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An Optimization Problem

Min(x‘y) F(x,y)

Such that
G(x,y) =0 Inequality Constraint
H(x,y)=0 Equality Constraint

Xppin =X =X Ymin=<Y=Yne  Bound Constraint

The above is a single level of optimization task

GECCO,

213

877

Outline

What is a Bilevel Problem?
Origin of Bilevel Programming .
GECCO
Properties of Bilevel Problems _&A
St

Bilevel Multi-objective Problems

#13

Applications

Solution Methodologies

The Evolutionary Way: BLEAQ
Test Problem Construction
Results

EA’s Niche

Conclusions

Important References

What is a Bilevel Problem?

Minex, x,) F(xu,%1),
: f(xuyxl)
st x; € argmin x,) g(Xu,%1) > 0,h(xy, %) =0 [’
G(xuyxl) > O:H(xuvxl) = 0;

(xu)min S Xu S (xu)mama (xl)min S Xi S (xl)maz

A mathematical program that contains an optimization
problem in the constraints.
-Bracken and McGill (1973)
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What is a Bilevel Problem?

What is a Bilevel Problem? (cont.)
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Origin of Bilevel Programming

An Extension of Mathematical Programming

« All optimization problems are special cases of bilevel

programming
—Bracken and McGill (1973)

Stackelberg Games

« Bilevel programs commonly appear in game theory
when there is a leader and follower
—Stackelberg (1952)
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What is a Bilevel Problem?

What is a Bilevel Problem? (cont.)

Upper Level Variable Space

K\(“\/ e

ultiple Lower Level
Optimal Solutions

Lower Level Function

Lower Level Variable Space
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Origin of Bilevel Programming

Extension of Mathematical Programming

Two Levels of Optimization

« Contains an upper and a lower level optimization tasks

« Optimization problem within the constraints

« Feasibility determined by solving the lower level problem
+ Can be generalized to multiple levels of optimization

Example

* Optimization problems having equilibrium satisfaction as a

constraint
+ Optimization problems having stability satisfaction as a constraint

« Optimization problems having differential equations as a
constraint

GE((Op:\
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Origin of Bilevel Programming

Stackelberg Games

Two Player Game

+ Leader makes the first move

« Follower reacts rationally and then makes its move
* Leader has the first mover’s advantage

* Problem is non-symmetric

Example

* Hierarchical decision making

« Consider a leader dictating selling price and supply

» Customers respond rationally to the leader’s decision

« Leader needs to anticipate this response to maximize profit

GECCO!J: \
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Properties of Bilevel Problems

Single Level vs Bilevel

y

A

Mll‘l(x’y) 3y +x

Such that

X+y=<8
X+4y =8
Xx+2y=<13 e
1=x=<6 ‘

A Single Level Linear Optimization Problem

GECCO,

2813

879

Properties of Bilevel Problems

. Bilevel problems are typically non-convex,
disconnected and strongly NP-hard

« Solving an optimization problem produces a one or
more feasible solutions

« Multiple global solutions at lower level can induce
additional challenges

. Two levels can be cooperating or conflicting

Properties of Bilevel Problems

Single Level vs Bilevel (cont.)

The single level linear optimization problem is now modified as follows:

Mln(x‘y) 3y +x

Such that

y € argmin(y> C oy
Such that
Xx+y=<8, x+4y=8,

Xx+2y=<13,1<x<6

Bilevel Linear Optimization Problem
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Properties of Bilevel Problems

Single Level vs Bilevel (cont.)
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Properties of Bilevel Problems

Bilevel vs Multi-objective Opt. (cont.)

« Both problems involve two different objectives

« Multi-objective problems usually have multiple optimal solutions
« Bilevel problems usually have a single optimal solution

« Abilevel solution is not necessarily a Pareto-optimal solution

« ltis not possible to directly use algorithms for multi-objective
optimization for bilevel problems

{
GECCQ&
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Bilevel vs. Multi-objective Optimization

Bilevel linear optimization problem is now modified as follows:

Pareto-optimal Set

(Decision Space)

‘ y
1 A
M¥n(x’y) 3y +x \

Mln(x 0y
’ Bilevel Optimum
Such that .

