
Automatic String Replace by Examples

Andrea De Lorenzo
DIA - University of Trieste

Italy
andrea.delorenzo@phd.units.it

Eric Medvet
DIA - University of Trieste

Italy
emedvet@units.it

Alberto Bartoli
DIA - University of Trieste

Italy
bartoli.alberto@units.it

ABSTRACT
Search-and-replace is a text processing task which may be
largely automated with regular expressions: the user must
describe with a specific formal language the regions to be
modified (search pattern) and the corresponding desired
changes (replacement expression). Writing and tuning the
required expressions requires high familiarity with the corre-
sponding formalism and is typically a lengthy, error-prone
process.

In this paper we propose a tool based on Genetic Pro-
gramming (GP) for generating automatically both the search
pattern and the replacement expression based only on ex-
amples. The user merely provides examples of the input
text along with the desired output text and does not need
any knowledge about the regular expression formalism nor
about GP. We are not aware of any similar proposal. We
experimentally evaluated our proposal on 4 different search-
and-replace tasks operating on real-world datasets and found
good results, which suggests that the approach may indeed
be practically viable.

Categories and Subject Descriptors
I.5.4 [Pattern Recognition]: Applications—text process-
ing ; H.4.1 [Information Systems Applications]: Office
Automation—word processing

Keywords
Search-and-replace, Genetic Programming

1. INTRODUCTION
Techniques for automated text processing are becoming

increasingly important due to the uninterrupted growth and
diffusion of text sources that are unstructured or loosely
structured, e.g., logs—which exist in many different forms
and application domains, including server administration,
web access, phone calls, intrusion detection—web catalogs,
email messages, social networking sites and so on. A specific
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text processing task potentially suitable to being automated
is search-and-replace, where all text regions matching a given
pattern should be replaced according to a given scheme.
Many tools offer powerful support for this task based on
the usage of regular expressions, which are a way of spec-
ifying a pattern using a formal language. The user must
specify a search pattern for identifying the text regions to be
modified and a separate replacement expression for describ-
ing the changes to be applied. The replacement expression
usually include references to specific subregions of the re-
gion to be modified and the description of these subregions
must be encoded in the search pattern appropriately. This
framework requires the involvement of technically savvy users
because defining the expressions required for solving a specific
search-and-replace task requires high familiarity with the cor-
responding formalism. Furthermore, tuning the expressions
is usually a time-consuming, error-prone process.

In this paper, we propose a tool based on Genetic Program-
ming (GP) that is capable of automatically generating both
the search pattern and the replacement expression, only by
means of examples. The user merely provides a set of exam-
ples of the search-and-replace task, each example consisting
of the text before and after the desired replacement without
any further annotation. The tool then generates automati-
cally both the search pattern and the replacement expression
for fulfilling the task. The output can be used with popular
processing engines, e.g., Java, PHP and so on. We emphasize
that the user does not need to have any knowledge about
GP nor is she required to provide any hints about the struc-
ture of the search pattern or replacement expressions to be
obtained. We are not aware of any other method capable of
automatically defining the required expressions, based solely
on examples.

Our tool internally works in three phases. In the first phase,
it executes a GP search for generating a regular expression
able to localize the text regions to be processed. This regular
expression defines a single pattern across all the provided
examples, usually including the text to be modified and
some surrounding text, thereby defining a sort of context for
characterizing the scope of the desired replacements. For
instance, consider the anonimization of Twitter usernames
(e.g., @GECCO2013→ @xxxxxxxxx): a letter should be replaced
by x, but only when it is part of a Twitter username—which
is the context. This phase is essential for making the user
experience as simple as possible: the user merely specifies
the input text t and the desired output text t′; she does
not need to annotate t for indicating which of its portions
have to be modified. The regular expression produced in the
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first phase is required internally in the next phases and is
not visible to the user. In the second phase, the tool builds
the replacement expression by identifying the subregions
to be modified and using references to those subregions
appropriately, i.e., according to the provided examples. In
the third and final phase, the tool executes a further GP
search for generating the search pattern to be used along
with the replacement expression generated at the previous
step.

