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ABSTRACT
This paper presents a method based on Neural Networks
and Evolutionary Algorithms to solve the Hydroelectric Unit
Commitment Problem. A Neural Network is used to model
the production function and a novel approach based on mov-
able partitions is proposed, which makes it easier to model
the desired power output equality constraint in the optimiza-
tion modeling. Three evolutionary algorithms are tested in
order to find optimized operation points: differential evolu-
tion DE/best/1/bin, a balanced version of DE and Parti-
cle Swarm Optimization algorithm (PSO). The results show
that the proposed method is effective in terms of water con-
sumption, reaching in some cases more than 1% of economy
whether compared to the traditional commitment strategy.

Categories and Subject Descriptors
G.1.6 [Optimization]: [Constrained optimization]
; I.2.6 [Learning]: [Connectionism and neural nets]; J.2

[Phisical Sciences and Engineering]: [Engineering]

Keywords
Optimization algorithms, Operations research, Neural sys-
tems, Energy generation and storage, Renewable energy

1. INTRODUCTION
The hydro unit commitment (UC) problem aims to de-

termine, for a time stage, the status of the generating units
and their respective dispatch (in MW) in a hydroelectric
generation plant, so that the total power demand is satis-
fied, the operating cost is minimized and the set of con-
straints is guaranteed. This work presents an optimum dis-
patch model which adopts, as the performance criteria, the
minimum consumption of hydro resources. The main idea
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behind this study is that the water is a scarce resource, for
which the generation units are competing.

In Brazil, the hydro generation is the main source of elec-
tric energy, corresponding to 81.7% of the total produc-
tion. The energy generation grid is predominantly con-
nected. Only 3.4% of its electric production capacity is out
of the national system. In this way, there are centers which
are responsible to imply the operation points in MW for
each generation plant. From that, each plant must commit
its generation units in order to meet the required demand.

The dispatch can be divided into long, medium and short-
term planning [1]. The focus here will be in the short-term
planning, which involves, in this case, to find for a specific
time slice the respective dispatch for each generation unit
in order to produce the desired total power output. Nor-
mally in a hydroelectric plant, the control system performs
an equal division of the power demand in MW among its
generation units. However, this approach does not take into
consideration if each unit is operating at its particular effi-
cient point. Considering the non-linearity of the production
function and the high number of continuous and discrete
constraints involved, this problem can be considered com-
plex. In this way, many approaches have been developed
around the world trying to solve it.

Lagrangian Relaxation (LR) is one of the most widely
used methods to solve the UC problem, mainly over thermal
plants [3] [15] [8]. This approach is very attractive, specially
because of the possibility to relax the problem constraints,
such as the spinning reserve and demand supply require-
ments, which makes possible to solve multiple independent
subproblems, one for each generating unit, without any ex-
plicit coupling between them. However, the solution to UC
problem by LR is sensitive to changes of the Lagrangian
multipliers and highly dependent upon the size of the du-
ality gap [11], which in large power systems such as the
Brazilian one, can increase dramatically.

Another possible approach is to use decomposition tech-
niques. Finardi and Silva proposed a solution in which two
subproblems were created [7]. The first one corresponding to
a linear programming which main purpose was to establish
the total volume of water to be discharged by each hydro
plant, in each time stage, without considering the units in-
dividually. The second problem, with respect to the nonlin-
earity, is associated with the hydro units and the combinato-
rial nature of the commitment. Forbidden zones constraints
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were considered and the Branch and Bound method was
used to determine feasible states. Thus, due to the various
steps needed, this strategy becomes complex and harder to
employ in systems that require small response times.
Considering the difficulties stated before, an alternative

approach consists of heuristic methods since they have the
merits of being more flexible while handling nonlinear and
discrete variables, in addition to easy coding and implemen-
tation whether compared to classical optimization methods.
Pancholi e Swarup [14] used the Particle Swarm Optimiza-
tion (PSO) evolutionary technique to solve the economic dis-
patch problem taking into consideration security constraints.
The results were compared to other techniques such as lin-
ear programming and quadratic programming achieving re-
duced computational costs.
Yalcinoz and Short [17] presented a solution for the eco-