X+y=<8
X+4y =8
x+2y <13 . (1

l<x=<6

|
|
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Bilevel Multi-objective Problems

« Bilevel problems may involve optimization of multiple
objectives at one or both of the levels

« Little work has been done in the direction of multi-objective
bilevel problems (Eichfelder (2007), Deb and Sinha (2010))

« Ageneral multi-objective bilevel problem may be formulated
as follows:

e N b YR
st x; € argmin(x,) xg(;) 21 (’)(, fl(x)’ :mox } s

G(x) > 0,H(x) =0,
(®u)min < Xy < (Ku)mazs (%) min < X1 < (X)mas

|
|
GECCO&
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Bilevel Multi-objective Problems Bilevel Multi-objective Problems

Bilevel Multi-objective: Example Single vs Multi-objective Bilevel Problems

x=@ x=@nm) « Dashed lines represent .
lower level Pareto fronts

« Solid line represents upper
level Pareto front

Single-objective Bilevel Problems
+ One objective function at both the levels
» Usually one target solution

» Multi-objective Bilevel Problems

Minimize F(x) = ( n-w ) §
I

Subject to (y1,15) € argming, ;) {f(x) = ( o ) 91(x) =22 17— 33 > n},
Gi(x)=1+y+y220,
—1<y,pp<1, 0<z<l

04 Upperlevel

Lower level |
+ Lower level Pareto front depends on x 02| /O™ ~pOfons | . o
« Upper level Pareto-optimaIFf)ront lies on o LYos os 0,707/0_6 os | » Multiple objectives at one or both of the levels
constraint G, g o2} LY * Usually multiple solutions are targeted
: ',L"gf Iarnl:(r?nt\ggpiﬁll;,t;;sof?;}n?:??rsm j: * Find and maintain many solutions at both levels

+ Decision making may lead to further complications

 Solutions possible even below the upper 08 c
level Pareto-optimal front -1 71‘371\671‘4;11.2 A « Not an easy matter
GL’C(O“‘ GL’C(O“‘
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Applications

Toll Setting Problem

Authority's problem:

« Authority responsible for highway
system wants to maximize its
revenues earned from toll

« The authority has to solve the
highway users optimization problem
for all the possible tolls

Applications
Highway users' problem:
« For any toll chosen by the authority,
highway users try to minimize their
own travel costs

« Ahigh toll will deter users to take
the highway, lowering the revenues

GECCO

N2#13

| Brotcorne et al. (2001)

N2#13




Applications

« An owner of a company dictates the selling

Hierarchical Setting
price and supply. He wants to maximize his

. The buyers look at the product quality, pricing ’

profit.

and various other options available to

maximize their utility = ==
« Mixed integer programs on similar lines have

been formulated by Heliporn et al. (2010)

Max Profit (suppy, selling price, demand, other variables) s

Such that
demand € argmax { Utility | Lower Level Constraints}
Upper Level Constraints

| Heilporn et al. (2010)
GECCOY
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Applications

Taxation Strategy

« Recently, there has been a controversy in Finland for gold mining in
the Kuusamo region in Finland

« The region is a famous tourist resort endowed with immense natural
beauty

« For any taxation strategy by the government, the mining company
optimizes its own profits

i

Leader: Government
Maximize revenue from taxes
Minimize Pollution

Follower: Mining Company
Maximize Profit

Sinha et al. (2013)
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Applications

Stackelberg Duopoly Competition

Competition between a leader and a
follower firm

—
Leader solves the following optimization >
problem to maximize its profit v

] —

max II; = P(qi.q7)a — C(ar)
a9y

st gr € argqr!nax{ﬂf =P(Qs —Clan}

If the leader and follower have
a+aqr>Q, similar functions, leader always
a,95,@ >0, makes a higher profit.

where @ is the quantity demanded, P(gi, qy) is the price - First mover’s advantage

of the goods sold, and C(-) is the cost of production of

the respective firm. The variables in this model are the :

production levels of each firm ¢;, ¢; and demand Q. Can be extended to multiple

leaders and multiple followers

| Frantsev et al. (2012)

GECCO&
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Applications
'] . 4
« Two levels of decision making C
. L . CEO Department
« Multiple objectives involved at Head
both the levels
Leader: CEO of a Company . . a
L N Leader
Objectives: Max Company Profit a
) ° ° o N
Max Product Quality % o
e o B o
z PY b .
Followers: Department Heads K] » s o
<] a
Objectives: Max Department Profit o s
° O L4 - >

Max Employee Satisfaction Y ' Employee Satisfaction

Follower
Company Profit

Zhang et al. (2007), Deb et al. (2009)




Applications

Other Applications

« Maximizing production in chemical industries where reactions
occur under equilibrium

. Defense applications like, strategic offensive and defensive force
structure design, strategic bomber force structure, and allocation
of tactical aircraft to missions

« Other applications include, optimal shape design, optimal
operating configuration and optimal facility location

« Wide applications in economics like Principal-Agency problems,
Taxation policies etc.