We evaluated our proposal on 4 search-and-replace tasks
executed on different real-world datasets, each including
several hundreds of manually-labelled examples. The tasks
consist of anonymization of usernames in tweets, partial
anonymization of IP addresses, format change of dates and
phone numbers. The experimental evaluation shows that
our tool is indeed able to define an effective search-and-
replace task with only few tens of examples. Even leaving
aside the potential of our tool for non technically savvy
users, this result also suggests that evolutionary computing,
coupled with the power of modern computing resources, may
increasingly become a surrogate for some specific technical
expertise of human specialists.

2. RELATED WORKS
Automatic generation of regular expressions from examples

of the desired behavior may be useful in a variety of problems.
We categorize these problems in increasing order of difficulty,
as follows. (1) The flagging problem consists in assigning a
binary label to a text: true, if some region of the text matches
the regular expression, false otherwise. The examples consist
of text regions, each accompanied by the respective desired
label. (2) The text extraction problem consists in extracting
from a text each region which matches the regular expres-
sion. The examples consist of texts, each accompanied by
the annotation of the region to be extracted or the indication
that nothing has to be extracted. (3) The search-and-replace
problem is a generalization of the text extraction problem:
the extracted regions have to be modified according to the
specification encoded into an additional replacement expres-
sion. The examples consist of texts, each accompanied by the
corresponding modified text or the indication that nothing
has to be modified.

To the best of our knowledge, no method for automatic
generation of expressions suitable for search-and-replace has
been proposed before. Accordingly, we briefly review in this
section: (i) approaches suitable for the flagging problem
or the text extraction problem; (ii) proposals not based on
regular expressions for facilitating users while performing
search-and-replace tasks.

The authors of [5] propose an evolutionary approach for
generating regular expressions for the flagging problem. Their
approach is based on grammatical evolution and individuals
are specified in the Backus-Naur Form. The method effec-
tiveness is assessed on the task of identifying those lines of
HTML documents which contain hyperlinks.

Several earlier works addressed the text extraction problem
with evolutionary approaches, such as Genetic Algorithms
(GA) [2, 9] and Genetic Programming (GP) [19, 7, 18, 3].
In [2], after an initial evolution, individuals are recombined
and then selected to obtain the final regular expression. In [9],
the alphabet for regular expressions is chosen after a pre-
liminary frequency analysis on the set of examples. Both
proposals are evaluated on the task of URL extraction (com-

position and size of training and testing sets are not provided
in [9]). Methods based on GP encode regular expressions
as GP trees and evolve the corresponding individuals—each
individual being a candidate expression—to maximize effec-
tiveness according to some metric [19, 7, 18].

The large computing power widely available today re-
vamped GP-based solutions, allowing them to outperform
earlier proposals and solve practically relevant problems [3].
In this work we solve a more general problem than in [3]—
search-and-replace, rather than mere text extraction. Our
proposal generates automatically, in the first and third phase,
regular expressions for text extraction. The corresponding
procedures are built according to the proposal in [3] but
extend that proposal in several key aspects. First, part of
the initial population contains individuals generated directly
from the examples, rather than randomly. Second, we gener-
ate regular expressions including capturing groups, a feature
which is needed for solving the search-and-replace problem
(we describe this feature in the next section). Third, we
use fitness definitions tailored to the specific requirements
of search-and-replace. In the first phase, the evolutionary
search promotes individuals describing a suitable context
across all the examples, which is usually larger than the
region to be extracted and modified. In the third phase,
the fitness of an individual depends on the behavior of that
individual when coupled with the replacement expression
found in the second phase.

The scenario considered in [20] concerns criminal justice
information systems and the goal consists in minimizing hu-
man effort for data mining. The proposed approach starts
from a single example and produces a reduced form of regu-
lar expression exploiting the operator interventions during
the learning process, which is hence not fully automatic. A
similar scheme for regular expression generation which in-
volves the human operator is presented in [10]: here an active
learning algorithm is proposed which starts from a single
example and then requires an external operator to respond
to membership queries about candidate expressions. In our
work, instead, we just require a set of examples and never
require human involvement during the search.

