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ABSTRACT
A key factor for accurate vehicular ad hoc networks (VANET)
simulation is the quality of its underlying mobility model.
VehILux is a recent vehicular mobility model that gener-
ates traces using traffic volume counts and real-world map
data. This model uses probabilistic attraction points which
values require optimization to provide realistic traces. Pre-
vious sensitivity analysis and application of genetic algo-
rithms (GAs) on the Luxembourg problem instance have
outlined this model’s limitations. In this article, we first
propose an extension of the model using a higher number of
auto-generated attraction points. Then its decomposition
on the Luxembourg instance using geographical informa-
tion is proposed as a way to break epistatic links and hence
make its optimization using cooperative coevolutionary ge-
netic algorithms (CCGAs) more efficient. Experimental re-
sults demonstrate the significant realism increase brought
by both the VehILux model enhancements and the CCGA
compared to the generational and cellular GAs.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization; I.2.8 [Artificial
Intelligence]: Problem Solving, Control Methods, and Search—
Heuristic methods; D.2.8 [Software engineering]: Met-
rics—Performance measures

Keywords
Simulation optimization; Transportation; Coevolution; Ge-
netic algorithms

1. INTRODUCTION
The emergence of vehicular ad hoc networks (VANETs)

has opened the door to new intelligent transportation sys-
tems (ITS) that aim at improving driving safety, infotain-
ment and traffic efficiency. Many research challenges have
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to be faced, such as the development of new protocols, com-
munication algorithms and applications. In order to develop
and experiment VANET dedicated solutions, simulation is
a must because of technical, cost and reproducibility con-
straints. Therefore, realistic simulation at both network and
mobility levels are required. Previous works indeed demon-
strated that the accuracy of the mobility greatly impacts
the network connectivity and performance [6]. In this paper
we focus on mobility models which aim is to generate traffic
traces specifying each vehicles’ origin, destination and route
between these.

Mobility models can be classified as trace-based, survey-
based or simulation-based. In the first class, traces are ob-
tained from GPS data (e.g.[1]). However they do not repre-
sent regular traffic as they are limited to commercial vehi-
cles (e.g. taxis or buses) and cannot be modified to generate
phenomena like accidents. The second class, survey-based
models, permits to generate traces at the macroscopic level,
which is of limited interest for VANET applications. Fi-
nally the last class, simulator based-traces, focuses on micro-
mobility, i.e. movement is considered at the vehicle level
(acceleration, braking, etc.). A recent trend in this field is
to combine real-world information such as maps, and statis-
tical data together with microscopic simulation [9, 15].

In this work we focus on the last class, and more pre-
cisely on VehILux [11], a simulation-based model that ex-
ploits real-world information: geographical map and traffic
counts in the considered area. To generate traces from these
traffic counts, VehILux relies on a set of probabilistic geo-
graphical attraction points to determine destinations. In
previous works on the VehILux model for Luxembourg [10],
the authors analyzed the model through sensitivity analy-
sis and later optimized VehILux probabilities using three
different genetic algorithms (GAs), i.e. a generational GA,
a steady-state GA and a cellular GA in [14]. These per-
mitted to outline some limitations of the original VehILux
model and previous GAs application: (1) the strong inter-
dependencies between the model parameters, (2) the limited
accuracy implied by the low number of attraction areas and
(3) the lack of problem knowledge exploitation in the GAs.

This article therefore proposes an extension to the Ve-
hILux mobility model, through a more fine grained control
over attraction areas of the map. In addition a decompo-
sition of the modified model is defined, in which areas are
geographically separated into so-called slices. The perfor-
mance of a cooperative coevolutionary GA (CCGA) exploit-
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ing this decomposition is then compared to the GAs used in
the previous work.

The remainder of this article is organized as follows. The
next section presents the works related to VehILux usage,
analysis and optimization. Then the original VehILuxmodel
and the proposed modifications are described in section 3.
Section 4 presents the evolutionary approach used for op-
timizing VehILux original and modified models. Sections 5
and 6 respectively describe the experimental setup and con-
tains the analysis of the obtained results. Finally section 7
contains our conclusions and perspectives.

