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ABSTRACT
In this paper, we modify an evolutionary many-objective
optimization algorithm so that it can find a diverse set of
solutions in the decision variable space. The modification is
based on considering the Euclidean distance in the decision
variable space. The effect of our modification is examined
by using benchmark test problems. From computational
experiments, we can say that a diverse set of solutions in
the decision variable space is searched by the modification.
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Algorithms
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1. INTRODUCTION
In the field of evolutionary computation, a vast number

of evolutionary algorithms have been proposed for multi-
objective optimization [1] in which the target is to find the
Pareto front in the objective space. Therefore, the task
of evolutionary multi-objective optimization (EMO) algo-
rithms is to obtain solutions that approximate the Pareto
front very well. They are often evaluated by their conver-
gence to the Pareto front, diversity, and uniformity in the
objective space. However, the diversity of solutions in the
decision variable space is also important from the decision
maker’s point of view. Although a number of approaches
for improving the diversity in the decision variable space
have been proposed for optimization problems with up to
three objectives (e.g., [6]), there are few approaches for op-
timization problems with more than three objectives (i. e.,
many-objective optimization problems). In this paper, we
modify an evolutionary many-objective optimization algo-
rithm (i.e., CDAS [5]) so that it can find a diverse set of
solutions in the decision variable space for many-objective
optimization problems.
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2. DIVERSITY OF DECISION VARIABLES
In order to obtain a diverse set of solutions in the deci-

sion variable space, the distance dDS of each solution to its
nearest neighbor in the decision variable space is taken into
account. We also consider the crowding distance dCD [2] in
the objective space with the aim of avoiding a deterioration
of the diversity in the objective space. These distances dDS

and dCD are illustrated in Fig. 1. Either dDS or dDS · dCD is
used instead of dCD as a second criterion to compare solu-
tions with the same rank in our study for CDAS [5]. CDAS
is the same as NSGA-II [2] except for its relaxed definition
of the Pareto dominance.
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Figure 1: Diversity measures in (a) the decision vari-
able space and (b) the objective space

3. COMPUTATIONAL EXPERIMENTS
We use DTLZ1 and DTLZ2 with six objectives (denoted

by DTLZ1-6 and DTLZ2-6 in results, respectively) as bench-
mark test problems [3]. We also include a relatively new
test problem [4] and call it IHTN in this paper. In IHTN,
multiple Pareto optimal regions, each of which gives the
same Pareto front in the objective space, are represented
in the two-dimensional decision variable space as a polygo-
nal shape. Six-objective IHTN instances with one, nine, and
81 Pareto optimal regions are used in our study (denoted by
IHTN-6-1, IHTN-6-9, and IHTN-6-81, respectively).

In order to compare obtained solutions, we use two per-
formance indicators. One is the mean of dDS. This per-
formance indicator can measure the diversity of solutions
in the decision variable space (denoted by “DIV”). Larger
values of DIV mean better diversity in the decision variable
space. Next, we use a relative hypervolume (denoted by
“RHV”) for DTLZ1 and DTLZ2. For DTLZ1 and DTLZ2,
the hypervolume of the Pareto front can be obtained analyt-
ically. Therefore, we can calculate the relative hypervolume
of obtained solutions [7]. It should be noted that the rela-
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Table 1: Results of computational experiments

Problem Measure CD CD-M1 CD-M2

DTLZ1-6 RHV 0.992 0.963 0.980
DIV 0.057 0.100 0.095

DTLZ2-6 RHV 0.636 0.687 0.619
DIV 0.082 0.111 0.117

IHTN-6-1 HV (×104) 7.389 8.365 8.234
DIV (×102) 1.305 1.805 1.836

IHTN-6-9 HV (×107) 1.837 1.993 1.993
DIV (×103) 5.969 15.427 15.473

IHTN-6-81 HV (×1010) 1.577 1.673 1.679
DIV (×103) 5.486 32.888 32.807

tive hypervolume is one for the Pareto front. On the other
hand for IHTN, we use a standard hypervolume (denoted by
“HV”) to assess obtained solutions. Larger values of RHV
or HV indicate better convergence to the Pareto front and
better diversity in the objective space.
In computational experiments, the population size is set

as 100. The stopping condition is specified as 30,100 fitness
evaluations (including the initialization). The parameter S

in CDAS is set as S = 0.4. The other settings are the same
as in [7]. In order to calculate the relative hypervolume
for DTLZ1 and DTLZ2, and a hypervolume for IHTN, a
reference point r needs to be specified. 1

CDAS together with either dDS or dDS · dCD is applied
to test problems in order to show the effect of our propos-
als. The average of each performance indicator over 20 runs
is summarized in Table 1 where CDAS is denoted by CD,
CDAS with dDS by CD-M1, CDAS with dDS·dCD by CD-M2,
respectively. From Table 1, we can see that the diversity of
solutions in the decision variable space is improved by our
modification. For all problems except for DTLZ1-6, both
the RHV or HV and DIV are improved. In order to show
that a diverse set of solutions in the decision variable space is
searched by our modification to CDAS, we plot decision vari-
ables of IHTN-6-81 during optimization in Fig. 2 for CDAS
and CDAS with dDS, respectively, where initial solutions are
in white, middle ones in gray, finally obtained ones in black.
From Fig. 2, we can see that all the Pareto optimal regions
of IHTN-6-81 can be found by our modification to CDAS.

4. SUMMARY
In this paper, we proposed to consider a diversity distance

in the decision variable space. The diversity distance is used
as a second criterion to compare solutions with the same
rank in CDAS. From computational experiments for all test
problems, we can say that the diversity of obtained solutions
in the decision variable space is dramatically improved. In
a relatively new test problem IHTN, our modification to
CDAS improves not only the diversity in the decision vari-
able space but also both the convergence to the Pareto front
and the diversity in the objective space. We can also see
that the decision variable space is searched evenly during
optimization by our modification.

1The reference point r is specified as r = 0.76, r = 1.16,
r = 0.56, r = 0.1256, r = 0.03846156 for DTLZ1-6, DTLZ2-
6, IHTN-6-1, IHTN-6-9, IHTN-6-81, respectively.
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Figure 2: Solutions obtained by CDAS and CDAS
with dDS for IHTN-6-81
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