Other promising proposals for the text extraction problem
which are not based on evolutionary approaches have been
presented in [11, 1, 4]. In [11] the user is required to provide
a set of examples and an initial regular expression: the
algorithm then applies successive transformations until it
reaches a local optimum in terms of precision and recall.
The system proposed in [1] works similarly but the authors
focus on noisy data. The method proposed in [4] does not
rely on an initial regular expression: instead, it identifies
relevant patterns in the set of examples and then combines
the most promising pattern into a single regular expression.
The proposal is evaluated on several business-related text
extraction tasks, e.g., phone numbers and invoice numbers.

Concerning proposals for facilitating users in automated
text editing that are not based on regular expressions, the
authors of [14] propose a system (LAPIS) based on a pattern
language. This pattern language, previously proposed by the
same authors [16], can replace regular expressions in many
common tasks, including simple forms of search-and-replace.
Since some skill is still required to use the language, LAPIS
offers an assisted mode in which an initial pattern is inferred
from a set of positive and negative examples. Differently
from our work, the assisted mode addresses only the search
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portion of the search-and-replace task. Furthermore, the
results produced by our tool are not bound to a specific text
processing system but can be used in a wealth of different
environments. A similar scheme for inferring a pattern from
examples is used in [15]: the goal here is to guess multiple
selections for simultaneous editing.

A method for assisting the user in executing a search-and-
replace tasks is proposed in [13]. The authors consider a
scenario where, in order to mitigate the difficulty of defining a
search pattern—which is the point we address in this paper—
users often work with less precise patterns and then manual
check each suggested match. They propose to cluster the
suggested matches so as to reduce the number of manual
checks, since the user approve or reject the whole cluster
instead of inspecting each single match.

3. OUR APPROACH
The user provides a set of examples T . Each example is

composed by a pair of strings 〈t, t′〉, where t is a string to
be modified in t′. An example in which t′ = t is called a
negative example.

The output of our system is a pair of strings 〈s, r〉, where
s is the regular expression which defines the search pattern
and r is the replacement expression.

The regular expression s may contain zero or more captur-
ing groups. A capturing group is a substring of s enclosed
between round parentheses. A capturing group is itself a
regular expression: when a string t matches a regular expres-
sion s containing a capturing group, a substring of t matches
the capturing group. The substring matched by a capturing
group can be referenced in the replacement expression. The
corresponding syntax is $n1, where n is the index of occur-
rence of the capturing group in the regular expression—e.g.,
$1 indicates the substring matched by the first capturing
group. For example, suppose the user needs to change the
date format from month-date-year to day-month-year: a suit-
able search pattern, which includes three capturing groups,
is the regular expression (\d+)-(\d+)-(\d+) and the corre-
sponding replacement expression is $2-$1-$3.

Solving the search-and-replace problem by means of reg-
ular expressions requires a notion of context. In general, a
single pattern identifying only the substrings to be replaced
might not exist. That is, it might not exist a single regular
expression which, for each example 〈t, t′〉, exactly matches
the shortest substring of t including the characters which
have to be modified in order to obtain t′. In practice, how-
ever, a pattern may often be found for superstrings of the
strings to be replaced: we call these superstrings the context
and this pattern the context pattern.

To clarify, the first two columns of Table 1 show a few
examples related to three different search-and-replace tasks
(the other columns show intermediate results discussed later).
The third column illustrates the substring of t that is to be
replaced: it is apparent that, for each of the three tasks,
there is not any pattern identifying these substrings. On the
other hand, a context pattern as defined above does exist for
each of the three tasks: column ck contains the contexts—i.e.,
superstrings of the substring to be replaced—extracted by
the context pattern in column sc.