nomic dispatch problem based on a modified Hopfield Neu-
ral Network to deal with transmission capacity constraints.
The proposed method achieved efficient solutions to power
systems up to 120 units. When compared to a classical op-
timization program based on quadratic programming, the
solution obtained the same results (operation cost [$ / h])
while demanding less time to run.
Liu and Li [11] proposed an approach that establishes the

hydro dispatch for T time stages. It was taken into con-
sideration the desired power demand, operation regions and
costs to start and to shutdown turbines. An enhanced ver-
sion of the PSO was also used to search for optimal solu-
tions. According to the results, the method outperformed
the classical PSO algorithm and other methods such as ge-
netic algorithms and dynamic programming in relation to
the water consumption. However, the modelling applied did
not explain in details the relation among the involved vari-
ables to establish the production function.
This paper presents a method based on a Neural Net-

work to model the production function and the novel mov-
able partition approach which makes it easier to model the
desired power output equality constraint in the optimiza-
tion problem. Three evolutionary algorithms are tested in
order to find optimized operation points: differential evolu-
tion DE/best/1/bin, a balanced version of DE and Particle
Swarm Optimization algorithm (PSO).
This paper is organized as follows. In section 2 the ap-

plied model is presented. Section 3 presents the evolutionary
algorithms which will be applied. Section 4 shows the ap-
plication of the proposed solution, the results obtained and
some analysis among the algorithms tested and section 5
concludes the paper.

2. MODELING THE PROBLEM
Hydropower plants use the hydraulic potential to gener-

ate energy. A common installation is composed by a dam,
responsible to hold back water, creating the reservoir. The
gravity pulls the water to the penstock, a pipeline that leads
to the turbine. Water builds up pressure as it flows through
this pipe. Then the water strikes and turns the large blades
of a turbine, which is attached to a generator above it by
way of a shaft. Figure 1 shows a schematic representation
of a hydroeletric plant.
The vertical distance between the forebay level and the

tailrace level (intake to turbine) influences the resulting pres-
sure at the bottom. This measure is called gross head of
the turbine. However, when water is flowing, the pressure

Figure 1: Hydroelectric plant representation

at the bottom of the penstock will be always less than the
gross head due to energy losses within the pipeline. This
measure, which takes into consideration the penstock losses,
is called net water head [8].

Different generation units even operating with the same
kind of turbine can have different net water heads associated
when discharging the same amount of water. This happens
mainly since their penstocks have different geometries, which
leads to different losses, having a direct influence on the unit
efficiency.

The production function of a hydro generating unit is de-
pendent on the turbine-generator efficiency, the net water
head, and the turbine water discharge. Both net water head
and efficiency are described as nonlinear functions, which are
dependent on the control variables (turbine water discharge
and spillage) and the state variables (volumes at the begin-
ning and end of each stage) [7]. The relationship among
these variables can be described by curves known as Hill
Diagram.

Figure 2: Hill Diagram Example. Adapted from [7].

As can be seen in Figure 2, the Hill Diagram provides ba-
sically two kinds of curves for a generation unit: one repre-
senting the relationship among the net water head, discharge
and the efficiency, represented in %, and the other represent-
ing the relationship among the net water head, discharge and
power output, normally represented in MW. Both curves are
related since it is possible to define power output from the
turbine efficiency [1].

A common approach to estimate the production function
is to use the information provided by the Hill Diagram.
Thus, since the Hill Diagram only provides specific curves
to represent the relationships among the involved variables,
further techniques have to be implemented to create a con-
tinuous function. Finardi represented this function using a
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polynomial function of degree seven. The coefficients were
obtained using a multivariable nonlinear regression tech-
nique [7]. The problem of this technique is that losses of
precision can occur during the definition of a specific degree
for the polynomial and during the process of estimation of
the coefficients.
In this paper, an Artificial Neural Network (ANN) ap-

proach is proposed with the same purpose. The major ben-
efit of a ANN is its ability to learn and therefore to gen-
eralize. Generalization refers to the capacity of producing
reasonable outputs for inputs not encountered during train-
ing (learning) phase [9]. This ability make it possible for
neural networks to solve complex problems. From the ex-
tracted points in the Hill Diagram a multilayer perceptron
was used to estimate the production function. The objective
of this ANN is to estimate the relationship among variables
net water head, power output and unit discharge. Consider-
ing that it is necessary to calculate the water discharge for
each unit, the production function has to be represented in
terms of this last variable.
The set of available points was separated randomly in two

