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An Optimization Problem 

Min(x,y) 	
F(x, y)	

	

Such that	

	


	
 	
G(x, y) ≥ 0	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
	
 	
Inequality Constraint	

	
 	
H(x, y) = 0	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
	
 	
Equality Constraint	

	
 	
xmin ≤ x ≤ xmax, 	
 ymin ≤ y ≤ ymax 	
Bound Constraint	


The above is a single level of optimization task 

   

What is a Bilevel Problem? 

 
A mathematical program that contains an optimization 
problem in the constraints. 

-Bracken and McGill (1973)  
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What is a Bilevel Problem? (cont.) 
What is a Bilevel Problem? 

   

Multiple Lower Level 
Optimal Solutions 

What is a Bilevel Problem? (cont.) 
What is a Bilevel Problem? 

   

Origin of Bilevel Programming 

•  All optimization problems are special cases of bilevel 
programming 

An Extension of Mathematical Programming 

•  Bilevel programs commonly appear in game theory 
when there is a leader and follower 

Stackelberg Games 

–Bracken and McGill (1973) 
 

–Stackelberg (1952) 
 

   

Extension of Mathematical Programming 

•  Contains an upper and a lower level optimization tasks 
•  Optimization problem within the constraints 
•  Feasibility determined by solving the lower level problem 
•  Can be generalized to multiple levels of optimization 

Two Levels of Optimization 

•  Optimization problems having equilibrium satisfaction as a 
constraint 

•  Optimization problems having stability satisfaction as a constraint 
•  Optimization problems having differential equations as a 

constraint 

Example 

Origin of Bilevel Programming 
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Stackelberg Games 

•  Leader makes the first move 
•  Follower reacts rationally and then makes its move 
•  Leader has the first mover’s advantage 
•  Problem is non-symmetric 

Two Player Game 

•  Hierarchical decision making 
•  Consider a leader dictating selling price and supply 
•  Customers respond rationally to the leader’s decision 
•  Leader needs to anticipate this response to maximize profit 

Example 

Origin of Bilevel Programming 

   

Properties of Bilevel Problems 

l  Bilevel problems are typically non-convex, 

disconnected and strongly NP-hard 

l  Solving an optimization problem produces a one or 

more feasible solutions 

l  Multiple global solutions at lower level can induce 

additional challenges 

l  Two levels can be cooperating or conflicting 

   

Single Level vs Bilevel 

Min(x,y) 	
3y + x	

	

Such that	

	


	
 	
x + y ≤ 8	

	
 	
x + 4y ≥ 8	

	
 	
x + 2y ≤ 13	

	
 	
1 ≤ x ≤ 6	


F 

y 

x 

A Single Level Linear Optimization Problem 

Properties of Bilevel Problems 

   

The single level linear optimization problem is now modified as follows: 

Min(x,y) 	
3y + x	

	

Such that	

	


	
 	
y ∈ argmin(y)  	
 	
-y 	
 	
	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
Such that  	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
x + y ≤ 8,  x + 4y ≥ 8, 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
x + 2y ≤ 13, 1 ≤ x ≤ 6	


Single Level vs Bilevel (cont.) 

Bilevel Linear Optimization Problem 

Properties of Bilevel Problems 

879



4/29/13 

4 

   

F 

y 

x 

f 

x1 x2 

Bold Line - Induced Set 
 
(2,6) - Bilevel Solution 

Single Level vs Bilevel (cont.) 
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Properties of Bilevel Problems 

   

Bilevel vs. Multi-objective Optimization 

Min(x,y) 	
3y + x	

Min(x,y) 	
-y	

	

Such that	

	


	
 	
x + y ≤ 8	

	
 	
x + 4y ≥ 8	

	
 	
x + 2y ≤ 13	

	
 	
1 ≤ x ≤ 6	


y 

x 

Pareto-optimal Set 
(Decision Space) 

Bilevel Optimum 

Bilevel linear optimization problem is now modified as follows: 

Properties of Bilevel Problems 

   

Bilevel vs Multi-objective Opt. (cont.) 

•  Both problems involve two different objectives 

•  Multi-objective problems usually have multiple optimal solutions 

•  Bilevel problems usually have a single optimal solution 

•  A bilevel solution is not necessarily a Pareto-optimal solution 

•  It is not possible to directly use algorithms for multi-objective 
optimization for bilevel problems 

Properties of Bilevel Problems 

   

Bilevel Multi-objective Problems 
•  Bilevel problems may involve optimization of multiple 

objectives at one or both of the levels 
•  Little work has been done in the direction of multi-objective 

bilevel problems (Eichfelder (2007), Deb and Sinha (2010)) 
•  A general multi-objective bilevel problem may be formulated 

as follows: 
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•  Lower level Pareto front depends on x 
•  Upper level Pareto-optimal front lies on 

constraint G1 
•  Maximum two solutions from each x 
•  Not all x in upper Pareto-optimal front 

•  Solutions possible even below the upper 
level Pareto-optimal front 

•  Dashed lines represent 
lower level Pareto fronts 

•  Solid line represents upper 
level Pareto front 

Bilevel Multi-objective: Example 
Bilevel Multi-objective Problems 

   

Single vs Multi-objective Bilevel Problems 

•  Single-objective Bilevel Problems 
•  One objective function at both the levels 
•  Usually one target solution 

•  Multi-objective Bilevel Problems 
•  Multiple objectives at one or both of the levels 
•  Usually multiple solutions are targeted 
•  Find and maintain many solutions at both levels 
•  Decision making may lead to further complications 
•  Not an easy matter 