1Some regular expression engines (e.g., Python, .NET, Ruby)
use the \n notation, instead of the $n notation used, e.g., in
Java, JavaScript, PHP, . . . )

The context thus describes portions of input that do have
to be replaced and where replacements have to be confined.
An essential component of our approach is that we do not
require the user to specify the context. On the contrary,
the context is discovered automatically by the system. For
instance, in the third row in Table 1, we do not require
that the user specifies that ic has to be replaced by xx only
when ic is part of the Twitter username @Toxic, but not
when is part of Sick. It is up to the system to extract that
information from the examples. The user only describes the
input text and the desired output.

Note that, for a given set of examples, the context pattern
may not be determined unambiguously—e.g., in Table 1,
each context could also start with the space character, or
with multiple arbitrary characters followed by a space. A
given set of examples might thus be associated with 0, 1
or more context patterns and finding those patterns is not
straightforward.

Our proposal consists of three phases, described in the
next sections in full detail: (i) generate a context pattern
sc, (ii) build the replacement expression r, (iii) generate the
search pattern s which works with r. We remark that phase
1 is necessary because we decided to not rely on the user for
specifying the context of the desired changes. The result sc
of this phase is not exposed to the user and is only an input
for the next phase.

4. IMPLEMENTATION

4.1 Generating the context pattern
In this phase we aim at generating the context pattern

sc. To this end, we build from T a learning set Tc suitable
for a text extraction problem: for each example 〈t, t′〉 in T
we construct exactly one example 〈t,D(t, t′)〉 for Tc, where
D(t, t′) is the substring of t to be replaced and is determined
as described below. Then, we run a GP search for generating
a regular expression that attempts to satisfy the examples
in Tc.

The string D(t, t′) is the shortest substring of t which
includes all characters that have to be modified in order to
obtain t′ (see also the third column in Table 1). Formally,
let ti be the i-th character in t and let L(t) be the length of

t. Then D(t, t′) = titi+1 . . . tL(t)−j , where i ≥ 1 is the lowest
integer for which ti 6= t′i and j ≥ 0 is the lowest integer for

which tL(t)−j 6= t′L(t
′)−j ; if t = t′, D(t, t′) = ∅.

For the purpose of the GP search, we partition the learning
set Tc in a training set T t

c and a validation set T v
c . We form

these two sets so as to distribute the negative examples
evenly.

We then run a GP search on T t
c , as follows. Every indi-

vidual is a tree which represents a regular expression. The
function set consists of (we assume the reader has some
familiarity with regular expressions [8]): (i) the concatena-
tor, that is a binary node that concatenates other nodes
or leaves, (ii) the character class operators [·] and [^·],
(iii) the capturing group (·) and the non-capturing group2

(?:·) operators, (iv) the possessive quantifiers (·*+, ·++, ·?+,
{·,·}+). The terminal set consists of: (i) constants—i.e., a
single character, a number or a string, (ii) ranges—i.e., a-z
or A-Z and (iii) character classes, i.e., \w or \d.

2A non-capturing group is a group which cannot be refer-
enced in the replacement expression.
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Table 1: Three sets of synthetic examples and corresponding intermediate and final results: ∅ indicates the
empty string.

tk t′k D(tk, t
′
k) sc ck c′k rk s r

I like @GECCO13 conf I like @GExxxx conf CCO13

@\w\w(\w+)

@GECCO13 @GExxxx $1xxxx

(@\w\w)\w+ $1xxxx
RT @MaleLabTs New paper RT @Maxxxx New paper leLabTs @MaleLabTs @Maxxxx $1xxxx

Sick of @Toxic chatter Sick of @Toxxxx chatter ic @Toxic @Toxxxx $1xxx

nothing new here nothing new here ∅ ∅ ∅ ∅
today is 1-23-13 today is 23/01/13 1-23-

\d+-\d+-\d+

1-23-13 23/1/13 $2/$1/$3

(\d+)-(\d+)-(\d+) $2/$1/$3he left on 3-13-12 he left on 13/3/12 3-13- 3-13-12 13/3/12 $2/$1/$3

great 1-1-13 party! great 1/1/13 party! -1- 1-1-13 1/1/13 $1/$2/$3

he is Nick he is *Nick* Nick
[A-Z]\w+

Nick *Nick* *$1*
([A-Z]\w+) *$1*

John was here *John* was here John John *John* *$1*

We build the initial population of P individuals so that
half of them are generated directly from the examples, rather
than randomly. If the number of examples is smaller than
P
2