subsets: 80% for training and 20% for validation [9]. Then
the points were normalized in the interval [-1, 1]. The net-
work with 2 hidden layers having 4 and 7 neurons respec-
tively was trained using the Levenberg-Marquadt method
[2], with fixed learning rate 0.3 and momentum constant
0.6.
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Figure 3: Hill Diagram and Neural Network Points
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Figure 4: Neural Network Recall over Hill Diagram
Points

Figure 3 shows the graphical representation of the original
points extracted from the Hill Diagram and the correspond-
ing points obtained through the neural network recall. Fig-
ure 4 shows both sets of points plotted together. Testing the
validation set the mean error encountered was 0.3182 m3/s
with standard deviation 0.0910 m3/s, which is very accept-
able considering the precision of the hydro plants control
systems. The mean squared error is 0.1934 m3/s.
As mentioned before, the problem addressed in this paper

can be stated as: given a power demand to be met by the
hydro plant p, the units must be committed so that the total
hydro plant discharge is minimized. Thus, each unit has

power output forbidden zones which must be avoided during
the dispatch. In addition, some plants need to establish that
each unit and the plant as a whole are discharging water
within a predetermined range. Formally, the problem can
be mathematically modelled as follows:

Minimize C =

N(p)∑
i=1

qi (1)

qi = QNN (pi, hli) (2)
subject to:

P t =

N(p)∑
i=1

pi (3)

pmin
i ≤ pi ≤ pmax

i (4)

qmin
i ≤ qi ≤ qmax

i (5)

Qmin
p ≤

N(p)∑
i=1

qi ≤ Qmax
p (6)

in which:

N(p) number of generation units in the hydro plant p;

qi water discharge of unit i (m3/s);

QNN water discharge function calculated using the proposed
artificial neural network (m3/s);

pi production of unit i (MW);

hli net water head of unit i (m);

P t required power demand for plant p (MW);

pmin
i minimum power output allowed to unit i (MW);

pmax
i maximum power output allowed to unit i (MW);

qmin
i minimum discharge allowed to unit i (m3/s);

qmax
i maximum discharge allowed to unit i (m3/s);

Qmin
p minimum discharge allowed to hydro plant p (m3/s);

Qmax
p maximum discharge allowed to hydro plant p (m3/s).

3. EVOLUTIONARY ALGORITHMS

3.1 Overview of Classical DE Algorithm
Differential evolution (DE) has recently proven to be an

efficient method for optimizing real-valued multi-modal ob-
jective functions. Besides its good convergence properties
and suitability for parallelization, DE’s main assets are its
conceptual simplicity and ease of use. The first written
article on DE appeared as a technical report by R. Storn
and K. V. Price in 1995 [16]. One year later, the success
of DE was demonstrated at the First International Contest
on Evolutionary Optimization in May 1996, which was held
in conjunction with the 1996 IEEE International Confer-
ence on Evolutionary Computation (CEC). Thereafter, DE
emerged as a very competitive form of evolutionary com-
putation, turning out as one of the best among important
competitions [4].

DE searches for a global optimum point in a D-dimensional
real parameter space. The classical algorithm begins with a
randomly initiated population of D-dimensional real-valued
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parameter vectors of size NP. In one of the simplest forms
of DE-mutation, to create the donor vector for each ith
target vector from the current population Xt = {xt,i; i =
1, ...., NP}, three other distinct individuals, say x⃗ri1

, x⃗ri2
and

x⃗ri3
are sampled randomly. The indices ri1, r

i
2 and ri3 are mu-

tually exclusive integer random numbers from the range [1,
NP]. Then, a differential vector is created, which is the dif-
ference between x⃗ri2

and x⃗ri3
scaled by a number F (that

typically lies in the interval [0.4, 1]). The differential vector
is then added to x⃗ri1

, that is named base vector [4]. This

generates a mutant vector. The process at the generation t
can be expressed as follows:

v⃗t,i = x⃗t,ri1
+ F (x⃗t,ri2

− x⃗t,ri3
) (7)

