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ABSTRACT

We present a multiobjectivization approach to the param-
eter tuning of RBF networks and multilayer perceptrons.
The approach works by adding two new objectives — maxi-
mization of kappa statistic and minimization of root mean
square error — to the originally single-objective problem of
minimizing the classification error of the model. We show
the performance of the multiobjectivization approach on five
datasets.

Categories and Subject Descriptors

1.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—heuristic methods; 1.6.3 [Simulation
and Modeling]: Applications
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Multiobjective optimization; classification; machine learn-
ing; evolutionary algorithm; multiobjectivization; parame-
ter tuning

1. INTRODUCTION

Most classifiers have at least a few parameters, which more
or less affect their performance on a given dataset. The
values of these parameters need to be set before the clas-
sifier can be used to solve a particular task. The problem
is that the best values of the parameters differ for different
datasets. Although there are usually some guidelines for the
parameter settings, finding the optimal values often requires
expert knowledge, intuition, and trial-and-error. An appeal-
ing approach is to use an evolutionary algorithm to find the
optimal parameters. However, many classifiers provide sim-
ilar results for lots of different parameter setttings [7], thus
making the search space difficult to explore.

In this paper we deal with the problem of tuning the pa-
rameters of Radial Basis Function (RBF) Networks [4] with
the goal to provide settings which minimize the classification
error. To this end we use the concept of multiobjectivization
— solving the single-objective problem by means of multiob-
jective optimization. The key observation is that the addi-
tional objectives add more information and thus make the
optimization easier. We compare the proposed approach to
the performance of a simple single-objective evolutionary al-
gorithm. To our best knowledge, there is no such comparison
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in the literature. We are also not aware of any application
of multiobjectivization for parameter tuning.

2. MULTIOBJECTIVIZATION

Our goal is to provide good parameter settings for a given
classifier. The quality of the settings is measured by the clas-
sification error of the classifier (the number of incorrectly
classified instances). In order to improve the convergence
rate of the algorithm, we add two more objectives whose val-
ues are not important for our task, but which are correlated
to the error rate of the optimizer. Then, a multiobjective
evolutionary algorithm is used to solve the multiobjective
optimization problem.

The three objectives we optimize are: the classification er-
ror (minimization) (the percentage of incorrectly classified
instances), kappa statistic [3] (maximization) (the classifier
and training set agreement), and the root mean square er-
ror (minimization). The error rate and kappa statistic are
highly correlated, especially in cases where all classes are
represented by the same number of instances in the training
set. This is also the reason to add the third objective, which
may seem unrelated to classification.

Root mean square error (RMSE) is traditionally used as
the objective which is minimized in regression tasks. As it
is implemented here (i.e. the model is trained to predict the
unary representation of the class label), the number does not
tell much about the quality of the classifier itself. However,
it is more sensitive to changes in the parameter settings.
Moreover, RMSE guides the optimization to an optima of
the classification error — if the RMSE is zero the classification
error is also zero.

To solve the multiobjective optimization problem defined
above, we use the well known NSGA-II multiobjective evo-
lutionary algorithm [2]. All the error rates are computed
using 10-fold cross-validation, which should reduce the risk
of overfitting the model to the training set and also provide
more robust results.

3. EXPERIMENTS

We implemented the algorithms described above to tune
the parameters of the RBF network given bellow, together
with their parameter settings. We optimized the number of
clusters (integer between 2 and 10), the minimal width of
the Gaussians (real number between 0.01 - 1.0), the ridge
parameter for the logistic regression (real number between
0.000000001 and 10), and the maximum number of itera-
tions for the logistic regression (integer between -1 and 50,
-1 meaning “until convergence”).



Simple EA

best average std. dev.
balance-scale | 0.0512 0.0712 0.0163
breast-w 0.0286  0.0308 0.0015
car 0.0741  0.0779 0.0039
haberman 0.2386  0.2474 0.0049
iris 0.0200  0.0300 0.0045

Multiobjective EA

best average std. dev.
balance-scale | 0.0464 0.0498 0.0015
breast-w 0.0286 0.0296 0.0011
car 0.0712 0.0737 0.0021
haberman 0.2288 0.2395 0.0064
iris 0.0133 0.0200 0.0060

Table 1: The results of different parameter tuners
for RBF Network after 300 evaluations.