2. RELATED WORKS
The work presented in this article relies on some previous

vehicular mobility model development, analysis and opti-
mization, and more precisely on the VehILux model [11].

VehILux is a survey-based mobility model that exploits
two real-world data sources i.e. a geographical map and
traffic counts from the considered geographical area, with
the advantage being that such data is widely available and
complete (e.g. [3]). In order to obtain mobility traces from
this static data, origins, destinations and routes connecting
them are generated using the concept of repulsion and at-
traction points. The former constitute typical origin points
on the map, while the latter represent popular final desti-
nations. The different attraction points are selected using
a probabilistic model, i.e. each of them is assigned with a
probability of being chosen as a destination.

These probabilities highly influence the accuracy, and there-
fore realism, of VehILux. In order to quantify this phe-
nomenon, a sensitivity analysis of the model parameters was
conducted using FAST99 and Morris approaches in [10]. On
the considered instance, i.e. Luxembourg, it was shown that
one of the parameters, the inner traffic ratio, has a predomi-
nant impact on the fitness, and that all parameters in general
have strong interactions. This means that first order effects
of parameters are relatively small compared to their com-
bined effect in the model. Furthermore it was shown that
the effect of parameter changes is subject to large amount
of noise and that no obvious conclusions could be made on
’good’ probability ranges, except for one (the inner traffic
ratio).

Finding the best set of probabilities of VehILux for a given
problem instance (i.e. a geographical area and its corre-
sponding traffic counts) is a hard task and has been mod-
eled as an optimization problem in [14]. The performance
of three GAs - generational, steady-state and cellular - was
compared on the same Luxembourg instance. The sensitiv-
ity analysis results were used to reduce the range of possible
values for some variables (i.e. the inner traffic ratio). The re-
sults obtained with these metaheuristics have demonstrated
the limitations of the original VehILux model. Indeed, all
algorithms converged to some low quality solutions, i.e. the
delta between the real counts and the counts obtained from
the generated traces remains high.

Finally, in [8] the authors proposed to further enhance the
realism of VehILux traces with of a new route assignment
algorithm, i.e. the Gawron’s algorithm [7]. To this end, the
best VehILux traces previously obtained using GAs have
been used in the SUMO microscopic traffic simulator [5].
This permitted to outline another limitation of the VehIlux
model, as in realistic road conditions the simulator is unable
to reproduce all the theoretical traffic due to road network

Figure 1: Vehilux simplified map showing input
flows, control points, areas and zones.

congestion. One of the reasons is the limited number of
attraction areas of VehILux that constrains the generation
of traces to a limited set of routes.

The objective of this work is therefore to improve VehILux
accuracy by proposing a new route assignment model that
uses a larger number of attraction areas and further optimize
its parameters through the exploitation of its decomposition
capabilities with cooperative coevolutionary GAs.

3. PROBLEM DESCRIPTION
This section describes the problem of flow generation in

general and how it was solved in the original VehILux work.
Then the improvements of the current work to the model
itself and how it is fitted specifically to a coevolutionary
algorithm is described.

3.1 VehILux Original Model
The VehILux mobility model relies solely on traffic volume

counts and geographical map data. The instance considered
in this paper consists of a geographical map of Luxembourg
city with its surrounding region as well as real traffic volume
counts collected every hour in 28 locations within the region.

Entering points are selected from the 15 locations posi-
tioned at the edge of the map, as the problem instance ad-
dressed is concerned with commuting hours. These points
and their volume counts are used as to initiate the flow of
vehicles into the model, referred to as outer traffic, while the
remaining 13 count locations positioned towards the center
of the region are used to validate the quality of the gener-
ated traffic flows. In addition to the outer traffic, a certain
portion of the traffic is generated inside the map, referred
to as inner traffic.

From the geographical map data, information about the
different zones in the region can be derived, and is used to
predict the destinations of the vehicles. This is done by
making a destination distribution model for the vehicles by
assigning to each zone a probability of being chosen as a
destination for a vehicle.