The mutant population generated Vt = {vt,i; i = 1, ...., NP}
is then combined to the current population producing the
offspring Ut = {ut,i; i = 1, ...., NP}. In the classic version
of the algorithm, for each dimension j of each individual i
of the population a discrete recombination with probability
C ∈ [0, 1] is applied, as follows:

ut,i,j :

{
vti,j , if randi,j [0, 1] ≤ C ∨ j = δi
xt,i,j , otherwise

(8)

in which randi,j [0, 1] is a uniformly distributed random num-
ber, which is called anew for each jth component of the ith
generated individual. δi ∈ [1, 2, ..., D] is a randomly chosen
index, which ensures that Ut gets at least one component
from Vt.
The next step of the algorithm calls for selection to de-

termine whether the parent or the mutant vector survives
to the next generation, i.e., at T = T + 1. The selection
operation is described as:

X⃗i,T+1 = U⃗i,T if f(U⃗i,t) ≤ f(X⃗i,t)

= X⃗i,T if f(U⃗i,t) > f(X⃗i,t)
(9)

in which f(X⃗) is the objective function to be minimized
(minimization is considered). As each generated vector only
replaces the corresponding parent vector in the next genera-
tion if its fitness is better, then it’s guaranteed that popula-
tion either gets better (with respect to the minimization of
the objective function) or remains the same in fitness status,
but never deteriorates [4].

3.2 Balanced Approach of the DE Algorithm
DE has shown to be effective on a large range of clas-

sical optimization problems, and it showed to be more effi-
cient than other well known evolutionary algorithms [4] [16].
In addition to classical DE, many other mutation operators
have been proposed to improve its convergence capabilities.
However, not all of the DE mutation operators are equally
efficient. Some favor the exploration of the search space,
while some other operators favor its fast exploitation. Ex-
plorative mutation operators have a greater possibility of
locating the minima of the objective function, but generally
need more iterations (generations). On the other hand, the
exploitive mutation operators rapidly converge to a mini-
mum of the objective function. In this case, there exists the
risk of premature convergence to a suboptimal solution.

Epitropakis et al proposed a hybrid approach that makes
a linear combination between an explorative and exploitive
mutation operator [12]. More specifically, the mutant indi-
vidual v⃗t,i is generated using the following equation:

v⃗t,i = ξ.vat,i + (1− ξ).vbt,i (10)

in which ξ determines the influence of the explorative over
the exploitive mutation operator, vat,i denotes a explorative

mutation operator, while vbt,i denotes a exploitive mutation
operator. For example, vat,i can represent the mutation op-
erator of the algorithm DE/rand/1/bin, (x⃗t,ri1

+ F (x⃗t,ri2
−

x⃗t,ri3
)) and vbt,i can represent the mutation operator of the

algorithm DE/best/1/bin (x⃗t,best + F (x⃗t,ri3
− x⃗t,ri2

)). The

parameter ξ can be calculated using one of the following
equations:

ξ1 = (1 + ρ).2−c.g, (11)

ξ2 = ρ.2−c.g, (12)

ξ3 =
ξ1 + ξ2

2
, (13)

where g is the current generation, ρ ∈ [0, 1] is a random
number from the uniform distribution, and c, the noise de-
cay constant, is calculated as one tenth of the maximum
allowed number of generations. According to the author,
this scheme can lead to reliable optimization of unknown
objective functions, since it alleviates problems generated
by poor selection of the user defined parameters, such as
decreased rate of convergence, or even divergence and pre-
mature saturation [12].

3.3 Particle Swarm Optimization (PSO)
PSO was introduced by Kennedy and Eberhart in 1995.

It was inspired by the swarm behaviour as is displayed by
a flock of birds, a school of fish, or even human social be-
haviour being influenced by other individuals [10].