, then we use them all and generate the remaining indi-

viduals randomly. In detail, let PE = min
(
P
2
, 2|T t

c |
)
, where

|T t
c | is the size of T t

c , and let 〈tk, D(tk, t
′
k)〉 denote the k-th

example in T t
c . Then, the initial population consists of: PE

2
individuals, each representing one of the strings D(tk, t

′
k);

PE
2

individuals, each representing one of the strings D(tk, t
′
k)

where each digit is replaced with a \d and each alphabetical
character with a \w; the remaining P − PE individuals are
generated at random with a Ramped half-and-half method.
We chose this strategy because we found, after preliminary
experimentation, that it greatly speeds up the convergence
toward good solutions.

The fitness function to be minimized during the search is
the sum of the Levenshtein distances3, across all the examples
in the training set, between the string to be extracted and
the string actually extracted by the first capturing group:

fE(sc) =

|T t
c |∑

k=1

L(D(tk, t
′
k), E1(tk, sc)) (1)

where sc is the evaluated individual, L(x, y) is the Leven-
shtein distance between strings x and y, E1(tk, sc) is the
substring of tk matched by the first capturing group of sc—if
sc does not contain a capturing group, we set fE(sc) = +∞.
We designed the fitness based on the key requirement of
this phase, that is, automatic generation of a single pattern
capable of extracting a superstring of the substring to be
modified. For this reason, we promote individuals with at
least one capturing group and such that this group matches
D(tk, t

′
k). We did not include in the fitness any component

depending on what is extracted beyond D(tk, t
′
k) because, as

discussed in the previous section, we have no explicit infor-
mation about what the whole expression should extract, i.e.,
about the context.

We run N1 independent GP searches, differing only for the
random seed. We evaluate on the validation set T v

c each of
the N1 resulting regular expressions, and select as output sc
of this phase the one which minimizes fE .

4.2 Building the replacement expression
3The Levenshtein distance measures the difference between
two strings: informally, it corresponds to the minimum num-
ber of single-character edits required to change one string
into the other.

In this phase we aim at generating the replacement expres-
sion r. To this end, we generate a candidate replacement
expression rk for each positive example 〈tk, t′k〉 in T , as fol-
lows.

Let ck be the substring of tk extracted by the context pat-

tern sc; let b, e be the integers such that ck = tbkt
b+1
k . . . t

L(tk)−e
k ;

let c′k be the substring of t′k delimited in the same way by b

and e, i.e., c′k = t′
b
kt
′b+1
k . . . t′

L(t′k)−e

k (if b ≥ L(t′k)− e, then
c′k = ∅). We set the candidate replacement expression rk
for the example 〈tk, t′k〉 by executing Algorithm 1, which
takes as input c′k and the list of tuples Ck constructed with
the following steps. Intuitively, Ck describes the boundaries
of all the (maximal) substrings of ck which appear in c′k.
In detail, we (i) construct the list Ck containing all tuples

〈i, j, i′, j′〉 such that cik . . . c
j
k = c′k

i′
. . . c′k

j′
; (ii) remove from

Ck each tuple 〈i, j, i′, j′〉 for which there exists another tuple
〈i∗, j∗, i′∗, j′∗〉 such that i ≥ i∗ and j ≤ j∗; (iii) sort Ck

according to index i, in ascending order, and insert into each
tuple an increasing integer n that represents the position of
the tuple in Ck; (iv) sort Ck according to index i′, in ascend-
ing order. At this point, we set rk = R(c′k, Ck) where R is
defined in Algorithm 1. As pointed out above, Ck describes
the boundaries of the substrings of ck which appear in c′k—
in brief, of the common substrings. Algorithm 1 builds rk
by concatenating the substrings of c′k between two common
substrings, replacing common substrings by tokens $n, after
an appropriate sorting—see Figure 1 for an example.