Route assignment concerns the selection of a destination
zone for each origin and the selection of a route between
the origin-destination pair. The selection of a destination
is based on the notion of zone types and attractivity areas
where possible types are commercial, residential and indus-
trial. Each zone type is assigned with an overall global
probability of being selected as a destination type, noted
PT where T ∈ {R,C, I} is the zone type. However, zones of
the same type can exist in several locations spread over the
map where some locations are more popular than others and
should hence be associated with a higher selection probabil-
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ity. This property is modeled by the concept of attractivity
areas, which can cover any smaller or bigger part of the map
and are defined independently for each zone-type.

Every zone location is associated with a specifically de-
fined attractivity area, and if not, at least with a default
attractivity area.

In Fig. 1 the concept is shown in a simplified example.
The top right circular attractivity area contains zones of
all three types, as shown by the three wheel spokes which
denotes three overlapping areas with the same center and
radius. Top left, a commercial zone is shown that is not
covered by any specific area, therefore this zone will belong
to the default commercial area of the map.

We define P () and S() as probability- and surface-functions
respectively, and the probability P (z) of the selected zone z
becomes:

P (z) = PT × P (z.a)× S(z)

S(z.a)
, (1)

where P (z.a) and S(z.a) are respectively the probability and
surface of the attractivity area z.a to which the zone z was
assigned. These probabilities are essentially what we have
to tune in order to generate realistic flows with the model.

As mentioned, a fraction of the flow is also generated in-
side the map. This generation is controlled by the parameter
inner traffic ratio which is the probability of a trace having
its origin located in a random residential zone within the
map instead of in an input flow location on the edge of the
map. When a destination has been chosen for a given origin,
the route between the origin-destination pair is generated
using Dijkstra’s shortest path algorithm. Speed limits and
traffic lights on roads are used to adjust the weight of each
road in the generation process.

3.2 Model Modifications
To further enhance the quality of the produced flow, a

number of modifications have been implemented and later
tested.

3.2.1 Time-frame Reduction
The originally proposed VehILux model instance tackled

the entire interval from midnight and 11 one-hour time slots
ahead. An attempt to better match the real-life traffic was
to look only at the traffic flow of three time-slots, covering
peak-commuting hours from 6AM to 9AM. This is moti-
vated by the idea that achieving optimal settings in different
time slots would require different model parameters for each
time slot. Another motivation is that the simulation is quite
CPU-intensive and proportional to the number of vehicles
injected into the model. Therefore by reducing the time-
frame to 3 hours, we can optimize the model in a little more
than one third of the time. The two instances of the model
are called the 3-hour - and 11-hour -instances respectively.

3.2.2 Additional attractivity areas
The original VehILux instance considered fewer rather

large attractivity areas situated around and the center of
the map almost covering the city-center. In an attempt to
enhance the model performance, we replace the original at-
tractivity areas by many smaller areas placed systematically
to cover the city-center as well. This is done by placing ar-
eas of the three types, residential commercial and industrial

on the map in a grid covering the central region. When do-
ing this an area is only placed if there is actually a zone of
the same type within its circumference. This can be seen
in Fig. 2, which represents the real Luxembourg instance
tackled in our experiments. Some attractivity areas have up
to three radial spokes representing the types of zones within
the area, and on the other hand blank positions are found
where there are no zones. If a zone is situated within the
circumference of two or more overlapping attractivity areas,
it is simply assigned to the first placed area.

This modification alone should in theory provide grounds
for generating much better flows closer to real-life measure-
ments with the drawback being an important increase of
model variables to tune. Our expectations are that a coevo-
lutionary algorithm will cope well with this large amount of
variables.

3.2.3 Geographical Model Decomposition
In addition to generating attractivity areas systematically,

we also group them depending on the geographical location
on the map. In Fig. 2 this group assignment is shown by the
numeric labels in the center of areas. We group attractivity
areas by slicing the map, and the three slice borders or cuts
are also seen in the figure.

We expect that optimising an attractivity area probability
will have larger impact on the generated flow within its slice,
and hence control points in the slice, rather than in other
slices.

