

Properties of Bilevel Problems

- Bilevel problems are typically non-convex, disconnected and strongly NP-hard
- Solving an optimization problem produces a one or more feasible solutions
- Multiple global solutions at lower level can induce additional challenges
- . Two levels can be cooperating or conflicting

Properties of Bilevel Problems Both problems involve two different objectives Multi-objective problems usually have multiple optimal solutions Bilevel problems usually have a single optimal solution A bilevel solution is not necessarily a Pareto-optimal solution It is not possible to directly use algorithms for multi-objective optimization for bilevel problems

Bilevel Multi-objective Problems

- Bilevel problems may involve optimization of multiple objectives at one or both of the levels
- Little work has been done in the direction of multi-objective bilevel problems (Eichfelder (2007), Deb and Sinha (2010))
- A general multi-objective bilevel problem may be formulated as follows:

$$\begin{split} \operatorname{Min}_{(\mathbf{x}_u,\mathbf{x}_l)} & \mathbf{F}(\mathbf{x}) = \left(F_1(\mathbf{x}), \dots, F_M(\mathbf{x})\right), \\ & \operatorname{st} & \mathbf{x}_l \in \operatorname{argmin}_{(\mathbf{X}_l)} \left\{ \begin{array}{c} \mathbf{f}(\mathbf{x}) = \left(f_1(\mathbf{x}), \dots, f_m(\mathbf{x})\right) \\ & \mathbf{g}(\mathbf{x}) \geq \mathbf{0}, \mathbf{h}(\mathbf{x}) = \mathbf{0}, \\ & \mathbf{G}(\mathbf{x}) \geq \mathbf{0}, \mathbf{H}(\mathbf{x}) = \mathbf{0}, \\ & (\mathbf{x}_u)_{min} \leq \mathbf{x}_u \leq (\mathbf{x}_u)_{max}, (\mathbf{x}_l)_{min} \leq \mathbf{x}_l \leq (\mathbf{x}_l)_{max} \end{split} \right\} \end{split}$$

Applications **Stackelberg Duopoly Competition** Competition between a leader and a follower firm Leader solves the following optimization problem to maximize its profit $\max_{q_l,q_f} \quad \Pi_l = P(q_l,q_f)q_l - C(q_l)$ s.t. $q_f \in \arg \max\{\Pi_f = P(Q)q_f - C(q_f)\},\$ If the leader and follower have $q_l + q_f \ge Q$, similar functions, leader always $q_l, q_f, Q \ge 0,$ makes a higher profit. - First mover's advantage where Q is the quantity demanded, $P(q_l, q_f)$ is the price of the goods sold, and $C(\cdot)$ is the cost of production of the respective firm. The variables in this model are the production levels of each firm q_l, q_f and demand Q. Can be extended to multiple leaders and multiple followers Frantsev et al. (2012) 2013

Solution Methodologies

- KKT conditions of the lower level problem are used as constraints (Herskovits et al. 2000)
 - Lagrange multipliers increase the number of decision variables
 - Constrained search space
 - Applicable to differentiable problems only
- · Another common approach: Nested optimization
 - For every **x**_u, lower level problem is solved completely
 - · Computationally very expensive
- Discretization of the lower level problem
 - The best solution obtained from discrete set for a given x_u is used as a feasible member at upper level

Solution Methodologies

Solution Methodologies (cont.)

- Penalty based approaches
 - Special forms of penalty functions have been used
 - Lower level is usually required to be convex
 - Penalty function may require differentiability
- Branch and Bound techniques (Bard et al. 1982)
 - Used KKT conditions
 - · Handled linear problems
 - · Converted the problems into variable separable form
 - Utilized the branch and bound approach
- Taking an approximation of the lower level optimization
 problem such that its optimum is readily available
 - The optimal solutions from lower level might not be accurate

Solution Methodologies

Solution Methodologies (cont.)