Algorithm 1 Algorithm for building a candidate replace-
ment expression rk.

function R(c′,C = {〈i1, j1, i′1, j′1, n1〉, . . . })
r ← ∅
b← 1
e← i′1 − 1
for h← 1, |C| − 1 do

r ← rc′b . . . c′e$nh . concatenation
b← j′h + 1
e← i′h+1 − 1

end for
r ← rc′b . . . c′e$n|C|c

′j′|C|+1
. . . c′L(c

′) . concatenation
return r

end function

Different examples might generate different replacement
expressions, owing to conflicting or ambiguous examples. For
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Figure 1: Example of execution of R(c′k, Ck) where
Ck has been constructed from ck, c

′
k

ck = 07-14-1789

c′k = <b>14/07/1789</b>

Ck=

i, j, i′, j′, n
〈4, 5, 4, 5, 2〉 14→ $2

〈1, 2, 7, 8, 1〉 07→ $1

〈7, 10, 10, 13, 3〉 1789→ $3

rk = <b>$2/$1/$3</b>

instance, in Table 1, the third example generates a replace-
ment expression $1xxx different from the one corresponding
to the first and second example $1xxxx. The reason is the
ambiguity associated with the x character, which is both
part of the input text to be modified (Toxic) and of the text
to be obtained (Toxxxx).

We select as output of this phase the replacement expres-
sion r which occurs most frequently among all the examples.
In case two or more candidates occur the same number of
times, we choose one of them at random.

4.3 Generating the search pattern
In this phase, we aim at generating the search pattern s. To

this end, we partition the set of examples T in a training set
T t and a validation set T v, by distributing negative examples
evenly, and execute a GP search similarly to Section 4.1 with
a crucial difference in the fitness definition. In this case we
associate with each individual, i.e., regular expression, s two
objective functions to be minimized:

fR(s) =

|T t|∑
k=1

L(t′k, R(tk, s, r)) (2)

fG(s) = |Gs(s)−Gr(r)| (3)

where R(tk, s, r) is the string obtained by performing on tk
the search-and-replace task defined by the regular expression
s and the replacement expression r (found in the previous
phase), Gs(s) is the number of capturing groups defined
in s and Gr(r) is the number of capturing groups defined
in r. We minimize this multi-objective fitness by means of
NSGA-II [6].

We run N2 independent GP searches, differing only for
the random seed, thereby obtaining N2 search patterns sh.
Finally, we evaluate on the validation set T v each of the N2

candidate solutions 〈sh, r〉 for the search-and-replace task,
and select as final result the one which minimizes fR and fS
by means of NSGA-II.

5. EXPERIMENTS
We experimentally evaluated our proposal on real-world

datasets that we manually annotated for 4 search-and-replace
tasks:

Twitter anonymization Replace each username found in
a tweet corpus with @xxxxxx—e.g., @GECCO2013 be-
comes @xxxxxx. The tweet corpus has been taken
from [12];

Table 2: GP parameters

Parameter Settings
Population size (phase 1) 500
Population size (phase 3) 3000
Number of generations (phase 1) 1000
Number of generations (phase 3) 200
Selection Tournament of size 7
Initialization depths 1–5
Max depth after crossover 15
Reproduction rate 10%
Crossover rate 80%
Mutation rate 10%

IP partial anonymization Replace the second two digit
groups of each IP address (expressed in dot-decimal
notation) found in a web server log with xxx.xxx—e.g.,
127.0.0.1 becomes 127.0.xxx.xxx.

Date format change Change each date found in the web
server log of the previous task from the Gregorian
little-endian slash separated format to the Gregorian
big-endian dash separated format—e.g., 31/Dec/2012
becomes 2012-Dec-31.

Phone number format change Change each phone num-
ber found in an email collection by removing the paren-
thesis around the area code and adding a dash—i.e,
(555) 555-5555 becomes 555-555-5555. The email
corpus has been taken from [17] and was used by [11,
4].

The dataset consists of 1000 examples for each task, i.e.,
1000 pairs 〈t, t′〉, of which 500 are negative. We executed
three experiments for each task, varying the size of the set
of examples.