The main reason for this separation into groups is that
eventually, each group of areas will be optimized in their
own separate sub-population of a coevolutionary genetic al-
gorithm, as described by Potter in [12]. In [13] Potter de-
scribes the ideal case where a problem can be decomposed
into independent subcomponents. Here each sub-component
could be solved independently without regards to the others.
On the contrary when changing interdependent subcompo-
nents it can be described as a “deforming” or “warping” of
the fitness landscapes associated with each of the other sub-
components, which is to be avoided.

In addition to grouping the auto-generated attractivity ar-
eas by their slice location, the default attractivity areas are
also divided by slice. The original VehILux model instance
had three default areas, one per zone-type essentially con-
taining all zones around the city center. To achieve as much
independence between the slices as possible, these areas are
also split into a total of 9 areas: three default areas per slice
which are then optimized by the sub-population assigned to
the slice.

4. METHODOLOGY
In this work, we compare the performance of three differ-

ent GAs that rely on different population structures (pan-
mictic, cellular and islands) in order to optimize VehILux
original and modified models. We present in sections 4.2
to 4.3 the three algorithms used: generational GA, cellular
GA and coevolutionary GA. Then the objective function is
defined in 4.4, followed by the solution encoding an normal-
ization in 4.5 and 4.6 respectively.

4.1 Generational GA
Generational GAs (genGAs) are a type of panmictic algo-

rithm, i.e. individuals are grouped into a single structure-
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Figure 2: Real Vehilux map of Luxembourg with 102 auto-generated attractivity areas and its decomposition.

Algorithm 1 Pseudo-code of a canonical genGA

1: proc Evolve(genga) // Parameters of the algorithm in
‘genga’

2: GenerateInitialPopulation(genga.pop);
3: Evaluation(genga.pop);
4: while ! StopCondition() do
5: for i←0 to genga.popSize do
6: parents ← Selection(genga.pop);
7: offspring ← Recombination(genga.Pc,parents);
8: offspring ← Mutation(genga.Pm,offspring);
9: Evaluation(offspring);
10: Add(auxiliary pop,offspring);
11: end for
12: genga.pop ← auxiliary pop;
13: end while
14: end proc Evolve

less population also referred to as panmixia. Individuals can
thus mate with any other individual in the population.

The genGA is a (μ, λ)-GA, where the newly generated
individuals are placed in an auxiliary population which will
replace the current population when it is completely filled,
i.e., when the number of newly generated solutions is equal
to the size of this auxiliary population. In our case, the sizes
of both the auxiliary and the current population is the same
(μ = λ).

Algorithm 1 presents the pseudo-code of the generational
GA. The population is first randomly initialized (line 2).
Each generated individual is then evaluated using the fit-
ness function defined for the tackled problem (line 3). The
genetic loop then starts in line 4 until some predefined ter-
mination condition is met, e.g. a number of fitness function
evaluations. “Parent” individuals are selected using some
stochastic selection operator to construct the mating pool
(line 6). Genetic variation is then ensured by the crossover
(also called recombination) and mutation operators, both
applied with some probability, which permit to visit other

Algorithm 2 Pseudocode for a canonical cGA

1: proc Evolve(cga) //Algorithm parameters in ‘cga’
2: while ! StopCondition() do
3: for individual ← 1 to cga.popSize do
4: n list←Get Neighborhood(cga,position(individual));
5: parents←Selection(n list);
6: offspring←Recombination(cga.Pc,parents);
7: offspring←Mutation(cga.Pm,offspring);
8: Evaluation(offspring);
9: Add(position(individual),offspring,cga);
10: end for
11: end while
12: end proc Steps Up;

search space regions (line 7 and 8). The obtained offspring
is then evaluated and inserted into the auxiliary population
(line 9 and 10). The offspring population will become the
current one once full (line 12).

4.2 Cellular Genetic Algorithm
Cellular genetic algorithms (cGAs) [4] are a kind of GA

with a structured population in which individuals are spread
in a two dimensional toroidal mesh, and they are only al-
lowed to interact with their neighbors.