- Evolutionary algorithms have also been used for bilevel optimization
- · Most of the methods are nested strategies
- Mathieu et al. (1994): LP for lower level and GA for upper level
- Yin (2000): Frank Wolfe Algorithm for lower level
- Oduguwa and Roy (2005): Proposed a co-evolutionary approach
- Wang et al. (2005):
 - Solved bilevel problems using a constrained handling scheme in EA
 - Method is computationally expensive, but successfully handles a number of test problems
- Li et al. (2006): Nested strategy using PSO
- EA researchers have also tried replacing the lower level problems using KKT (Wang et al. (2008), Li et al. (2007))

Bilevel Evolutionary Algorithm Based on Quadratic Approximations (BLEAQ)

- Recently proposed by Sinha, Malo and Deb (2013) for solving bilevel optimization problems with various kinds of complexities
- Based on quadratic approximation of the inducible region
- The method is highly efficient when compared against nested approaches and other contemporary evolutionary techniques
- Capable of solving larger instances of bilevel programming problems
- Tested on a recently proposed SMD test-suit and other standard test problems from the literature

2.13

Test Problem Construction

SMD Test Problem Framework

The objectives and variables on both levels are decomposed as follows:

 $F(\mathbf{x}_{u}, \mathbf{x}_{l}) = F_{1}(\mathbf{x}_{u1}) + F_{2}(\mathbf{x}_{l1}) + F_{3}(\mathbf{x}_{u2}, \mathbf{x}_{l2})$ $f(\mathbf{x}_{u}, \mathbf{x}_{l}) = f_{1}(\mathbf{x}_{u1}, \mathbf{x}_{u2}) + f_{2}(\mathbf{x}_{l1}) + f_{3}(\mathbf{x}_{u2}, \mathbf{x}_{l2})$ where $\mathbf{x}_u = (\mathbf{x}_{u1}, \mathbf{x}_{u2})$ and $\mathbf{x}_l = (\mathbf{x}_{l1}, \mathbf{x}_{l2})$

Test Problem Construction

2013

Controlling Difficulty in Convergence

- · Convergence difficulties can be induced via following routes
- Dedicated components: F₁ (upper) and f₂ (lower)

· Example:

Seco

$$F(\mathbf{x}_u, \mathbf{x}_l) = \frac{F_1(\mathbf{x}_{u1}) + F_2(\mathbf{x}_{l1}) + F_3(\mathbf{x}_{u2}, \mathbf{x}_{l2})}{\text{Quadratic}}$$

$$f(\mathbf{x}_u, \mathbf{x}_l) = f_1(\mathbf{x}_{u1}, \mathbf{x}_{u2}) + f_2(\mathbf{x}_{l1}) + f_3(\mathbf{x}_{u2}, \mathbf{x}_{l2})$$
Multi-modal

Controlling Difficulty in Interactions

- Interaction between variables \boldsymbol{x}_{u2} and \boldsymbol{x}_{l2} could be chosen as follows
- · Dedicated components: F₃ and f₃

Test Problem Construction

$$F(\mathbf{x}_{u}, \mathbf{x}_{l}) = F_{1}(\mathbf{x}_{u1}) + F_{2}(\mathbf{x}_{l1}) + F_{3}(\mathbf{x}_{u2}, \mathbf{x}_{l2})$$

$$\sum_{i=1}^{r} (x_{u2}^{i})^{2} + \sum_{i=1}^{r} ((x_{u2}^{i})^{2} - \tan x_{i2}^{i})^{2}$$

$$f(\mathbf{x}_{u}, \mathbf{x}_{l}) = f_{1}(\mathbf{x}_{u1}, \mathbf{x}_{u2}) + f_{2}(\mathbf{x}_{l1}) + f_{3}(\mathbf{x}_{u2}, \mathbf{x}_{l2})$$

$$\sum_{i=1}^{r} ((x_{u2}^{i})^{2} - \tan x_{i2}^{i})^{2}$$

Test Problem Construction

Difficulty due to Conflict/Co-operation

• Dedicated components: F₂ and f₂ or F₃ and f₃ may be used to induce conflict/cooperation

