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ABSTRACT

There are many features of optimisation problems that can
influence the difficulty for search algorithms. This paper in-
vestigates the steepness of gradients in a fitness landscape
as an additional feature that can be linked to difficulty for
particle swarm optimisation (PSO) algorithms. The perfor-
mances of different variations of PSO algorithms on a range
of benchmark problems are considered against average esti-
mations of gradients based on random walks. Results show
that all variations of PSO failed to solve problems with es-
timated steep gradients in higher dimensions.

Categories and Subject Descriptors

I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods and Search—heuristic methods
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1. INTRODUCTION
For decades, researchers have tried to find an answer the

question: what make an optimisation problem hard to solve?
Many have recognised the infeasibility of finding a single
measure of hardness and are instead focussing on using mul-
tiple features together to capture problem difficulty for a
given algorithm. Multimodality clearly affects problem dif-
ficulty, but it is the relative size of basins of attraction (lo-
cal vs. global) that is more directly related to difficulty for
PSOs [5]. Given an unknown optimisation problem, there
is no computationally cheap way of determining the relative
sizes of basins of attraction. Instead, approximate measures
based on samples from the search space must be used to
estimate features of a landscape. Ruggedness is a common
feature that is estimated and refers to whether there are
variations in neighbouring fitness values or not. In contrast,
the steepness of gradients takes into account the magnitude
of fitness changes of neighbouring points. The motivation
for considering gradients is that a landscape with steep gra-
dients should have a higher probability of being deceptive to
PSO search, since steeper gradients could lead to narrower
basins of attraction. This paper describes a technique for
estimating gradients in continuous fitness landscapes, based
on random walks.
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2. ESTIMATING GRADIENTS
A Manhattan Progressive Random Walk with equal-sized

steps is proposed as follows: a walk starts at a random posi-
tion on the outer edge of the search space; each step is of a
predefined step size in a single randomly chosen dimension;
the sign of each step is set so that the walk progresses away
from the edge where it started. If an opposite edge is reached
in any dimension, the sign of that dimension is inverted, so
that the walk progresses away from the edge. Given a prob-
lem with fitness function f , the gradient in fitness space be-
tween two steps t and t+1 of a walk x(t),x(t+1), ...,x(t+T )
can be estimated by:

g(t) =
(f(x(t+ 1))− f(x(t)))/(fmax − fmin)

(x(t+ 1)− x(t))/(xmax − xmin)
, (1)

where fmax and fmin are the maximum and minimum fit-
ness values, respectively, as encountered on the walk and
xmax and xmin are the position vectors defining the bounds
of the search space. Normalising the fitness and distance val-
ues allows for comparison of gradient estimations between
problems with different fitness ranges and solution domains.
A walk of T steps, gives T gradients g(t), g(t + 1), ..., g(t +
(T −1)) and the average estimated gradient within the walk
can then be defined as:

Gavg =

∑T−1
t=0 |g(t)|

T
. (2)

The absolute value of each g(t) is used, since the purpose
is to quantify steepness, regardless of the direction of the
slope. If the absolute values were not used, then negative
slopes would cancel out positive slopes.

3. EXPERIMENTATION
The Gavg measure was calculated for each of the follow-

ing functions for dimensions 1, 2, 5, 15 and 30: Ackley,
Griewank, Quadric, Rana, Rastrigin, Rosenbrock, Salomon,
Schwefel 2.26, Spherical and Step (defined in Table 2 of [4]).
Thirty independent runs of the algorithm for calculating the
Gavg measure were performed and meanGavg measures were
determined. Each run was based on samples of D Manhat-
tan Progressive Random Walks of 1000 steps each with step

size (xmax−xmin)∗D
1000

.
Four different PSO algorithms: Cognitive PSO [2], Social

PSO [2], Traditional gbest PSO [1] and Barebones PSO [3]
were executed on each function/dimension combination for
30 independent runs. Parameters were as follows: 50 par-
ticles, 0.72 inertia weight and 1.496 for the cognitive and
social acceleration constants. The SRate metric based on
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(a) Cognitive PSO
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(b) Social PSO
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(c) Traditional PSO
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(d) Barebones PSO

Figure 1: Performance of different PSO algorithms on benchmark problems plotted against the Gavg measure.

predetermined fixed accuracy levels for each problem and di-
mension combination (proposed in [4]) was used to measure
PSO performance. For all problems, the maximum number
of iterations was set to 200 ×D, where D is the dimension
of the problem. SRate is a value in the range [0, 1] where
the value indicates the proportion of runs that found the
solution. The results are plotted by dimension in Figure 1
with performance discretised into one of the following three
groups: always solved (SRate = 1), sometimes solved (0 <
SRate < 1), or not solved (SRate = 0).
Figure 1a shows that the Cognitive PSO algorithm only

solved 1D and some 2D problems. For the 2D case, the
problems with the higher Gavg values were not solved. For
the other algorithms in Figures 1b to 1d it can be seen that
some problems were solved in all dimensions and that for
most cases (particularly in 15 and 30 dimensions), the prob-
lems with the higher Gavg values were not solved. Note that
low gradients were not always associated with algorithm suc-
cess, but high gradients in higher dimensions (15D and 30D)
were in most cases associated with algorithm failure.

4. CONCLUSION
This paper has shown that the steepness of gradients is a

feature of fitness landscapes that has an influence on prob-
lem difficulty for PSO algorithms. Any attempt at predict-
ing PSO performance for unknown optimisation problems,
should therefore consider gradients as one of the features
with other features that have been linked to problem hard-

ness for PSOs. More techniques are needed for measuring
other features of continuous fitness landscapes, so that prob-
lems can be more fully characterised and understood.
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