A canonical cGA follows the pseudo-code included in Al-
gorithm 2. In this basic cGA, the population is usually struc-
tured in a regular grid of d dimensions (d = 1, 2, 3), and a
neighborhood is defined on it. The algorithm iteratively
considers as current each individual in the grid (line 3), and
individuals may only interact with individuals belonging to
their neighborhood (line 4), so parents are chosen among the
neighbors (line 5) with a given criterion. Crossover and mu-
tation operators are applied to the individuals in lines 6 and
7, with probabilities Pc and Pm, respectively. Afterwards,
the algorithm computes the fitness value of the new offspring
individual (or individuals) (line 8), and inserts it (or one of
them) instead of the current individual in the population
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Algorithm 3 Pseudocode of the CCGA

1: gen = 0
2: for all speciess do
3: Pops(gen) = randomly initialized population
4: evaluate fitness of each individual in Pops(gen)
5: end for
6: while termination condition = false do
7: gen = gen+ 1
8: for all speciess do
9: select Pops(gen) from Pops(gen− 1) based on fitness
10: apply genetic operators to Pops(gen)
11: evaluate fitness of each individual in Pops(gen)
12: end for
13: end while

(line 9) following a given replacement policy. This loop is
repeated until a termination condition is met (line 2).

4.3 Cooperative Coevolutionary GA
In addition to the cellular model, another common way for

structuring the population of GAs consists of splitting the
whole population into several subpopulations. Each subpop-
ulation independently evolves a GA, and exchange some in-
formation among them during the run. We study in this pa-
per an algorithm following this model, namely CCGA, a co-
operative coevolutionary GA. Instead of considering a pop-
ulation of similar individuals representing a global solution,
like classical genetic algorithms, CCGA considers the coevo-
lution of subpopulations of individuals representing specific
parts of the global solution.

The CCGA considered here is based on the model pro-
posed by Potter and DeJong [12], in which a number of sub-
populations explore different decompositions of the problem.
CCGA involves several species independently evolving with
a GA a subset of the global solution vector. In order to
evaluate complete solutions on the global problem, all sub-
populations need to cooperate by exchanging representatives
of their respective subpopulations.

A pseudocode of CCGA is provided in Algorithm 3). In
the initial generation (t=0) individuals from a given subpop-
ulation are matched with randomly chosen individuals from
all other subpopulations. A fitness for each individual is
evaluated, and the best individual in each subpopulation is
found. The process of cooperative coevolution starts form the
next generation (t=1). For this purpose, in each generation
a cycle of operations is repeated in a round-robin fashion.
Only one current subpopulation is active in a cycle, while
the other subpopulations are frozen. All individuals from
the active subpopulation are matched with the best values
of frozen subpopulations. When the evolutionary process is
completed, a composition of the best individuals from each
subpopulation represents a solution of a problem.

Two ways of evaluating the fitness of an individual, re-
ferred to as credit assignment 1 and 2 (CCGA-1, CCGA-2),
are considered in this work. CCGA-1 evaluates an individ-
ual with the best individual of the other subpopulations, as
presented in Algorithm 3. CCGA-2 additionally evaluates
the individual with a random individual from each other
subpopulation and the best fitness among the two obtained
is kept. In this work however, the CCGAs are not frozen in
turn, but evolve in parallel and exchange individuals at the
beginning of each generation.

PR PIPC DR PR1 DC PC1 PC2 DI PI1 PIR PSR

Global Type 
Probability

Residential
Attractivity
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Attractivity

Areas

Industrial
Attractivity

Areas

Inner
Traffic
Ratio

Shifting
Ratio

Original VehILux model
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Traffic
Ratio

Shifting
Ratio

Modified VehILux model

Global Type 
Probability

PR1..N DC PC1..M DI PI1..K

Residential
Attractivity

Areas

Commercial
Attractivity

Areas

Industrial
Attractivity

Areas

DR
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Figure 3: Individual encoding of original and modi-
fied model.