PSO consists of a swarm of particles moving in an N -
dimensional, real-valued search space of possible problem
solutions. Every particle has a position vector x⃗ encod-
ing a candidate solution to the problem, a velocity vector
v⃗ and a small memory that stores its own best position so
far p⃗. Moreover, a global best position among the swarm g⃗ is
stored. In the classical version of the algorithm the velocity
and position of the particles are updated as follows:

vi,k = ω.vi,k−1 + c1.R
k
1 .[pi,k−1 − xi,k−1] +

c2.R
k
2 .[gk−1 − xi,k−1],

(14)

xi,k = vi,k + xi,k−1, (15)

in which ω is a inertia weight factor, vi,k is the velocity of
particle i at kth iteration, c1 is the cognitive factor, c2 is the
social factor, Rk

1 and Rk
2 are two random numbers uniformly

distributed in the range of [0, 1], xi,k is the current position
of particle i at iteration k, pi,k is the position of particle i
at kth iteration and gk is the best position in the swarm at
kth iteration.

3.4 Problem Model
As described before, the proposed model used in this pa-

per defines four constraints: one regarding to the plant to
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meet the desired power output, one to ensure that each unit
is respecting its output limits, one to evaluate if each unit is
demanding discharges in accordance to the plant capabilities
and the last one to evaluate if the total discharge is within
a predetermined range.
The most popular range constraint handling strategy in

evolutionary algorithms is to use a penalty function (PF)
added to the individuals fitness values. Obviously, the in-
dividuals will avoid getting close to prohibited areas due to
bigger fitness values that they reach when they do not meet
the constraints established.

3.4.1 Movable Partition Approach
It is also possible to use the PF approach to satisfy equal-

ity constraints. However, it can make it harder for the opti-
mization technique in the process of finding global minimum
values because the fitness of the individuals can change very
quickly for each difference between the current value of the
equality variable and the required constant for it.
Here a movable partitions approach is proposed to deal

with the desired power output equality constraint. This
modelling consists of, instead of using a variable to represent
the power output for each one of the N(p) production units,
define a compartment with fixed size representing the total
power output for the plant separated by N(p) − 1 movable
partitions. Using this approach, in addition to eliminate
the equality constraint of the problem, one less dimension
is required to represent the plant what improves the search
capabilities of the algorithm. Figure 5 illustrates this tech-
nique.

Figure 5: Movable Partitions Approach illustration

Observing Figure 5, N(p)−1 partitions are used to deter-
mine N(p) unit power outputs. In this way, the objective of
the algorithm is to move these N(p)− 1 partitions over the
space to find optimized solutions. The conversion calculus
from partitions to power output is performed by a simple
subtraction, as below:

pi = Πi −Πi−1, 1 ≤ i ≤ N(p), (16)

in which Πi represents the partition i, Π0 = 0 and ΠN(p) =
P t.
From this approach, the partition overpassing problem

can occur. If one partition overpasses others during the algo-
rithm processing then the power demand dispatched would
be different from the desired. In this case, a possible solu-
tion is to sort the partitions according to their new indexes
to ensure the commitment to this constraint, what is simple
to implement and does not cause any issues to the algorithm
behavior.

3.4.2 Fitness Function
After the range constraints be treated by PF method, the

equality constraint be solved using the movable partition
approach and based on the fitness function proposed by Liu
and Li [11] the initial objective (Equation 1) can be turned

into an unconstrained optimization problem, which can be
formulated as:

Minimize F =

N(p)∑
i=1

{ qi +
N(c)∑
j=1

[ |φi,j | . λj ] } (17)

• φi,1 = max(pmax
i , pti)− pmax

i

• φi,2 = min(pmin
i , pti)− pmin

i

• φi,3 = max(qmax
i , qi)− qmax

i

• φi,4 = min(qmin
i , qi)− qmin

i

• φi,5 = max(Qmax
p ,

∑N(p)
i=1 qi)−Qmax

p

• φi,6 = min(Qmin
p ,

∑N(p)
i=1 qi)−Qmin

p

in which F is the fitness value of the individuals, N(c) is the
number of constraints (in this case 6), λj is the penalty oper-
ator of jth constraint and φi,j represents the jth constraint
according to the individual i.

4. APPLICATION OF THE OBTAINED SO-
LUTION

4.1 Plant and Algorithms Information
The proposed model was applied to the hydroelectric plant

of Três Marias in Brazil. This plant has 6 units on the up-
stream of the São Francisco River but only 5 are fully opera-
tional at the moment. The power output interval tested for
each unit was (35 to 61)MW which enables the power rat-
ing of 305MW (5× 61MW). The turbines are identical, but
they have different net heads due to their different geome-
tries in the penstocks. The gross head used for the the units
was 56m. The water dispatch interval allowed for each tur-
bine used was (60 to 150)m3/s and the total plant dispatch
interval used was (320 to 700)m3/s. Six different typical
power demands for the plant were tested: 210MW, 230MW,
250MW, 270MW, 290MW and 300MW.