Bilevel Multi-objective Problems 

   

Applications 

   

Toll Setting Problem 
Authority's problem: 

l  Authority responsible for highway 
system wants to maximize its 
revenues earned from toll 

l  The authority has to solve the 
highway users optimization problem 
for all the possible tolls 

Highway users' problem: 
l  For any toll chosen by the authority, 

highway users try to minimize their 
own travel costs 

l  A high toll will deter users to take 
the highway, lowering the revenues  

Applications 

Brotcorne et al. (2001) 
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Hierarchical Setting 
 

l  An owner of a company dictates the selling 
price and supply. He wants to maximize his 
profit. 

l  The buyers look at the product quality, pricing 
and various other options available to 
maximize their utility 

l  Mixed integer programs on similar lines have 
been formulated by Heliporn et al. (2010) 

 
    

 
Max Profit (suppy, selling price, demand, other variables) 
 
Such that 
  demand ∈ argmax { Utility | Lower Level Constraints} 
  Upper Level Constraints 

Applications 

Heilporn et al. (2010) 
   

Stackelberg Duopoly Competition 
Competition between a leader and a 
follower firm 
 
Leader solves the following optimization 
problem to maximize its profit 

If the leader and follower have 
similar functions, leader always 
makes a higher profit. 

   - First mover’s advantage 
 
Can be extended to multiple 
leaders and multiple followers 
 
 

Applications 

Frantsev et al. (2012) 

   

Taxation Strategy 

Leader: Government 
Maximize revenue from taxes 
Minimize Pollution 

Follower: Mining Company 
Maximize Profit 

•  Recently, there has been a controversy in Finland for gold mining in 
the Kuusamo region in Finland 

•  The region is a famous tourist resort endowed with immense natural 
beauty 

•  For any taxation strategy by the government, the mining company 
optimizes its own profits 

Applications 

Sinha et al. (2013) 
   

•  Two levels of decision making 
•  Multiple objectives involved at 

both the levels 

Leader: CEO of a Company 

Objectives:  Max Company Profit 

      Max Product Quality 

 

Followers: Department Heads 

Objectives:  Max Department Profit 

      Max Employee Satisfaction 

CEO Department 
Head 

A Company Scenario 

Company Profit 

Q
ua

lit
y 

D
ep

t. 
P

ro
fit

 

Employee Satisfaction 

Follower 

Leader 

Applications 

Zhang et al. (2007), Deb et al. (2009) 

882



4/29/13 

7 

   

Other Applications 

 
l  Maximizing production in chemical industries where reactions 

occur under equilibrium 
 
l  Defense applications like, strategic offensive and defensive force 

structure design, strategic bomber force structure, and allocation 
of tactical aircraft to missions 

l  Other applications include, optimal shape design, optimal 
operating configuration and optimal facility location 

 
l  Wide applications in economics like Principal-Agency problems, 

Taxation policies etc. 

Applications 

   

•  KKT conditions of the lower level problem are used as 
constraints (Herskovits et al. 2000) 
•  Lagrange multipliers increase the number of decision 

variables 
•  Constrained search space 
•  Applicable to differentiable problems only 

•  Another common approach: Nested optimization 
•  For every xu, lower level problem is solved completely 
•  Computationally very expensive 

•  Discretization of the lower level problem 
•  The best solution obtained from discrete set for a 

given xu is used as a feasible member at upper level 

Solution Methodologies 

   

Solution Methodologies (cont.) 
•  Penalty based approaches 

•  Special forms of penalty functions have been used 
•  Lower level is usually required to be convex 
•  Penalty function may require differentiability 

•  Branch and Bound techniques (Bard et al. 1982) 
•  Used KKT conditions 
•  Handled linear problems 
•  Converted the problems into variable separable form 
•  Utilized the branch and bound approach 

•  Taking an approximation of the lower level optimization 
problem such that its optimum is readily available 
•  The optimal solutions from lower level might not be 

accurate 

Solution Methodologies 

   

Solution Methodologies (cont.) 
•  Evolutionary algorithms have also been used for bilevel 

optimization 
•  Most of the methods are nested strategies 
•  Mathieu et al. (1994): LP for lower level and GA for upper level 
•  Yin (2000): Frank Wolfe Algorithm for lower level 
•  Oduguwa and Roy (2005): Proposed a co-evolutionary approach 
•  Wang et al. (2005): 

•  Solved bilevel problems using a constrained handling scheme 
in EA 

•  Method is computationally expensive, but successfully 
handles a number of test problems 

•  Li et al. (2006): Nested strategy using PSO 
•  EA researchers have also tried replacing the lower level problems 

using KKT (Wang et al. (2008), Li et al. (2007)) 

Solution Methodologies 
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Bilevel Evolutionary Algorithm 
Based on Quadratic Approximations 

(BLEAQ) 
•  Recently proposed by Sinha, Malo and Deb (2013) for 

solving bilevel optimization problems with various kinds of 
complexities 

•  Based on quadratic approximation of the inducible region 
•  The method is highly efficient when compared against 

nested approaches and other contemporary evolutionary 
techniques 

•  Capable of solving larger instances of bilevel programming 
problems 

•  Tested on a recently proposed SMD test-suit and other 
standard test problems from the literature 

   

B
LE

A
Q 

   

B
LE

A
Q 

Initialization Lower Level Optimization 

Produce Offsprings 

Quadratic Approximation 
of Ψ Function 

Is 
Approximation 

Good 

Lower Level Optimization for Offsprings  
(If necessary, otherwise use quad. appr.) 