We executed each experiment as follows: (i) we randomly
split the dataset in two subsets T and T e; each subset is
balanced, i.e., contains the same number of positive and
negative examples; (ii) we generated a solution 〈s, r〉 using T
and evaluated the solution on T e—i.e., T is the learning set
and T e is the testing set (during phases 1 and 3 the learning
set is further split in training and validation, as discussed in
the previous sections). We report results obtained with 5-fold
cross-validation, i.e., we repeated the two steps above 5 times
and averaged the performance indexes exhibited by the 5
solutions on the testing set of the corresponding experiment.
We set the parameters for the GP searches as in Table 2.
We chose the number of generations and the population size,
which are different between phase 1 and phase 3, after some
preliminary experimentation. We chose an equal number of
independent searches in phase 1 and phase 3: N1 = N2 = 32.

We evaluated each generated solution 〈s, r〉 by means of two
metrics. The distance error rate εd quantifies the percentage
of characters that have not been processed correctly, i.e., it
averages on T e pairs the distance between the expected string
and the string actually obtained, divided by the length of
the former. The count error rate εc quantifies the percentage
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Table 4: Experiment execution times, averaged
across the 5 repetitions: third to fifth columns show
the average execution of the three phases.

Task |T t|+ |T v| Time (min)
1 2 3 Overall

Twitter
anonymization

20 0 0 1 1
25 0 0 1 1
50 0 0 2 2

IP partial
anonymization

20 2 0 10 12
25 7 0 26 33
50 4 0 39 43

Date format
change

20 3 0 15 18
25 7 0 29 36
50 13 0 65 78

Phone number
format change

20 7 0 28 35
25 17 0 63 80
50 27 0 105 132

of T e pairs that have not been processed correctly. In detail:

εd =
1

|T e|

|Te|∑
i=1

L(t′k, R(tk, s, r))

L(t′i)
(4)

εc =
1

|T e|

|Te|∑
i=1

1(t′k, R(tk, s, r)) (5)

where 1(x, y) is a function whose value is 1 if x and y are
equal, 0 otherwise.

5.1 Results
The salient results are summarized in Table 3. Each row

corresponds to one experiment and reports the results in
terms of εd and εc, with average µ and standard deviation σ
across the 5 repetitions. For εd, we show also the values for
each repetition. We remark that the learning set T = T t∪T v

is always a small portion of the dataset, less than 10%.
It seems fair to claim that the approach does provide

very good performance. A set of 50 examples suffices to
execute the “IP partial anonymization” and “Date format
change” tasks without any mistake, which seems to be a re-
markable result. Furthermore, 50 examples for the “Twitter
anonymization” task suffice to achieve correct processing of
96.9% of the testing set instances. Concerning the “Phone
number format change” task, the percentage of testing in-
stances processed correctly is 92%, again as long as 50 or
more examples are available for the learning procedure. To
place this result in perspective we observe that the dataset
for this task has been used in earlier works addressing auto-
matic generation of solutions for the text extraction problem
from examples [11, 4]. The cited works used training sets
much bigger than ours. The results were provided in terms of
F-measure and range in 85%–87% with 4100–33400 learning
examples for [11] and 65%–92% with 400–52000 learning
examples for [4]. Although our indexes cannot be compared
directly to F-measure, which is not meaningful in our con-
text, our ability of processing more than 92% of the testing
instances correctly, even with a learning set smaller by one
order of magnitude or more, seems to be a good result.

The previous results are the average performance across
5 repetitions of each experiment, where the result of each
experiment is the best solution (on the learning set) across

the 32 independent GP searches in phase 3. Further insights
can be obtained by analyzing the performance of all the
5 × 32 = 160 solutions found for each task. To this end,
Figure 3 plots the number of solutions with εd < 10% and
εc < 10% (on the testing set). Each bar corresponds to an
experiment repetition. It can be seen that our approach does
generate a number of good solutions systematically, that
is, the good performance is not the result of a single lucky
individual.