€CCO,

2813

Solution Methodologies

Solution Methodologies (cont.)

« Penalty based approaches
» Special forms of penalty functions have been used
* Lower level is usually required to be convex
« Penalty function may require differentiability
« Branch and Bound techniques (Bard et al. 1982)
« Used KKT conditions
* Handled linear problems
« Converted the problems into variable separable form
+ Utilized the branch and bound approach
« Taking an approximation of the lower level optimization
problem such that its optimum is readily available
» The optimal solutions from lower level might not be
accurate

'g;

2#13
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Solution Methodologies

» KKT conditions of the lower level problem are used as
constraints (Herskovits et al. 2000)
» Lagrange multipliers increase the number of decision
variables
« Constrained search space
« Applicable to differentiable problems only
* Another common approach: Nested optimization
» For every x,, lower level problem is solved completely
« Computationally very expensive
+ Discretization of the lower level problem
» The best solution obtained from discrete set for a
given x, is used as a feasible member at upper level

€CCO,
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Solution Methodologies

Solution Methodologies (cont.)

« Evolutionary algorithms have also been used for bilevel
optimization
* Most of the methods are nested strategies
* Mathieu et al. (1994): LP for lower level and GA for upper level
* Yin (2000): Frank Wolfe Algorithm for lower level
* Oduguwa and Roy (2005): Proposed a co-evolutionary approach
* Wang et al. (2005):
« Solved bilevel problems using a constrained handling scheme
in EA
* Method is computationally expensive, but successfully
handles a number of test problems
« Lietal. (2006): Nested strategy using PSO
« EAresearchers have also tried replacing the lower level problems
using KKT (Wang et al. (2008), Li et al. (2007))

3ECCO,
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Bilevel Evolutionary Algorithm

Based on Quadratic Approximations

(BLEAQ)

» Recently proposed by Sinha, Malo and Deb (2013) for
solving bilevel optimization problems with various kinds of
complexities

+ Based on quadratic approximation of the inducible region

* The method is highly efficient when compared against
nested approaches and other contemporary evolutionary
techniques

+ Capable of solving larger instances of bilevel programming
problems

+ Tested on a recently proposed SMD test-suit and other
standard test problems from the literature

GECCO,
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Lower Level Optimization for Offsprings
(If necessary, otherwise use quad. appr.)
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Min(xuyxz) F(xuyxl),
: f(xu7xl)
st x; € argmin x,) g(xu,xl) > O,h(xu,xl) -0 [’
G(xu7xl) > O;H(xuyxl) =0,
(xu)min <xy < (xu)mamv (xl)min <x; < (xl)ma:}: O
; L
|
Minix, x,) F(%u,%1), (1]
st x; € U(Xq)
G(xu,x1) > 0,H(xy,x;) =0,
(xu)min S Xu S (xu)maz7 (xl)min S Xy S (xl)maz
GECC (&21€13
XL F Oy W x)) £
L T e e N

' I
I
1 Bilevel f

! Minimum

Xy

Upper level function with respect to x, when x, is optimal

BLEAQ
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XL

Approximation
Error

T
wx'y)
W) =P

X

Approximation with localization around x,© for x,©®
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- x@ x,®
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Lower Level Function
’ \\

X, Lower Level Variable Space

Close upper level members are expected to have
close lower level optimal solutions
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£ (xPx))

F Xy, Wxy) .
Xy ,xp)

)

WXy ={x}} .
wx?)

A graphical representation of a simple bilevel optimization problem

BLEAQ
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BLEAQ

Why Evolutionary Approach?

«  Classical methods require various simplifying assumptions like
continuity, differentiability and convexity

«  Bilevel is more intriguing than a normal optimization problem as
the necessary condition itself involves second order derivatives

*  Most of the real world applications do not adhere to these
assumptions

«  Population based approach helps in approximation of the ¥
function

* Incorporation of a good member from one population to the
population in the vicinity boosts convergence

GECCO,
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Test Problem Construction

1. Controlled difficulty in convergence at upper and lower levels
2. Controlled difficulty caused by interaction of the two levels

3. Multiple global solutions at the lower level for any given set of
upper level variables

4. Clear identification of relationship between lower level optimal
solutions and upper level variables

5. Scalability to any number of decision variables at upper and
lower levels

6. Constraints (preferably scalable) at upper and lower levels
7. Possibility to have conflict or cooperation at the two levels
8. The optimal solution of the bilevel optimization is known