4.4 Objective function
As mentioned, the 13 of the 28 real-life traffic count lo-

cations positioned closer to the center of the region are re-
served to validate the flow generated by the model. The
quality of this flow is evaluated by comparing the generated
traffic counts with real traffic volume counts at the control
points.

The evaluation or fitness function F is the following:

F =
C∑

c=1

T∑

t=1

|rc(t)− cc(t)| , (2)

where rc(t) is the real traffic volume count at control point c
in time slot t, cc(t) is the number of vehicles at control
point c derived from the generated traffic flows in time slot t,
C is the number of control points and T is the number of
time slots. The smaller this sum of absolute differences be-
tween the real traffic volume counts and the estimated ones
is, the better the model estimated the real flow.

Traffic flows are generated independently for each one
hour time slot t and control point c, i.e. cc(t), as real
traffic count data are typically collected on per hour basis.
However, there is no precise departure time related to each
origin-destination pair, except the 60 minutes slots (e.g. ve-
hicle i departs from point a to point b between 9 and 10AM).
Such a function is proposed in [10]. It assumes that a ve-
hicle passes through a control point at the same hour as it
initiates the trip. This is not always true as the vehicle may
pass through the control point in the next hour. To include
this “delay” effect, a shifting ratio parameter is introduced,
which defines the ratio of vehicles whose trips are scheduled
to start in time slot t, but will pass through the control point
in the slot t+1. The estimated number of vehicles that pass
through control point c within time slot t (c(t)) is calculated
as follows:

cc(t) = pc(t)× (1− α) + pc(t− 1)× α, (3)

where pc(t) is the number of all vehicles generated in time
slot t that pass through control point c, pc(t − 1) is the
number of vehicles generated in time slot t − 1 that pass
through control point c in time slot t, and α is the shifting
ratio.

4.5 Solution Encoding
Fig. 3 shows how the parameters of the model are encoded

in the original and modified model respectively. Global zone
probabilities are noted PT where T ∈ {R,C, I} denotes the
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zone type. Default attractivity areas probabilities are noted
DT and remaining conventional areas are noted PTi where i
is the index. In the modified version, the global parameters
are assigned to the first sub-population and the remaining
three sub-populations are responsible for optimizing only at-
tractivity areas within their corresponding slice.

4.6 Solution Normalization
As the destination distribution model works by selecting

destinations based on their probability, one important re-
quirement is that the sum of all zone probabilities per type
are 1. Therefore the probabilities of a slice are normalized
according to the total surface of the zones in that slice com-
pared to total surface of all zones. With P () and S() again
being the probability- and surface-function respectively, the
probability P (a) of each area a in a slice S of the map M is
normalized as follows:

∀a ∈ S , P ′(a) =
P (a)

P (S) ×
S(S)
S(M)

. (4)

5. EXPERIMENTAL SETUP
This section presents the parameters of the genetic al-

gorithms and problem instances used in our experiments.
These are summarized in Table 1 .

5.1 Algorithms Parameters
Three different GAs have been used to tackle the opti-

mization of the VehILux mobility model, a generational GA,
a cellular GA and two coevolutionary GAs (CCGA-1 and
CCGA-2). The genGA uses a single population of 100 in-
dividuals, the cGA a 10×10 population and the CCGAs 4
subpopulations of 25 individuals each. For all algorithms,
the termination condition was limited to 8000 fitness func-
tion evaluations, due to the computationally heavy fitness
evaluation. The recombination operator (the single point
crossover—SPX) was used with the probability pc = 1.0.
The uniform mutation operator was applied with the prob-
ability pm = 1

chrom length
. The binary tournament was used

for the selection of the two parents except for the cGA where
one parent is the central individual. Other cGA specific pa-
rameters are the neighborhood, we used C9 (9 closest indi-
viduals measured in Manhattan distance), and the replace-
ment strategy. Finally, all the obtained results are averaged
over 30 independent runs.