• Examples:

- Co-operative interaction = improvement in lower-level improves upper-level (e.g. $F_2 = f_2$)
- Conflicting interaction = improvement in lower-level worsens upper-level (e.g. F_2 = -f₂)
- Mixed interaction = situation of both cooperation and conflict (e.g. F_2 = f_2 and F_3 = $\Sigma_i\,(x_{u2}{}^i)^2-f_3$

Controlled Multimodality Obtain multiple lower-level optima for every upper level decision

• Component used: f₂

Test Problem Construction

• Example: Multimodality at lower-level

$$\begin{aligned} f_1(\mathbf{x}_{u1}, \mathbf{x}_{u2}) &= (x_{u1}^{1})^2 + (x_{u1}^{1})^2 + (x_{u2}^{1})^2 + (x_{u2}^{2})^2 \\ f_2(\mathbf{x}_{l1}) &= (x_{l1}^{1} - x_{l1}^{2})^2 \\ f_3(\mathbf{x}_{u2}, \mathbf{x}_{l2}) &= (x_{u2}^{1} - x_{l2}^{1})^2 + (x_{u2}^{2} - x_{l2}^{2})^2 \end{aligned}$$
 Induces multiple solutions: $\mathbf{x}_{11}^{1} = \mathbf{x}_{11}^{2}$

$$\begin{split} F_1(\mathbf{x}_{u1}) &= (x_{u1}^1)^2 + (x_{u1}^1)^2 \\ F_2(\mathbf{x}_{l1}) &= (x_{l1}^1)^2 + (x_{l1}^2)^2 \\ F_3(\mathbf{x}_{u2}, \mathbf{x}_{l2}) &= (x_{u2}^1 - x_{l2}^2)^2 + (x_{u2}^2 - x_{l2}^2)^2 \end{split}$$
 Gives best UL solution: $\mathbf{x}_{11}^1 = \mathbf{x}_{21}^2 = \mathbf{0}$

Test Problem Construction

Difficulty due to Constraints

Constraints are included at both the levels with one or more of the following properties

- · Constraints exist, but are not active at the optimum
- A subset of constraints, or all the constraints are active at the optimum
- Upper level constraints are functions of only upper level variables, and lower level constraints are functions of only lower level variables
- Upper level constraints are functions of upper as well as lower level variables, and lower level constraints are also functions of upper as well as lower level variables
- Lower level constraints lead to multiple global solutions at the lower level
- · Constraints are scalable at both levels

			Resul	ts			
 Follow proble Comp Number Savings: 	ving are the ms using arison pe of Runs: Ratio of	ne results BLEAQ rformed a 21 FE requ	s for 10 variable i against nested e ired by nested a	nstances of volutionary a approach ag	the SMD approach gainst BL	test EAQ	
Pr. No.	Best Func. Evals.		Median Func. Evals		Worst Func. Evals.		
	LL	UL	LL (Savings)	UL (Savings)	LL	UL	
SDM1	99315	610	110716 (14.71)	740 (3.34)	170808	1490	
SDM2	70032	376	91023 (16.49)	614 (3.65)	125851	1182	
SDM3	110701	620	125546 (11.25)	900 (2.48)	137128	1094	
SDM4	61326	410	81434 (13.59)	720 (2.27)	101438	1050	
SDM5	102868	330	126371 (15.41)	632 (4.55)	168401	1050	
SDM6	95687	734	118456 (14.12)	952 (3.25)	150124	1410	
GECCCO ****							

Median	results for	eight bilevel t	est problems	collected fro	m the
Compa	e. rison again	st the evolutio	nary algorithr	n nronosed	hy Wang
et al. (2	2005)		inary algorith	ii piopoodu	by mang
		BLEAQ	WJL	Savings	
	TP1	15,432	85,499	5.54	
	TP2	15,632	256,227	16.39	
	TP3	4844	92,526	19.10	
	TP4	16,422	291,817	17.77	
	TP5	15,524	77,302	4.98	
	TP6	17,421	163,701	9.40	
	TP7	257,243	1,074,742	4.18	
	TP8	12,533	213,522	17.04	