Accept Lower Level Variables 
For Offsprings 

Yes 

No 

Update Population 

Termination 
Check 

No Yes 
Stop 

   

B
LE

A
Q 

Upper level function with respect to xu when xl is optimal 

  F (x   ,           )(x   )u

^ (x   )u*

x u*

^

X

X F

U

L

(x   )u

u

^

Bilevel
Minimum

x u x u
(1) (2)
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B
LE

A
Q 

A graphical representation of a simple bilevel optimization problem 
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Close upper level members are expected to have 
close lower level optimal solutions 

   

Why Evolutionary Approach? 

•  Classical methods require various simplifying assumptions like 
continuity, differentiability and convexity 

•  Bilevel is more intriguing than a normal optimization problem as 
the necessary condition itself involves second order derivatives 

•  Most of the real world applications do not adhere to these 
assumptions 

•  Population based approach helps in approximation of the Ψ 
function 

•  Incorporation of a good member from one population to the 
population in the vicinity boosts convergence 

BLEAQ 
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Test Problem Construction 
1.  Controlled difficulty in convergence at upper and lower levels 
2.  Controlled difficulty caused by interaction of the two levels 
3.  Multiple global solutions at the lower level for any given set of 

upper level variables 
4.  Clear identification of relationship between lower level optimal 

solutions and upper level variables 
5.  Scalability to any number of decision variables at upper and 

lower levels 
6.  Constraints (preferably scalable) at upper and lower levels 
7.  Possibility to have conflict or cooperation at the two levels 
8.  The optimal solution of the bilevel optimization is known 

   

SMD Test Problem Framework 

The objectives and variables on both levels are 
decomposed as follows: 

Test Problem Construction 

   

Bilevel Test Problems

Table 1: Overview of test-problem framework components
Panel A: Decomposition of decision variables

Upper-level variables Lower-level variables
Vector Purpose Vector Purpose
xu1 Complexity on upper-level xl1 Complexity on lower-level
xu2 Interaction with lower-level xl2 Interaction with upper-level

Panel B: Decomposition of objective functions
Upper-level objective function Lower-level objective function

Component Purpose Component Purpose
F1(xu1) Difficulty in convergence f1(xu1,xu2) Functional dependence
F2(xl1) Conflict / co-operation f2(xl1) Difficulty in convergence

F3(xu2,xl2) Difficulty in interaction f3(xu2,xl2) Difficulty in interaction

Properties for inducing difficulties:

1. Controlled difficulty in convergence at upper and lower levels.

2. Controlled difficulty caused by interaction of the two levels.

3. Multiple global solutions at the lower level for a given set of upper level variables.

4. Possibility to have either conflict or cooperation between the two levels.

5. Scalability to any number of decision variables at upper and lower levels.

6. Constraints (preferably scalable) at upper and lower levels.

Next, we provide the bilevel test problem construction procedure, which is able to induce
most of the difficulties suggested above.

3.1 Objective functions in the test-problem framework

To create a tractable framework for test-problem construction, we split the upper and lower
level functions into three components. Each of the components is specialized for induction
of certain kinds of difficulties into the bilevel problem. The functions are determined based
on the required complexities at upper and lower levels independently, and also by the required
complexities because of the interaction of the two levels. We write a generic bilevel test problem
as follows:

F (x

u

,x

l

) = F1(xu1) + F2(xl1) + F3(xu2,xl2)

f(x

u

,x

l

) = f1(xu1,xu2) + f2(xl1) + f3(xu2,xl2)

where
x

u

= (x

u1,xu2) and x

l

= (x

l1,xl2)

(3)

In the above equations, each of the levels contains three terms. A summary on the roles
of different terms is provided in Table 1. The upper level and lower level variables have been
broken into two smaller vectors (see Panel A in Table 1). The vectors x

u1 and x

l1 are used to
induce complexities at the upper and lower levels independently. The vectors x

u2 and x

l2 are
responsible to induce complexities because of interaction. In a similar fashion, we decompose
the upper and lower level functions such that each of the components is specialized for a certain
purpose only (see Panel B in Table 1). At the upper level, the term F1(xu1) is responsible

Evolutionary Computation Volume x, Number x 5

Roles of Components 
Test Problem Construction 

   

Controlling Difficulty in Convergence 

•  Convergence difficulties can be induced via following 
routes 

•  Dedicated components:  F1 (upper) and f2 (lower)  

•  Example: 

Multi-modal 

Quadratic 

Test Problem Construction 
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Controlling Difficulty in Interactions 

•  Interaction between variables xu2 and xl2 could be chosen 
as follows 

•  Dedicated components: F3 and f3 
•  Example:  

Test Problem Construction 

   

Difficulty due to Conflict/Co-operation 

•  Dedicated components: F2 and f2 or F3 and f3 may 
be used to induce conflict/cooperation 

•  Examples: 
–  Co-operative interaction = improvement in lower-level improves 

upper-level (e.g. F2 = f2)  
–  Conflicting interaction = improvement in lower-level worsens upper-

level (e.g. F2 = -f2) 
–  Mixed interaction = situation of both cooperation and conflict (e.g. 