In order to optimize the proposed model, three evolu-
tionary algorithms, the DE/best/1/ bin (DE1), the bal-
anced version of the DE proposed by Epitropakis (DE2,1)
and the classical Particle Swarm Optimization (PSO) algo-
rithm, were tested. The only stop criteria used was num-
ber of generations which was equals to 50. It was chosen
the DE/rand/1/bin and DE/best/1/bin as the explorative
and exploitive mutation operations, respectively, in the bal-
anced version of the DE algorithm. The parameter ξ3 was
used to perform the balancing. All the other parameters
used in this algorithm were the same used in the DE1 men-
tioned above. The PSO used a self-adaptive decreasing in-
ertia weight schema [11]. The number of particles used was
also 50. The parameters cognitive factor c1, social factor
c2, maximum inertia weight wmax, minimum inertia weight
wmin, as well as DE parameters are shown in table 1.

Table 1: Algorithms Parameters
DE Parameters

F C NP -
0.4 0.6 50 -

PSO Parameters
c1 c2 wmax wmin

2.0 3.5 0.9 0.4
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The constraint penalties adopted and net water heads for
each unit are contained in the table 2. They were found
empirically.

Table 2: Model Parameters
Constraint Penalties Values

λ1 λ2 λ3 λ4 λ5 λ6

6.0 6.0 5.0 5.0 5.0 5.0
Net Water Heads (hli)

hl1 hl2 hl3 hl4 hl5 -
52.5 54.0 55.0 54 52.5 -

4.2 Results
Each algorithm tested was executed 30 times for each

power demand. Table 3 shows the best solutions encoun-
tered by each algorithm through the executions. In addition,
it is shown the equal division of the power demand among
the units available, what is the common practice of the plant
studied. As can be seen in the table 3 all algorithms reached
the same best fitness value. The best discharge gain hap-
pened for the demand of 230MW, reaching 4.95 less m3/s
what represents 1.05% of water economy.

Table 3: Unit Commitment Results
Load Me Unit Power Water

Demand th Output (MW) Disch.
(MW) od #1 #2 #3 #4 #5 (m3/s)

210

DE1 39.8 40.0 50.3 40.0 39.8 426.45
DE2,1 39.8 40.0 50.3 40.0 39.8 426.45
PSO 39.8 40.0 50.3 40.0 39.8 426.45
= 42.0 42.0 42.0 42.0 42.0 427.85

230

DE1 40.3 53.6 54.8 40.8 40.3 465.40
DE2,1 40.3 40.8 54.8 53.6 40.3 465.40
PSO 40.3 53.6 54.8 40.8 40.3 465.40
= 46.0 46.0 46.0 46.0 46.0 470.35

250

DE1 40.5 56.2 56.2 56.2 40.5 505.23
DE2,1 40.5 56.2 56.2 56.2 40.5 505.23
PSO 40.5 56.3 56.2 56.3 40.5 505.23
= 50.0 50.0 50.0 50.0 50.0 508.57

270

DE1 40.7 57.1 56.8 57.1 58.0 546.87
DE2,1 58.0 57.1 56.8 57.2 40.7 546.87
PSO 58.1 57.1 56.8 57.15 40.7 546.87
= 54.0 54.0 54.0 54.0 54.0 547.67

290

DE1 58.5 57.7 57.3 57.7 58.5 588.64
DE2,1 58.5 57.7 57.3 57.7 58.6 588.64
PSO 58.5 57.7 57.3 57.7 58.6 588.64
= 58.0 58.0 58.0 58.0 58.0 588.73

300

DE1 60.5 59.8 59.3 59.8 60.5 613.19
DE2,1 60.5 59.8 59.3 59.8 60.4 613.19
PSO 60.5 59.8 59.3 59.8 60.4 613.19
= 60.0 60.0 60.0 60.0 60.0 613.74

4.3 Algorithm Analysis
As said before, all algorithms reached the same best so-

lution at least once during their executions. In this section,
the three algorithms will be compared in order to determine
which of them is the most suitable to optimize the optimiza-
tion problem.