EA's Niche

- · Bilevel problems do exist in practice
- · Classical approaches are not efficient
- Evolutionary algorithms so far show promise
 - · Operator flexibility
 - Co-evolutionary approaches could be used
- Hard test problems suggested
- · More open questions remain than answered
- Ideal platform to launch a coordinated research

Conclusions

- Bilevel problems are of interest both for theorists and practitioners
- Lack of efficient algorithms to handle such problems
 provide enormous scope for research
- The proposed evolutionary methodology is successfully able to handle non-linear bilevel problems
- More effort is required to reduce the number of lower level function evaluations
- Multiple objectives at one or both of the levels induce further challenges

Important References

- J.F. Bard. Practical bilevel optimization: Algorithms and applications. The Netherlands: Kluwer, 1998.
- Brotcorne, M. Labbé, P. Marcotte, G. Savard and L. M. Houy. A Bilevel Model for Toll Optimization on a Multicommodity Transportation Network, Transportation Science, pages 345-358, 35(4), 2001.
- S. Dempe. Foundations of bilevel programming. Kluwer, Dordrecht, 2002.
- K. Deb and A. Sinha. An evolutionary approach for bilevel multi-objective problems. In Cutting-Edge Research Topics on Multiple Criteria Decision Making, Communications in Computer and Information Science, pages 17-24, 35, Berlin, Germany: Springer, 2009.
- K. Deb and A. Sinha. An efficient and accurate solution methodology for bilevel multi-objective programming problems using a hybrid evolutionary-local-search algorithm. Evolutionary Computation Journal, pages 403-449, 14(5). MIT Press, 2010.
- G. Eichfelder. Solving Nonlinear Multiobjective Bilevel Optimization Problems with Coupled Upper Level Constraints, Preprint No. 320, Preprint-Series of the Institute of Applied Mathematics, Univ. Erlangen-Nürnberg, Germany, 2007.
- A. Frantsev, A. Sinha, and P. Malo. Finding optimal strategies in multi-period stackelberg games using an evolutionary framework. In IFAC Workshop on Control Applications of Optimization (IFAC-2009). Elsevier, 2012.

Important References

- G. Heilporn, M. Labbé, P. Marcotte and G. Savard. A parallel between two classes of pricing problems in transportation and marketing. Journal of Revenue and Pricing Management, pages 110-125, 9(1), 2010.
- A. Sinha, P. Malo and K. Deb. Unconstrained scalable test problems for single-objective bilevel optimization. In 2012 IEEE Congress on Evolutionary Computation (CEC-2012). IEEE Press, 2012.
- A. Sinha, P. Malo, and K. Deb. Efficient evolutionary algorithm for single-objective bilevel optimization. KanGAL Report No. 2013003 (http://www.iitk.ac.in/kangal/reports.shtml).
- A. Sinha, P. Malo, and K. Deb. Test Problem Construction for Single-Objective Bilevel Optimization. KanGAL Report No.2013002 (http://www.iitk.ac.in/kangal/reports.shtml).
- A. Sinha, P. Malo and K. Deb. Multi-objective Stackelberg Game Between a Regulating Authority and a Mining Company: A Case Study in Environmental Economics. KanGAL Report No.2013004 (http:// www.ilk.ac.in/kangal/reports.shtml).
- Y. Wang, Y. C. Jiao, and H. Li. An evolutionary algorithm for solving nonlinear bilevel programming based on a new constraint-handling scheme. IEEE Transaction on Systems, Man and Cybernetics Part C: Applications and Reviews, pages 221–232, 32(2), 2005.
- G. Zhang, J. Liu, and T. Dillon. Decntralized multi-objective bilevel decision making with fuzzy demands. Knowledge-Based Systems, pages 495–507, 20, 2007.