F2 = f2 and F3 = Σi (xu2
i)2 – f3 

Test Problem Construction 

   

Controlled Multimodality 
•  Obtain multiple lower-level optima for every upper level 

decision 
•  Component used: f2 

•  Example: Multimodality at lower-level 

Induces multiple solutions: x1
l1

 = x2
l1 

Gives best UL solution: x1
l1

 = x2
l1=0 

Test Problem Construction 

   

Difficulty due to Constraints 
Constraints are included at both the levels with one or 
more of the following properties 

Test Problem Construction 

•  Constraints exist, but are not active at the optimum 
•  A subset of constraints, or all the constraints are active at the 

optimum 
•  Upper level constraints are functions of only upper level 

variables, and lower level constraints are functions of only 
lower level variables 

•  Upper level constraints are functions of upper as well as lower 
level variables, and lower level constraints are also functions of 
upper as well as lower level variables 

•  Lower level constraints lead to multiple global solutions at the 
lower level 

•  Constraints are scalable at both levels 
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Test Problems: SMD1 – SMD3 

•  Interaction: co-operative 
•  Lower level: convex (wrt lower level variables) 
•  Upper level: convex (induced space) 

SMD1: 

•  Interaction: conflict 
•  Lower level: convex (wrt lower level variables) 
•  Upper level: convex (induced space) 

SMD 2: 

•  Interaction: co-operative 
•  Lower level: multimodality, Rastrigin’s function 
•  Upper level: convex (induced space) 

SMD 3: 

Test Problem Construction 

   

Test Problems: SMD4 – SMD6 

•  Interaction: conflict 
•  Lower level: multimodality, Rastrigin’s function 
•  Upper level: convex (Induced Space) 

SMD 4: 

•  Interaction: conflict 
•  Lower level: multimodality, banana function 
•  Upper level: convex (Induced Space) 

SMD 5: 

•  Interaction: conflict 
•  Lower level: infinitely many global solutions for any given xu 
•  Upper level: convex (Induced Space) 

SMD 6: 

Test Problem Construction 

   

Test Problems: SMD7 – SMD9 

•  Interaction: conflict 
•  Lower level: convex (wrt lower level variables) 
•  Upper level: multimodality 

SMD 7: 

•  Interaction: conflict 
•  Lower level: multimodality, banana function 
•  Upper level: multimodality 

SMD 8: 

•  Interaction: conflict 
•  Lower level: non-scalable constraints 
•  Upper level: non-scalable constraints 

SMD 9: 

Test Problem Construction 

   

Test Problems: SMD10 – SMD12 

•  Interaction: conflict 
•  Lower level: scalable constraints 
•  Upper level: scalable constraints 

SMD 10: 

•  Interaction: conflict 
•  Lower level: non-scalable constraints, multiple global solutions 
•  Upper level: scalable constraints 

SMD 11: 

•  Interaction: conflict 
•  Lower level: scalable constraints, multiple global solutions 
•  Upper level: scalable constraints 

SMD 12: 

Test Problem Construction 
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SMD1 

A. Sinha, P. Malo and K. Deb

can be made, whether it is useful to solve the lower level optimization problem at all for a given
xu.

The upper level constraint subsets, Gb depends on xl, and Gc depends on xu and xl. The
values from these constraints are meaningful only when the lower level vector is an optimal
solution to the lower level optimization problem. Based on the various constraints which may
be functions of xu, or xl or both, a bilevel problem introduces different kinds of difficulties in
the optimization task. In this paper, we aim to construct such kinds of constrained bilevel test
problems which incorporate some of these complexities. We have proposed four constrained
bilevel problems, each of which has at least one or more of the following properties,

1. Constraints exist, but are not active at the optimum

2. A subset of constraints, or all the constraints are active at the optimum

3. Upper level constraints are functions of only upper level variables, and lower level con-
straints are functions of only lower level variables

4. Upper level constraints are functions of upper as well as lower level variables, and lower
level constraints are also functions of upper as well as lower level variables

5. Lower level constraints lead to multiple global solutions at the lower level

6. Constraints are scalable at both levels

While describing the test problems in the next section, we discuss the construction proce-
dure for the individual constrained test problems.

4 SMD test problems

By adhering to the design principles introduced in the previous section, we now propose a set of
twelve problems which we call as the SMD test problems. Each problem represents a different
difficulty level in terms of convergence at the two levels, complexity of interaction between two
levels and multi-modalities at each of the levels. The first eight problems are unconstrained and
the remaining four are constrained.

4.1 SMD1

This is a simple test problem where the lower level problem is a convex optimization task, and
the upper level is convex with respect to upper level variables and optimal lower level variables.
The two levels cooperate with each other.

F1 =
∑p

i=1(x
i
u1)

2

F2 =
∑q

i=1(x
i
l1)

2

F3 =
∑r

i=1(x
i
u2)

2 +
∑r

i=1(x
i
u2 − tanxi

l2)
2

f1 =
∑p

i=1(x
i
u1)

2

f2 =
∑q

i=1(x
i
l1)

2

f3 =
∑r

i=1(x
i
u2 − tanxi

l2)
2

(12)
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Figure 3: Upper and lower level function contours for a four-variable SMD1 test problem.

The range of variables is as follows,

xi
u1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p}

xi
u2 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r}

xi
l1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q}

xi
l2 ∈ (−π

2 , π
2 ), ∀ i ∈ {1, 2, . . . , r}

(13)

Relationship between upper level variables and lower level optimal variables is given as follows,

xi
l1 = 0, ∀ i ∈ {1, 2, . . . , p}

xi
l2 = tan−1 xi

u2, ∀ i ∈ {1, 2, . . . , r} (14)

The values of the variables at the optima are xu = 0 and xl is obtained by the relationship given
above. Both the upper and lower level functions are equal to zero at the optima.

