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ABSTRACT
Clustering is an important task in data mining. However,
there are numerous conflicting measurements of what a good
clustering solution is. Therefore, clustering is a task that
is suitable for a Multi-Objective Evolutionary Algorithm.
Mutation operators for these algorithms can be designed to
explore a diverse range of solutions or focus upon individ-
ual solution quality. We propose using a hybrid technique
that generates a wide range of solutions and then improves
them with respect to the data. We create an experimental
set-up to assess mutation operators with respect to Pareto
front quality. Using this set-up we find that mutation opera-
tors that mutate solutions with respect to the data perform
better but hybrid mutation techniques show promise.
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1. INTRODUCTION
Numerous clustering algorithms have been proposed. All

of the algorithms try to minimise or maximise some property
of the clustering solution. Many Cluster Quality Measures
(CQM) have been proposed [11, 16]; to date there has been
no consensus on what measures are best.

In an MO environment, the CQMs become the objectives
for an MO Clustering algorithm. In this work we use Multi-
Objective Evolutionary Algorithms to solve clustering prob-
lems. In this context, is not only important to obtain good
individual clusterings but also a good Pareto front, showing
good spread and convergence.

2. MO CLUSTERING ALGORITHM
The algorithm we use is built upon NSGA-II [3], it is sim-

ilar to one we have presented previously [6]. We use a Cen-
troid Based Real Encoding (CBRE) as the representation, a
uniform crossover operator and, for the fitness functions, we
use a measure of heterogeneity and the Connectivity mea-
sure [2]. A CBRE is a set of prototype cluster centroids. A
varied number of prototypes are randomly copied from the
data set to form initial solutions. We investigate the perfor-
mance of three mutation operators, they are as follows:
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The Randomness Mutation (RM) operator comprises three
tasks which are performed with an equal probability. First,
the number of prototypes may be decreased. For this, the
closest pair of prototypes are found and the prototype that
has the next closest neighbour is removed from the solution.
Second, the number of prototypes may be increased. A new
prototype is drawn from the data set by selecting the ob-
ject that is furthest away from any prototype. Third, the
prototypes may be modified. For each dimension of each
prototype there is a 0.05 chance that it may be modified
[10] by adding a negative or positive value scaled to that
dimension of the data set [1].

The K-Means Like Mutation (KMLM) is an iteration of K-
Means can be used as a mutation operator by recalculating
the cluster prototypes [7].

The Hybrid Mutation (HM) operator combines the two
previous operators with a linearly varying probability of ap-
plication. Initially, RM is used to explore the solution space;
later in the search, KMLM is used to refine solutions.

3. EXPERIMENTATION
Two clustering solutions may be compared to each other

using the Rand Index [13]. If one of the clusterings is the
preferred clustering solution, the value of the Rand Index is
an indication of the quality of the clustering with respect to
the known solution.

For comparing the quality of Pareto fronts generated by
MO approaches, a number of measures can be used. The
volume of the objective space covered by a Pareto front may
be used as an indication of quality. Fronts that dominate a
high volume are regarded as better [15].

A Pareto front can be said to be good if the solutions
that form it are evenly spread [8, 4], that is, solutions are
not clumped around local optima. To assess this we use the
Spread, or diversity, measure [12, 3].

If the solutions within a Pareto front are among the op-
timal front, the front is considered good. This can be mea-
sured with the Generational Distance (GD) [5], which mea-
sures the Euclidean distance between each solution and its
nearest neighbour in the optimal front. However, a front
may only cover some of the optimal front. The Inverted
Generational Distance (IGD) [9] is an alternative that gives
extra weight to extreme solutions.

We use the information entropy of the population as a
measure of the diversity of a given Pareto front [14]. Diverse
fronts are desirable as they contain solutions that are not
similar to each other.

As a benchmark we run 100 instances of the K-Means
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algorithm in parallel for 100 iterations. Therefore, the so-
lutions present at the first iterations are equivalent to the
first generation of a genetic algorithm and so on which al-
lows us to construct Pareto fronts to observe changes as the
algorithms progress. Each run of NSGA-II starts with iden-
tical populations to ensure differences in performance are
not due to the generation of the start populations. We also
supply the same centroids to the K-Means instances. We
use six popular benchmark data sets drawn from the UCI
Machine Learning Repository1 and three synthetic datasets.
For each of dataset we perform 100 executions and calculate
the arithmetic mean of the measures of assessment for each
generation of execution.

4. RESULTS
In the majority of cases the volume dominated increases as

the algorithms progresses. KMLM increases at the quickest
rate but in most cases HM and KMLM converge to similar
values. KMLM is often slightly higher. K -Means improves
initially but then stabilises. RM also stops improving early
on and in some cases the dominated area decreases.

KMLM shows continuous improvement of GD. Initially
we observed that K-Means performs similarly to KMLM, but
it does not continue to improve with more generations. RM
showed the worst performance. Using IGD we found that
the worst performance was that of K-Means and RM which
are very similar. The performance of HM and KMLM are
less similar when measured with IGD. These results imply
that for some data sets KMLM is more effective at locating
the extreme ends of the optimal front.

Solutions generated using RM become spread quickly and
stay this way. In the majority of cases HM and KMLM
are less spread and sometimes behave erratically indicating
significant changes within the population during execution.

The starting populations are initially diverse when mea-
sured by Entropy, the implementations of NSGA-II immedi-
ately become significantly less diverse before quickly regain-
ing diversity before becoming stable. RM and HM made less
diverse populations than the solutions using by KMLM.

The average similarity of the clustering solutions gener-
ated from the solutions in the Pareto fronts to the intended
solution varies significantly. Variation is related to the data
set more than any other factor. As the algorithms progress
solutions found using RM often become worse, while those
found using KMLM and HM generally improve.

5. CONCLUSIONS
We saw that KMLM performs best for Pareto front quality

by a number of measures. However, we have also seen that
these solutions are not always evenly spread and that the
similarity to the clustering solutions that we desired varies
from data set to data set. We postulate that KMLM is per-
forming some form of local search on specific solutions which
leads to faster convergence to the optimal Pareto front.

We have also found that using RM produced poorer Pareto
fronts that contain a large quantity of unique and varied so-
lutions that are evenly spaced. RM appears to offer some
advantages in terms of diversity.

HM did not represent a good improvement with respect
to KMLM. A better operator or combination of operators
that consistently delivers diverse and improved Pareto fronts

1http://archive.ics.uci.edu/ml/datasets.html

needs to be found. We expect that some form of adaptive
mechanism which switches the emphasis of the search from
the quality of the Pareto front to the quality of individual
solutions or to the diversity in the population may present
advantages for this problem.
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