GECCq
K213
Test Problem Construction
Panel A: Decompo&ition of decision variables
Upper-level variables [ Lower-level variables |
| Vector I Purpose | Vector I Purpose |
Xyl Complexity on upper-level X1 Complexity on lower-level
X2 Interaction with lower-level X2 Interaction with upper-level

Panel B: Decomposition of objective functions

\ Upper-level objective function \ Lower-level objective function

| Component ] Purpose | Component | Purpose

F1(xu1) Difficulty in convergence f1(Xu1, Xu2) Functional dependence
Fa(xq1) Conflict / co-operation f2(x11) Difficulty in convergence
F3(xu2,%72) Difficulty in interaction f3(xu2,X12) Difficulty in interaction

TR2m13
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Test Problem Construction

SMD Test Problem Framework

The objectives and variables on both levels are
decomposed as follows:

F(xy,x;) = Fi(Xu1) + Fa(x11) + F3(Xu2,X12)
F(xu, x1) = f1(Xu1, Xu2) + fo(xi1) + f3(Xu2, Xi2)
where

Xy = (Xyu1,Xu2) and  x; = (Xp1,%52)

h““é&"z;‘:13

Controlling Difficulty in Convergence

+ Convergence difficulties can be induced via following

routes
+ Dedicated components: F, (upper) and f, (lower)
* Example:
F(xy,x;) = Fi(%u1) + Fa(x11) + F3(Xu2, Xi2)

Quadratic

F(%urX1) = 1 (Xu1, Xu2) + fo(11) + f3(Xuz, X12)

Multi-modal

CR2m13




Test Problem Construction

Controlling Difficulty in Interactions

* Interaction between variables x,, and x;, could be chosen
as follows

* Dedicated components: F; and f;
* Example:

F(xy,x1) = Fi(xu1) + Fa(x11) + F3(Xu2, X2)

Z(zizy + Z((zb)Z — tanaj,)?

i=1

F(Xu, X1) = f1(Xu1, Xu2) + fo(x1) +ﬂf3(Xu2,Xl2)

r

Z((zhz)z - tanxf2)2

i=1

GE méﬁ‘zﬁ13

Test Problem Construction

Controlled Multimodality

+ Obtain multiple lower-level optima for every upper level
decision

» Component used: f,

« Example: Multimodality at lower-level
Fi(xu1, Xuz) = (241)% + (231)° + (232)° + (23)°
fo (x”) = (z‘lll - 33121) Induces multiple solutions: x'; = X2,
fa(xuz, Xi2) = (T2 — Ti)? + (22, — 235)°

Fi(xu1) = (231) + (z41)?
Fy(xp) = (.’l:lll)z + (:Itlzl)2 Gives best UL solution: x',, = x2,,=0
F3(Xy2,X12) = (wzla - 55122)2 + (“’?m - 55122)2

GECCO,
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Test Problem Construction

Difficulty due to Conflict/Co-operation

* Dedicated components: F, and f, or F; and f; may
be used to induce conflict/cooperation

» Examples:
— Co-operative interaction = improvement in lower-level improves
upper-level (e.g. F,=1,)
— Conflicting interaction = improvement in lower-level worsens upper-
level (e.g. F, = f,)
— Mixed interaction = situation of both cooperation and conflict (e.g.
Fy=f,and F3 = 5 (x,,))? - f;

GE méﬁ‘zﬁ13

Test Problem Construction

Difficulty due to Constraints

Constraints are included at both the levels with one or
more of the following properties

« Constraints exist, but are not active at the optimum

« A subset of constraints, or all the constraints are active at the
optimum

» Upper level constraints are functions of only upper level
variables, and lower level constraints are functions of only
lower level variables

« Upper level constraints are functions of upper as well as lower
level variables, and lower level constraints are also functions of
upper as well as lower level variables

» Lower level constraints lead to multiple global solutions at the
lower level

» Constraints are scalable at both levels

GECCO,
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Test Problems: SMD1 - SMD3

SMD1:

« Interaction: co-operative
« Lower level: convex (wrt lower level variables)
« Upper level: convex (induced space)

SMD 2:

* Interaction: conflict
« Lower level: convex (wrt lower level variables)
« Upper level: convex (induced space)

SMD 3:

« Interaction: co-operative
« Lower level: multimodality, Rastrigin’s function
« Upper level: convex (induced space)