Figure 3 shows the contours of the upper and lower level functions with respect to the
upper and lower level variables for a four-variable test problem. The problem has two upper
level variables and two lower level variables, such that the dimensions of xu1,xu2,xl1 and xu2

are all one. Sub-figure P shows the upper level function contours with respect to the upper
level variables, assuming that the lower level variables are at the optima. Fixing the upper level
variables (xu1,xu2) at five different locations, i.e. (2, 2), (−2, 2), (2,−2), (−2,−2) and (0, 0),
the lower level function contours are shown with respect to the lower level variables. This shows
that the contours of the lower level optimization problem may be different for different upper
level vectors.

Figure 4 shows the contours of the upper level function with respect to the upper and lower
level variables. Sub-figure P once again shows the upper level function contours with respect
to the upper level variables. However, sub-figures Q, R, S, T and V now represent the upper
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Figure 3: Upper and lower level function contours for a four-variable SMD1 test problem.

The range of variables is as follows,

xi
u1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p}

xi
u2 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r}

xi
l1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q}

xi
l2 ∈ (−π

2 , π
2 ), ∀ i ∈ {1, 2, . . . , r}

(13)

Relationship between upper level variables and lower level optimal variables is given as follows,

xi
l1 = 0, ∀ i ∈ {1, 2, . . . , p}

xi
l2 = tan−1 xi

u2, ∀ i ∈ {1, 2, . . . , r} (14)

The values of the variables at the optima are xu = 0 and xl is obtained by the relationship given
above. Both the upper and lower level functions are equal to zero at the optima.

Figure 3 shows the contours of the upper and lower level functions with respect to the
upper and lower level variables for a four-variable test problem. The problem has two upper
level variables and two lower level variables, such that the dimensions of xu1,xu2,xl1 and xu2

are all one. Sub-figure P shows the upper level function contours with respect to the upper
level variables, assuming that the lower level variables are at the optima. Fixing the upper level
variables (xu1,xu2) at five different locations, i.e. (2, 2), (−2, 2), (2,−2), (−2,−2) and (0, 0),
the lower level function contours are shown with respect to the lower level variables. This shows
that the contours of the lower level optimization problem may be different for different upper
level vectors.

Figure 4 shows the contours of the upper level function with respect to the upper and lower
level variables. Sub-figure P once again shows the upper level function contours with respect
to the upper level variables. However, sub-figures Q, R, S, T and V now represent the upper
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Figure 4: Upper level function contours for a four-variable SMD1 test problem.

level function contours at different (xu1,xu2), i.e. (2, 2), (−2, 2), (2,−2), (−2,−2) and (0, 0).
From sub-figures Q, R, S, T and V, we observe that if the lower level variables move away from
its optimal location, the upper level function value deteriorates. This means that the upper level
function and the lower level functions are cooperative.

4.2 SMD2

This test problem is similar to the SDM1 test problem, however there is a conflict between the
upper level and lower level optimization task. The lower level optimization problem is once
again a convex optimization task and the upper level optimization is convex with respect to
upper level variables and optimal lower level variables. Since, the two levels are conflicting,
an inaccurate lower level optimum may lead to upper level function value better than the true
optimum for the bilevel problem.
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i
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2

F2 = −
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i=1(x
i
l1)

2

F3 =
∑r

i=1(x
i
u2)

2 −
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i
u2 − log xi
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2
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i
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2
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i=1(x
i
l1)

2
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i
u2 − log xi

l2)
2

(15)

The range of variables is as follows,

xi
u1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p}

xi
u2 ∈ [−5, 1], ∀ i ∈ {1, 2, . . . , r}

xi
l1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q}

xi
l2 ∈ (0, e], ∀ i ∈ {1, 2, . . . , r}

(16)
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Figure 5: Upper and lower level function contours for a four-variable SMD2 test problem.

Relationship between upper level variables and lower level optimal variables is given as follows,

xi
l1 = 0, ∀ i ∈ {1, 2, . . . , q}

xi
l2 = log−1 xi

u2, ∀ i ∈ {1, 2, . . . , r} (17)

The values of the variables at the optima are xu = 0 and xl is obtained by the relationship given
above. Both the upper and lower level functions are equal to zero at the optima.

Figure 5 shows the contours of the upper and lower level functions with respect to the
upper and lower level variables for a four-variable test problem. The problem has two upper
level variables and two lower level variables, such that the dimension of xu1,xu2,xl1 and xu2

are all one. The figure provides the same information about SMD2, as Figure 3 provides about
SMD1. However, the shape of the contours differ, which is caused by the use of different F3

and f3 functions.

Figure 6 shows the contours of the upper level function with respect to the upper and lower
level variables, and provides the same information as Figure 4 provides about SMD1. This
figure shows the conflicting nature of the problem caused by using a negative sign in F2. The
conflicting nature can be observed from the sub-figures Q, R, S, T and U. For a given xu, as
one moves away from the lower level optimal solution, the upper level function value further
reduces. On the other hand, in 5 we observe that moving away from the lower level optimal
solution causes an increase in lower level function value.

4.3 SMD3

In this test problem there is a cooperation between the two levels. The difficulty introduced is
in terms of multi-modality at the lower level which contains the Rastrigin’s function. The upper
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Figure 4: Upper level function contours for a four-variable SMD1 test problem.

level function contours at different (xu1,xu2), i.e. (2, 2), (−2, 2), (2,−2), (−2,−2) and (0, 0).
From sub-figures Q, R, S, T and V, we observe that if the lower level variables move away from
its optimal location, the upper level function value deteriorates. This means that the upper level
function and the lower level functions are cooperative.

