an improved spacing metric, MST-
spacing, which is the standard deviation of all the Euclidean 
distances along edges in a minimum spanning tree of the graph 
connecting all non-dominated solutions in the M dimensions. We 
assessed convergence using generational distance, coverage using 
inverted generational distance, and spread error with the absolute 
value of the difference between the maximum spread of the non-
dominated solutions and the maximum spread of the true Pareto 
front, as in [3; 7]. Results of paired replicates were compared 
using one-tailed paired t-tests.  
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3. RESULTS 
Complete numerical results can be found in Appendix C of [1], 
and are summarized here. The means and standard deviations of 
convergence and spread error of successful trials were very close 
to zero for all methods on all five benchmark problems, with no 
significant differences between the means resulting from USMDE 
with or without R, P, or U, indicating that these features do not 
impact the ability of the differential evolution to accurately find 
the optimal front. However, including the feature R dramatically 
improved both MST-spacing (Fig. 1, p < 1e-42) and coverage 
(p < 1e-35) in all five biobjective benchmark problems. (We also 
note that including R improved MST-spacing and coverage in 
three 3D benchmarks tested, although only two of these were 
statistically significant; see Appendix C of [1] for details). 
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Figure 1. Box plots of MST-spacing from 50 random paired 

trials of five biobjective problems comparing USMDE to 

USMDE without R (USMDE-R).  

Surprisingly, while excluding either P or U individually did 
degrade MST-spacing, these degradations were not statistically 
significant. However, we found that including both P and U 
together prevented occasional pathological collapse of the 
concave non-dominated front in ZDT2 (which collapsed to a 
single point in 3 trials without P and 2 trials without U). The use 
of P helps to counteract this tendency by forcing more intense 
exploration of the sparser areas, whereas U helps to avoid this 
collapse by explicitly penalizing non-uniformity of spacing rather 
than just penalizing for gaps. We ran additional tests (not 
otherwise reported here) without any of R, P, or U, and found 
that, in general, the relative ordering of these USMDE variants 
was, from best to worst in terms of MST-spacing: (i) USMDE, (ii) 
USMDE without P, (iii) USMDE without U, (iv) USMDE 
without R, P, or U, and (v) USMDE without R.   This non-linear 
ordering suggests there are synergistic interaction effects between 
R, P, and U. 

While we had independently identified the need for R, further 
literature review revealed a similar method had been added to 
improve GDE3 and was shown to yield better spacing than either 
NSGA-II or SPEA2 on the same five benchmark problems [5]. 
Thus, we ran additional tests to compare USMDE to GDE with R 
(downloaded from http://jmetalcpp.sourceforge.net/). USMDE 
showed significantly improved MST-spacing relative to GDE3 for 
all five biobjective benchmarks (p < 3e-8) (and also one of three 
triobjective benchmarks p < 3e-3), indicating that the combination 
of R, P, and U in USMDE resulted in more uniform spacing than 
the use of just R (but not P or U) in GDE3. Results of USMDE 
were not significantly different than GDE3 for convergence or 
spread (see Appendix C of [1] for details). 

Applying USMDE to the watershed application that motivated 
this study was found to improve MST-spacing by 31%, relative to 
USMDE without R, P, or U, with a marked increase in uniformity 
of spacing in the important region near the “knee” of the non-
dominated front [1], where stakeholders are most likely to focus. 

4. DISCUSSION AND CONCLUSIONS 
USMDE uses three complementary features, not previously used 
together, that synergistically improve uniform spacing of solutions 
along the non-dominated front: (i) re-evaluation of crowding 
distance as each solution is pruned during survivor selection (R), 
(ii) use of crowding distance during parent selection (P), and (iii) 
use of a new crowding distance formula that penalizes off-center 
solutions during survivor selection (U). This combination of 
features was shown to improve uniformity of spacing in all 
problems tested and to prevent collapse of the non-dominated set 
in a concave problem. While we did find one prior use of R [4] 
(but in the absence of P or U), the importance of this feature on 
uniformity of solution spacing appears to be underappreciated in 
the evolutionary computation community and has not been 
incorporated into popular packages such as NSGA-II [2].  
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