It is also interesting to point out that there is a clear
correlation between performance of an individual on the
validation set T v and its performance on the testing set
T e: Figure 2 shows εd on the two sets, for each of the
5× 32 = 160 solutions found in our experiments (one plot
per task). This outcome demonstrates that the relative
performance on individuals on the validation set is a good
predictor of their relative performance on the testing set.

Table 4 reports the execution time for each experiment,
averaged across the 5 repetitions, with the indication of the
time taken by each of the three phases. Each experiment has
been executed in parallel on 4 identical machines powered
with a quad-core Intel Xeon X3323 (2.53 GHz) and 2GB of
RAM. The execution times are, in most cases, too high to
devise a possible interactive use of our approach. On the
other hand, they seem to be sufficiently low to be practical,
especially in a not far away future. Besides, the corresponding
computing effort might be leased at 1 or 2 USD per hour4—a
less accurate but much cheaper surrogate for the specific
skills of a specialist.

6. CONCLUDING REMARKS
We have considered the feasibility of solving a search-and-

replace task described solely through examples by means of
regular expressions. The motivation for this problem follows
from the ever increasing wealth of unstructured or loosely
structured text sources, along with the need of automated
techniques for their processing.

We have presented the implementation of a tool able to
generate the required search pattern and replacement expres-
sion automatically. The user merely provides examples of
the input text coupled with the desired output text, without
any further annotation or hints about the expected results.
We are not aware of any other proposal with these features.

We assessed the performance of our tool on challenging
search-and-replace tasks executed on real-world datasets.
The experimental evaluation provided very good results and
suggests that the approach may indeed be practically viable.
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Figure 2: Validation εd vs. testing εd.
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Figure 3: Number of generated solutions with εd ≤ 10% (above) and εc ≤ 10% (below). Each bar corresponds
to a repetition.
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Table 3: Experiment results

Task
Dataset Repetition (εd %) Overall (εd %) Overall (εc %)

|T t| |T v| |T e| 1 2 3 4 5 µ σ µ σ

Twitter
anonymization

10 10 980 1.7 0.0 7.7 10.7 0.0 4.0 4.9 5.5 10.5
25 25 950 0.0 53.9 0.0 14.0 0.0 13.6 23.3 3.1 3.7
50 50 900 0.0 0.0 14.0 9.5 0.0 4.7 6.6 2.0 1.6

IP partial
anonymization

10 10 980 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.7
25 25 950 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50 50 900 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Date format
change

10 10 980 32.7 58.5 58.1 0.0 0.0 29.9 29.2 60.0 54.8
25 25 950 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50 50 980 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Phone number
format change

10 10 980 7.2 4.7 6.7 6.2 7.1 6.4 1.0 52.4 4.13
25 25 950 1.9 0.9 0.0 0.0 12.9 3.2 5.5 8.2 10.8
50 50 900 12.3 0.0 0.0 2.8 0.0 3.0 5.3 6.6 11.2

regular expressions from examples with genetic
programming. In Proceedings of the 14th GECCO
conference companion, pages 1477–1478. ACM, 2012.

[4] F. Brauer, R. Rieger, A. Mocan, and W. Barczynski.
Enabling information extraction by inference of regular
expressions from sample entities. In Proceedings of the
20th ACM international conference on Information and
knowledge management, pages 1285–1294. ACM, 2011.

[5] A. Cetinkaya. Regular expression generation through
grammatical evolution. In Proceedings of the 2007
GECCO conference, GECCO ’07, pages 2643–2646,
New York, NY, USA, 2007. ACM.

[6] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
fast and elitist multiobjective genetic algorithm:
Nsga-ii. Evolutionary Computation, IEEE Transactions
on, 6(2):182 –197, apr 2002.

[7] B. Dunay, F. Petry, and B. Buckles. Regular language
induction with genetic programming. In Evolutionary
Computation, 1994. IEEE World Congress on
Computational Intelligence., Proceedings of the First
IEEE Conference on, volume 1, pages 396–400. IEEE,
1994.

[8] J. Friedl. Mastering Regular Expressions. O’Reilly
Media, Inc., 2006.
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