4.2 SMD2

This test problem is similar to the SDM1 test problem, however there is a conflict between the
upper level and lower level optimization task. The lower level optimization problem is once
again a convex optimization task and the upper level optimization is convex with respect to
upper level variables and optimal lower level variables. Since, the two levels are conflicting,
an inaccurate lower level optimum may lead to upper level function value better than the true
optimum for the bilevel problem.
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(15)

The range of variables is as follows,

xi
u1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p}

xi
u2 ∈ [−5, 1], ∀ i ∈ {1, 2, . . . , r}

xi
l1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q}

xi
l2 ∈ (0, e], ∀ i ∈ {1, 2, . . . , r}

(16)

12 Evolutionary Computation Volume x, Number x

Test Problem Construction 

   

SMD3 

A. Sinha, P. Malo and K. Deb

P: Upper level function contours

at optimal lower level variables

with respect to upper level variables

Q: Upper level function contours

at (x    ,x    ) = (2,−2)
u1 u2

with respect to lower level variables

with respect to lower level variables

S: Upper level function contours

at (x    ,x    ) = (0,0)
u1 u2

with respect to lower level variables

R: Upper level function contours

at (x    ,x    ) = (2,2)
u1 u2

with respect to lower level variables

U: Upper level function contours

at (x    ,x    ) = (−2,−2)
u1 u2

with respect to lower level variables

T: Upper level function contours

at (x    ,x    ) = (−2,2)
u1 u2

x u1

x

xl1

x
l2

xl1

l2x

x

x

x

x

l1

l2

l1

l2

l1

l2

x

x

u2

7.9

7.5

7

6.5

7.5
7 6.5

7.99
7.9

7.5

7

6.5

7.5
7 6.5

7.99

6.5
7

7.5

7.9

7.99

7.5

7

−1

−1.5

−0.5

−0.1

7
6.5

7.99

7.5

7

7.5

7.9

20

8

1

4

30

−0.4 −0.2  0  0.2  0.4

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

−0.4 −0.2  0  0.2  0.4

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

−0.4 −0.2  0  0.2  0.4

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

−1.5 −1 −0.5  0  0.5  1  1.5

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

−0.4 −0.2  0  0.2  0.4

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

−4 −2  0  2  4

−4

−2

 0

 2

 4

Figure 6: Upper level function contours for a four-variable SMD2 test problem.

level is convex with respect to upper level variables and optimal lower level variables.
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The range of variables is as follows,

xi
u1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p}

xi
u2 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r}

xi
l1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q}

xi
l2 ∈ (−π

2 , π
2 ), ∀ i ∈ {1, 2, . . . , r}

(19)

Relationship between upper level variables and lower level optimal variables is given as follows,

xi
l1 = 0, ∀ i ∈ {1, 2, . . . , q}

xi
l2 = tan−1(xi

u2)
2, ∀ i ∈ {1, 2, . . . , r} (20)

The values of the variables at the optima are xu = 0 and xl is obtained by the relationship given
above. Both the upper and lower level functions are equal to zero at the optima. Rastrigin’s
function used in f2 has multiple local optima around the global optimum, which introduces
convergence difficulties at the lower level.

Sub-figure P in Figure 7 shows the contours of the upper level function with respect to the
upper level variables assuming the lower level variables to be optimal at each xu. Sub-figures Q,
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Figure 7: Upper and lower level function contours for a four-variable SMD3 test problem.

R, S, T, and U show the behavior of the lower level function at 5 different locations of xu, which
are (2, 2), (−2, 2), (2,−2), (−2,−2) and (0, 0). The problem is once again assumed to have two
upper level variables and two lower level variables, such that the dimensions of xu1,xu2,xl1

and xu2 are all one. The figure shows that there is a different lower level optimization problem
at each xu which is required to be solved in order to achieve a feasible solution at the upper
level. The contours of the lower level optimization problem differ, based on the location of
upper level vector. It can be observed that the rastrigin’s function at the lower level introduces
multiple local optima into the problem. The contours of the lower level are further distorted
because of the presence of the tan(·) function at the lower level.

In spite of multiple local optima at the lower level, this problem is easier to solve because
of the cooperating nature of the functions at the two levels. If a lower level optimization problem

is stuck at a local optimum for a particular xu (say x
(0)
u ), then it will have a poorer objective

function value at the upper level. However, as soon as another lower level optimization problem

is solved in the vicinity of x
(0)
u , which attains a global optimum, then it will have a better

objective function value at the upper level, and will dominate the previous inaccurate solution.
Therefore, a method which is able to handle multi-modality at the lower level at least in few of
its lower level optimization runs will be able to successfully solve this problem.

4.4 SMD4

In this test problem there is a conflict between the two levels. The difficulty is in terms of multi-
modality at the lower level which once again contains the Rastrigin’s function. The upper level
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Figure 6: Upper level function contours for a four-variable SMD2 test problem.

level is convex with respect to upper level variables and optimal lower level variables.
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The range of variables is as follows,

xi
u1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p}

xi
u2 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r}

xi
l1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q}

xi
l2 ∈ (−π

2 , π
2 ), ∀ i ∈ {1, 2, . . . , r}

(19)

Relationship between upper level variables and lower level optimal variables is given as follows,

xi
l1 = 0, ∀ i ∈ {1, 2, . . . , q}

xi
l2 = tan−1(xi

u2)
2, ∀ i ∈ {1, 2, . . . , r} (20)

The values of the variables at the optima are xu = 0 and xl is obtained by the relationship given
above. Both the upper and lower level functions are equal to zero at the optima. Rastrigin’s
function used in f2 has multiple local optima around the global optimum, which introduces
convergence difficulties at the lower level.