4.3.1 Results Analysis
In order to analyse the results found for each algorithm

during their executions, a box plot was generated for each
power demand tested. Box plot is a compact representation
that encodes the minimum, maximum, mean, median, and
quartile information of a distribution [5]. The outliers are
the observations that present greater distances to the rest of
the distribution. Figure 6 shows the results distribution box

plot for the the 290MW power demand. The x-axis repre-
sents the three algorithms tested and the y-axis represents
the fitness value. The filled point is the mean of the distri-
bution and the unfilled points are the outliers. The other
box plots will not be shown in this paper because they had
similar forms.

Figure 6: Box Plot - Demand 290MW

Analysing that box plot, it is possible to say that the
algorithms had similar results. It is valid to notice that
y-axis scale precision in Figure 6 is 10−3, what makes the
differences among the samples very discrete. Only a line
was observed for the algorithms DE1 and DE2,1 in the box
plot because the quartiles are very close to the medians. In
the PSO algorithm, the difference between the upper and
lower quartiles are also very subtle. All the outliers are very
close to the rest of the distribution (differences less than
10−1). Hence, there are indications that the algorithms are
executing with robustness and usually find similar results
during all the executions.

To testify the conclusions provided by the box plots, a Per-
mutation Test was also applied to the algorithm results. Per-
mutation tests are non-parametric statistical methods which
estimate a reference distribution by calculating all possible
values (or at least a considerably large set) of a statistic
test rearrangements of the labels on a set of observed data
points [13]. Any performance index can be chosen as the test
statistic object. For the comparison of each pair of different
algorithms, the following null and alternative hypothesis are
formulated:

• Null hypothesis H0: there is no performance difference
between the two algorithms;

• Alternative hypothesis H1: there is a performance dif-
ference between the two algorithms.

In other words, the null hypothesis states that There is
no evidence that one of the algorithms is intrinsically better
than the other one, since the difference between their perfor-
mance indices could be explained as being a realization of an
underlying probability distribution of the test object that is
neutral (the distribution does not favor any algorithm). The
central assumption of the method is that, if the observed
result has arisen by chance, then this value will not seem
unusual in a distribution of results obtained through many
random relabellings of the samples.

Permutation tests can be used for building a reference
distribution in which it is possible to determine if the differ-
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ence which has been observed between the sample means is
enough to reject H0. That test can be performed as follows
[6].

1. Find the sample means A and B.

2. Find the observed difference d = A−B.

3. Arrange the observations of A and B in a single

vector S = [a1, a2, ... anA , b1, b2, .... bnB ].

4. Make i ← = 1.

5. For a high pre-determined number of times:

a) Shuffle the elements of S to create S′.

b) Calculate xa = 1
nA

nA∑
i=1

S′
i.

c) Calculate xb = 1
nB

nB∑
i=nA+1

S′
i.

d) Make Xi ← xa − xb.

6. Sort X in ascendant order .

7. Calculate pvalue(d) = P (X ≤ d).

8. If pvalue(d) ≤ α
2
or pvalue(d) ≥ 1− α

2
then reject H0

and accept H1. Otherwise, keep H0 as a non-discar-
ded possibility.

In step 8, the parameter α is an user-defined confidence
level for the rejection of the null hypothesis.
In the algorithms results case, A stands for the results

distribution of one algorithm and B stands for the results
distribution of another algorithm. It is worthwhile to notice
that the Permutation Test is applied between two distribu-
tions. H0 indicates that there are no sufficient statistic evi-
dences that enable the rejection of the null hypothesis, which
means that it can not be evaluated that the algorithm A is
better or worse than the algorithm B. H1 indicates that the
results are different. In this case, if d is positive then it can
be noticed that B has better results on average (the prob-
lem stands for minimization). The same way, if d is negative
then it can be noticed that A has better results on average.
The confidence level defined α is 0.05 (95%) and the number
of times that the statistical object were performed (step 5)
is 5000. The Permutation Test was performed for all the
power demands tested using the following A vs. B: DE1 vs.
DE2,1, DE1 vs. PSO and DE2,1 vs. PSO.
In the first part of the test, the difference of the objective

function means was used as the statistical object. For all the
tests performed, the hypothesis H0 was true, indicating that
there is no evidence that one of the algorithms is intrinsically
better than the other one. Figure 7 shows the histogram
of the test for the 210MW power demand, DE1 vs. PSO.
Notice that the observed result is not statistically significant
since it is located inside the confidence interval. The other
histograms will not be shown in this paper because they had
similar forms.