Ge((okf‘
2813

Test Problem Construction

Test Problems: SMD7 - SMD9

SMD 7:

« Interaction: conflict
* Lower level: convex (wrt lower level variables)
« Upper level: multimodality

SMD 8:

« Interaction: conflict
+ Lower level: multimodality, banana function
« Upper level: multimodality

SMD 9:

* Interaction: conflict
* Lower level: non-scalable constraints
« Upper level: non-scalable constraints

Ge((ol’z\*
2813
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Test Problem Construction

Test Problems: SMD4 - SMD6

o SMD 4:

* Interaction: conflict
« Lower level: multimodality, Rastrigin’s function
« Upper level: convex (Induced Space)

SMD 5:

« Interaction: conflict
« Lower level: multimodality, banana function
« Upper level: convex (Induced Space)

SMD 6:

« Interaction: conflict
« Lower level: infinitely many global solutions for any given x,
« Upper level: convex (Induced Space)

Ge((okf‘
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Test Problem Construction

Test Problems: SMD10 — SMD12

SMD 10:

« Interaction: conflict
* Lower level: scalable constraints
« Upper level: scalable constraints

SMD 11:

« Interaction: conflict
« Lower level: non-scalable constraints, multiple global solutions
« Upper level: scalable constraints

SMD 12:

* Interaction: conflict
« Lower level: scalable constraints, multiple global solutions
« Upper level: scalable constraints

Ge((ol’z\*
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Test Problem Construction
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Test Problem Construction

SMD3

2T (@) tana)?
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f3 =211 ((@e)? — tanajy)®
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Test Problem Construction

SMD2
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T: Lower level function contours
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Test Problem Construction
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Results

Results Results (cont.)

©
o
j
) -
oy K
. o g 15} .
+ Following are the results for 10 variable instances of the SMD test c .
problems using BLEAQ 8 1+
+ Comparison performed against nested evolutionary approach o
< 050
Number of Runs: 21 @
Savings: Ratio of FE required by nested approach against BLEAQ S oF
© boo©
Pr. No. | Best Func. Evals. Median Func. Evals. Worst Func. Evals. & 05}, 00°°° -
LL UL LL UL LL UL True Relation
" . Q o Gen.1
(Savings) (Savings) 5 -1t . . Gen 150
SDMI1 | 99315 | 610 | 110716 (14.71) | 740 (3.34) | 170808 | 1490 5 RS « Gen. 450
SDM2 | 70032 376 91023 (16.49) | 614 (3.65) | 125851 1182 g -5 0 + Gen. 550
SDM3 | 110701 620 125546 (11.25) | 900 (2.48) | 137128 1094 ] ot * Gen. 610
SDM4 | 61326 | 410 | 81434 (13.59) | 720 (2.27) | 101438 | 1050 - Ty B T T
SDMS5 | 102868 330 126371 (15.41) | 632 (4.55) | 168401 1050 g ) X . . ) .
SDM6 | 95687 | 734 | 118456 (14.12) | 952 (3.25) | 150124 | 1410 e Quadratic approximation at optima (0,0) improves with

increasing generations

1.(1(1&2;‘313 1.(1(1&2;‘313
Results Results
Results (cont.) Results (cont.)
—
o)
-g : Median results for eight bilevel test problems collected from the
OE) " literature.
° X 10° Upper Level Cton|1pa2;|)%%n against the evolutionary algorithm proposed by Wang
= o Function Value etal. ( )
[} BLEAQ WIL Savings
g ‘0740 5‘0 160 1%0 260 2\;:0 360 séo 460 45‘0 560 550 TPl 15,432 857499 554
5 " TP2 15,632 256,227 16.39
“_E TP3 4844 92,526 19.10
® ° TP4 16,422 291,817 17.77
o - Lower Level
A 107 Function Value TP5 15,524 77,302 4.98
) 10~ TP6 17,421 163,701 9.40
B’ 0 50 100 150 200 250 300 350 400 450 500 550
S Upper Level Generations TP7 257,243 | 1,074,742 4.18
o Convergence Plot for SMD1 TPS 12,533 | 213,522 17.04
TR2m13 CR2m13
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EA’s Niche

+ Bilevel problems do exist in practice
 Classical approaches are not efficient
+ Evolutionary algorithms so far show promise
* Operator flexibility
+ Co-evolutionary approaches could be used
* Hard test problems suggested
* More open questions remain than answered
+ Ideal platform to launch a coordinated research
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