Sub-figure P in Figure 7 shows the contours of the upper level function with respect to the
upper level variables assuming the lower level variables to be optimal at each xu. Sub-figures Q,
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SMD4 
A. Sinha, P. Malo and K. Deb

is convex with respect to upper level variables and optimal lower level variables.
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The range of variables is as follows,

xi
u1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p}

xi
u2 ∈ [−1, 1], ∀ i ∈ {1, 2, . . . , r}

xi
l1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q}

xi
l2 ∈ [0, e], ∀ i ∈ {1, 2, . . . , r}

(22)

Relationship between upper level variables and lower level optimal variables is given as follows,

xi
l1 = 0, ∀ i ∈ {1, 2, . . . , q}

xi
l2 = log−1 |xi

u2|− 1, ∀ i ∈ {1, 2, . . . , r} (23)

The values of the variables at the optima are xu = 0 and xl is obtained by the relationship given
above. Both the upper and lower level functions are equal to zero at the optima.

Figure 8 represents the same information as in Figure 7 for a four-variable bilevel prob-
lem. However, this problem involves conflict between the two levels, which make the problem
significantly more difficult than the previous test problem. For this test problem if a lower level
optimization problem is stuck at a local optimum for a particular xu, then it will end up having
a better objective function value at the upper level, than what it will attain at the true global
lower level optimum. Therefore, even if another lower lower level optimization problem is suc-
cessfully solved in the vicinity of xu, the previous inaccurate solution will dominate the new
solution at the upper level. This problem can be handled only by those methods which are able
to efficiently handle lower level multi-modality without getting stuck in a local basin.

4.5 SMD5

In this test problem, there is a conflict between the two levels. The difficulty introduced is in
terms of multi-modality and convergence at the lower level. The lower level problem contains
the Rosenbrock’s (banana) function such that the global optimum lies in a long, narrow, flat
parabolic valley. The upper level is convex with respect to upper level variables and optimal
lower level variables.
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Figure 8: Upper and lower level function contours for a four-variable SMD4 test problem.

The range of variables is as follows,

xi
u1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p}

xi
u2 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r}

xi
l1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q}

xi
l2 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r}

(25)

Relationship between upper level variables and lower level optimal variables is given as follows,

xi
l1 = 1, ∀ i ∈ {1, 2, . . . , q}

xi
l2 =

√

|xi
u2|, ∀ i ∈ {1, 2, . . . , r} (26)

The values of the variables at the optima are xu = 0 and xl is obtained by the relationship given
above. Both the upper and lower level functions are equal to zero at the optima.

4.6 SMD6

In this test problem, once again there is a conflict between the two levels. This problem is
different from previous problems such that it contains infinitely many global solutions at the
lower level, for any given upper level vector. Out of the entire global solution set, there is only
a single lower level point which corresponds to the best upper level function value.
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is convex with respect to upper level variables and optimal lower level variables.
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The range of variables is as follows,
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Relationship between upper level variables and lower level optimal variables is given as follows,
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l1 = 0, ∀ i ∈ {1, 2, . . . , q}

xi
l2 = log−1 |xi

u2|− 1, ∀ i ∈ {1, 2, . . . , r} (23)

The values of the variables at the optima are xu = 0 and xl is obtained by the relationship given
above. Both the upper and lower level functions are equal to zero at the optima.

Figure 8 represents the same information as in Figure 7 for a four-variable bilevel prob-
lem. However, this problem involves conflict between the two levels, which make the problem
significantly more difficult than the previous test problem. For this test problem if a lower level
optimization problem is stuck at a local optimum for a particular xu, then it will end up having
a better objective function value at the upper level, than what it will attain at the true global
lower level optimum. Therefore, even if another lower lower level optimization problem is suc-
cessfully solved in the vicinity of xu, the previous inaccurate solution will dominate the new
solution at the upper level. This problem can be handled only by those methods which are able
to efficiently handle lower level multi-modality without getting stuck in a local basin.

4.5 SMD5

In this test problem, there is a conflict between the two levels. The difficulty introduced is in
terms of multi-modality and convergence at the lower level. The lower level problem contains
the Rosenbrock’s (banana) function such that the global optimum lies in a long, narrow, flat
parabolic valley. The upper level is convex with respect to upper level variables and optimal
lower level variables.
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Results 
u  Following are the results for 10 variable instances of the SMD test 

problems using BLEAQ 
u  Comparison performed against nested evolutionary approach 
 

Number of Runs: 21 
Savings: Ratio of FE required by nested approach against BLEAQ 
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Figure 12: Quadratic relationship convergence.

also provides the median number of lower level calls, and the average number of
lower level function evaluations required per lower level call. Table 10 compares
the mean function evaluations at the upper and lower levels required by BLEAQ
against that required by WJL. WJl requires close to an order of magnitude times
more function evaluations at the lower level, and two orders of magnitude times
more function evaluations at the upper level, for most of the test problems. This
clearly demonstrates the e�ciency gain obtained using the BLEAQ approach.
It also suggests that the mathematical insights used along with the evolutionary
principles in the BLEAQ approach is helpful in converging quickly towards the
bilevel optimal solution.