4.3.2 Convergence Analysis
Figure 8 shows the mean convergence lines for each power

demand tested. Each graph shows, for all evolutionary al-
gorithms, the mean of the fitness value encountered at each
generation among the 30 executions.
Table 4 shows the mean number of generations that each

algorithm executed until find the best fitness value. It was
just considered fitness value improvements higher than 5 ×
10−3 in relation to the best previous fitness value encoun-
tered.
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Figure 7: Permutation Test Histogram - DE1 vs.
PSO - 270MW
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Table 4: Mean Number of Generations to Converge

Method
Load Mean Stand. General General

Output # of Dev. Mean # Stand.
(MW) Gen. of Gen. Dev.

DE1

210 14.0 1.9

14.8 2.4

230 13.4 1.1
250 15.3 1.3
270 13.4 2.5
290 14.9 1.8
300 17.8 2.4

DE2,1

210 15.4 1.6

16.4 2.5

230 15.2 1.5
250 16.7 1.5
270 16.2 3.1
290 15.7 1.6
300 19.7 2.2

PSO

210 23.9 7.0

25.6 8.8

230 23.8 4.8
250 24.7 7.8
270 18.1 5.8
290 24.0 5.2
300 39.1 5.1

The algorithm DE1 demanded less generations on aver-
age to find the results than the other methods tested, but
its results were close to DE2,1 algorithm. To better evalu-
ate the convergence of the algorithms, another Permutation
Test was applied. In this case, the number of generations
required to algorithm convergence was used as statistical
object. In this case, H0 indicates that there are no suf-
ficient statistic evidences to reject the hypothesis that the
algorithm A converges demanding less generations than the
algorithm B and vice versa. H1 with d negative indicates
that the algorithm A converges faster with 95% confidence
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level. The same way, H1 with d positive indicates that the
algorithm B converges faster with the same confidence level.
Table 5 shows the results for the disputes A vs. B.

Table 5: Permutation Test Applied to the Algo-
rithms Convergence

Power DE1 DE1 DE2,1

Output vs. vs. vs.
(MW) DE2,1 PSO PSO
210 H0 H1− H1−
230 H1− H1− H1−
250 H1− H1− H1−
270 H1− H1− H0

290 H0 H1− H1−
300 H1− H1− H1−

At Table 5 H1− indicates that d has a negative value.
According to the results, it can be said that H1 is predomi-
nant. DE1 converged before that DE2,1 in 4 of the 6 tested
power demands and before the PSO for all power demands.
Furthermore, DE2,1 converged faster than PSO for 5 of the
6 tested demands. Figure 9 shows the histograms for DE1

vs DE2,1 for the demands 210 and 230 MW, which means
H1− and H0, respectively.

Histogram Permutation Test − DE1 vs. DE2,1 − 230MW
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Figure 9: Permutation Results - Convergence

5. CONCLUSIONS
This paper presented a proposal for optimizing the unit

commitment of hydroelectric generating units of a single
plant. The proposed method is based on a Neural Network
to model the discharge function and the novel movable par-
titions approach to meet the required power demand, which
avoids an equality constraint in the model and requires one
less dimension to represent it. Three evolutionary meth-
ods were tested to optimize the objective function modeled:
DE/best/1/bin, a balanced version of DE and the PSO al-
gorithm. All the three algorithms encountered similar best
fitness values for all the demands tested and it was not pos-
sible to say if an algorithm is better than another. From
the convergence test analysis, the algorithm DE/best/1/bin
presented a higher performance for this problem comparing
to the other two, in terms of number of generations required
to reach the best solution. The balanced version of DE also
manifested faster convergence when compared to PSO in
most of cases.
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