The performance of the tuners was tested on the follow-
ing five datasets which are available from the UCI Machine
Learning Repository [1] — balance-scale, breast-w, car, haber-
man, and iris.

The tuners were given the computational budget of 300
objective function evaluations. One evaluation is a 10-fold
crossvalidation with the parameters given by the tuner on
the respective training set. All evaluated individuals are
saved in an archive and if the same individual is generated
multiple times in the same run it is evaluated only once.

The single-objective evolutionary algorithm uses popula-
tion of 10 individuals, one point crossover and Gaussian mu-
tation with standard deviation equal to 30% of the range of
the particular parameter. Moreover, the evolutinary algo-
rithm uses tournament selection and 10% elitism (i.e. one
individual). The multiobjective evolutionary algorithm uses
again the same parameters, the only difference being in the
selection phase, where it uses the NSGA-II selection based
on dominance and crowding distance.

The results of the experiments are presented in Table 1,
and they show that the multiobjective optimizer provides
the best results in all the runs (when the minimum classifi-
cation error is considered).

More specifically, on the balance-scale dataset we can ob-
serve the largest difference between the single-objective and
the multiobjective optimizers. For this dataset, the mul-
tiobjective optimizer clearly wins and, moreover, after ap-
proximately 50 evaluations provides results, which are not
provided by the other models even after 300 evaluations. We
can see similar behaviour also on the car dataset.

On the breast-w dataset the performance of the two op-
timizers is similar, with the multiobjective optimizer being
only slightly better on average.

On the iris dataset, the multiobjective optimizer was able
to find a setting which was better than all settings we were
able to obtain previously (using different optimizers like sim-
ulated annealing, grid search and random search). In the
later phases, the average performance of the multiobjective
optimizer in this case is the same as the best performance
of the single objective optimizers.

4. CONCLUSION AND FUTURE WORK

We have shown that using multiobjectivization for the
parameter tuning improves the performance of the hyper-
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parameter optimizers significantly, mainly for the specific
objective function with lots of plateuas. The additional ob-
jectives, which are not in fact directly important for the
optimization task at hand, improve the results by providing
direction in these plateau regions.

Some of the ranges of the parameters we used were quite
limited. This corresponds to our future usage of parameter
tuning — we would like to use meta-learning which would
provide us with the model type, together with the region of
interest of its parameters, and then we will use the parame-
ter tuning to find the best possible settings of its parameters.

Another interesting future direction of research may be
the use of surrogate multiobjective algorithms in this set-
ting. We are somehow skeptical to the performance of the
multiobjective algorithms which model each of the objec-
tives separately (as the same problem as with one objective
would also appear in the case of more objectives) but mul-
tiobjective optimizers with aggregate surrogate models (e.g.
[5, 6] may be able to avoid or reduce this problem.

Acknowledgement

Roman Neruda was supported by Czech Science Foundation
project no. P202/11/1368. Martin Pildt was supported by
the Charles University Grant Agency project no. 345511.

S. REFERENCES

[1] D. N. A. Asuncion. UCI machine learning repository,
2007.

[2] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A

fast elitist non-dominated sorting genetic algorithm for

multi-objective optimisation: NSGA-II. In

M. Schoenauer, K. Deb, G. Rudolph, X. Yao,

E. Lutton, J. J. M. Guervds, and H.-P. Schwefel,

editors, PPSN, volume 1917 of Lecture Notes in

Computer Science, pages 849-858. Springer, 2000.

B. Di Eugenio and M. Glass. The kappa statistic: a

second look. Comput. Linguist., 30(1):95-101, Mar.

2004.

S. Haykin. Neural Networks: A Comprehensive

Foundation (2nd Edition). Prentice Hall, 2 edition, July

1998.

I. Loshchilov, M. Schoenauer, and M. Sebag. A mono

surrogate for multiobjective optimization. In

M. Pelikan and J. Branke, editors, GECCO, pages

471-478. ACM, 2010.

M. Pilat and R. Neruda. ASM-MOMA: Multiobjective

memetic algorithm with aggregate surrogate model. In

Proceedings of the IEEE Congress on Evolutionary

Computation, CEC 2011, pages 1202-1208. IEEE, 2011.

M. Reif, F. Shafait, and A. Dengel. Meta-learning for

evolutionary parameter optimization of classifiers.

Mach. Learn., 87(3):357-380, June 2012.

3l

4]

[5

6

[7