Table 8: Function evaluations (FE) for the upper level (UL) and the lower level
(LL) from 11 runs of the proposed BLEAQ.

Pr. No. Best Func. Evals. Median Func. Evals. Worst Func. Evals.
LL UL LL UL LL UL

TP1 14115 718 15041 780 24658 1348

TP2 12524 1430 14520 1434 16298 2586

TP3 4240 330 4480 362 6720 518

TP4 14580 234 15300 276 15480 344

TP5 10150 482 15700 1302 15936 1564

TP6 14667 230 17529 284 21875 356

TP7 234622 3224 267784 4040 296011 5042

TP8 10796 1288 12300 1446 18086 2080
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Quadratic approximation at optima (0,0) improves with 
increasing generations 
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Convergence Plot for SMD1 

Table 7: Accuracy for the upper and lower levels, and the lower level calls from
11 runs of the proposed BLEAQ.

Pr. No. Median Median Median

UL Accuracy LL Accuracy LL Calls LL Evals
LL Calls

SDM1 0.006828 0.003521 528 202.47
SDM2 0.003262 0.002745 522 176.09
SDM3 0.009122 0.004364 603 225.91
SDM4 0.006957 0.002716 574 146.39
SDM5 0.004103 0.003773 513 243.68
SDM6 0.000000 0.000000 167 50.24
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Figure 10: Convergence plot for SMD1.
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Figure 11: Convergence plot for SMD2.

approximations generated at various generations. It can be observed that the
approximations in the vicinity of the true bilevel optimum improves with in-
creasing number of generations.

8.3 Results for constrained test problems

In this sub-section, we provide results for 8 standard constrained test problems
chosen from the literature. We compare our results against the approach pro-
posed by Wang et al. (2005). The reason for the choice of this approach as a
benchmark is that the approach was successful in solving all the chosen con-
strained test problems. The results obtained using the BLEAQ and WJL [25]
approach has been provided in Tables 8, 9 and 10. Table 8 provides the mini-
mum, median and maximum function evaluations required to solve the chosen
problems using the BLEAQ approach. Table 9 provides the accuracy obtained
at both the levels, in terms of absolute di↵erence from the best known solution
to a particular test problem. The numbers in the brackets provide the best
solution known from the literature for each of the test problems. The table
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Median results for eight bilevel test problems collected from the 
literature. 
Comparison against the evolutionary algorithm proposed by Wang 
et al. (2005) 

Table 9: Accuracy for the upper and lower levels, and the lower level calls from
11 runs of the proposed BLEAQ.

Pr. No. Median Median Median

UL Accuracy LL Accuracy LL Calls LL Evals
LL Calls

TP1 0.000000 (225.0) 0.000000 (100.0) 206 72.76
TP2 0.012657 (0.0) 0.000126 (100.0) 235 61.79
TP3 0.000000 (-18.678711) 0.000000 (-1.015625) 112 40.00
TP4 0.040089 (-29.2) 0.007759 (3.2) 255 60.00
TP5 0.008053 (-3.6) 0.040063 (-2.0) 203 78.50
TP6 0.000099 (-1.2091) 0.000332 (7.6145) 233 75.23
TP7 0.093192 (-1.98) 0.093192 (1.98) 3862 95.42
TP8 0.001819 (0.0) 0.000064 (100.0) 200 61.50

Table 10: Comparison of BLEAQ against the results achieved by WJL approach.

Pr. No. Mean UL Func. Evals. Mean LL Func. Evals.
BLEAQ WJL Savings BLEAQ WJL Savings

TP1 796 85,499 107.41 15,432 85,499 5.54
TP2 1,578 256,227 162.37 15,632 256,227 16.39
TP3 412 92,526 224.58 4844 92,526 19.10
TP4 268 291,817 1088.87 16,422 291,817 17.77
TP5 1,214 77,302 63.68 15,524 77,302 4.98
TP6 296 163,701 553.04 17,421 163,701 9.40
TP7 4,144 1,074,742 259.34 257,243 1,074,742 4.18
TP8 1,572 213,522 135.85 12,533 213,522 17.04

9 Conclusions

In this paper, we propose an e�cient bilevel evolutionary algorithm (BLEAQ)
which works by approximating the optimal solution mapping between the lower
level optimal solutions and the upper level variables. The algorithm not only
converges towards the the optimal solution to the bilevel optimization problem,
but also provides the optimal solution mapping close to the optima, which pro-
vides valuable information as to how the lower level optimal solution changes
based on changes in the upper level variable vector close to the optima. The
algorithm has been tested on two sets of test problems. The first set of test
problems are recently proposed SMD test problems which are scalable in terms
of number of variables. The method has been tested on a 10-dimensional in-
stance of these test problems. The second set of test problems are 8 standard
test problems chosen from the literature. These problems are constrained and
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EA’s Niche 
•  Bilevel problems do exist in practice 
•  Classical approaches are not efficient 
•  Evolutionary algorithms so far show promise 

•  Operator flexibility  
•  Co-evolutionary approaches could be used 

•  Hard test problems suggested 
•  More open questions remain than answered 
•  Ideal platform to launch a coordinated research 

   

Conclusions 
 

l  Bilevel problems are of interest both for theorists and 
practitioners 

 
l  Lack of efficient algorithms to handle such problems 

provide enormous scope for research 
 
l  The proposed evolutionary methodology is successfully 

able to handle non-linear bilevel problems 
 
l  More effort is required to reduce the number of lower level 

function evaluations 

l  Multiple objectives at one or both of the levels induce 
further challenges 
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