5.2 Problem Instances Parameters
In order to evaluate the VehILux mobility model, simu-

lations have been based on a detailed map of Luxembourg
from OpenStreetMap [2]. The considered area surface is
1700 square kilometers (47×36 kilometers). Traffic volume
counts from 28 locations were obtained from [3]. 15 locations
were selected as entering points and 13 as control points (see
Fig. 2). For each control point, values corresponding to each
hour were taken. Two different instances have been tackled,
the 12 hours that was used in [14] to optimize the original
VehILux model, and a new smaller instance of only 3 hours.
During this period, i.e. morning hours, most of the travel in-
volves commuting, therefore, the entering points are selected
from the locations positioned at the edges of the map. Three
zone types are defined: residential, commercial and indus-
trial. Information about the number, position and surface
of these zones was extracted from the OpenStreetMap.

Table 1: Algorithms and VehILux parameters

G
e
n
e
ti
c
A
lg
o
ri
th

m
s

Population size

100 (genGA)

10 × 10 (cGA)

4 x 25 (CCGA)

Termination Condition 8000 function evaluations

Number of runs 30

Selection
Binary tournament (BT)

BT + Center individual (cGA)

Neighborhood C9 (cGA)

Replacement Strategy replace if better (cGA)

Crossover operator SPX, pc=1.0

Mutation operator Uniform, pm = 1
chrom length

V
e
h
IL

u
x

Simulation area 1700 km2 (47 × 36 km)

Number of entering points 15

Number of control points 13

Simulated time periods
12AM–11AM (11 time slots)

6AM–9AM (3 time slots)

6. NUMERICAL RESULTS
In this section we present the results of our experiments

and demonstrate the performance increase obtained thanks
to the proposed modifications of the model. The results
are discussed and compared for four different algorithms:
GenGA, cGA, CCGA-1 and CCGA-2. We included CCGA-
2 because of its increased explorative characteristics, in or-
der to estimate its performance on the more challenging
11−hour instances. For each experiment with CCGA-1 and
CCGA-2 on the modified model, we included experiments
where the attractivity areas to sub-populations are randomly
assigned (CCGA-1 shfl and CCGA-2 shfl). The objective
is to evaluate the advantage of the problem decomposition
based on geographical information.

Experimental results are summarized in Tables 2 and 3
showing best and average fitness with standard deviation
for all algorithms. Additionally, for each problem instance,
the overall best result and best average fitness among the
algorithms is shown in bold font. Statistical confidence in
our comparisons is assessed by performing the Wilcoxon test
[16]. Finally convergence plots are presented in Fig. 4 to 7.

6.1 The 11-hour Instance
We start out by showing the results of the 11−hour in-

stance, with convergence plots in Fig. 4 and 5 which is also
the scenario used in previous works. A first straightforward
conclusion is that the modified model is significantly better:
in general almost 4000 points with a standard deviation 20
times less - regardless of the algorithm used.

When looking at the original model with 12 alleles we
notice that the best result and best convergence is achieved
with the CCGA-1, but that the best average is achieved with
a regular GenGA. However, based on the Wilcoxon test,
statistical confidence in this difference is only true between
GenGA and CCGA-2. The latter being also significantly
worse than the CCGA-1.

For the 107 alleles in the modified model, the coevolution-
ary algorithms seem to have an advantage in general, here
Wilcoxon indicates that the CCGAs are both significantly
better than all other GAs. The CCGA-1 algorithm is again
superior in convergence and final result, but the explorative
features of CCGA-2 almost allows it to catch up towards the
8000th evaluation.
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Table 2: Summary of results for the 11-hour model
Algorithm Bestfitness Avg.fitness

M
o
d
ifi
e
d
m
o
d
e
l GenGA 10602 10803.000±129.813

cGA 10426 10838.367±157.585

CCGA-1 10320 10716.533±280.271

CCGA-2 10419 10722.333±251.953

CCGA-1 shfl 10415 11024.667±429.214

CCGA-2 shfl 10558 11072.933±332.150

O
rg

.
m
o
d
e
l

GenGA 14330 14427.667±55.079

cGA 14326 14441.500±76.905

CCGA-1 14250 14431.833±106.041

CCGA-2 14312 14484.833±96.905

 14000

 14500

 15000

 15500

 16000

 16500

 17000

 0  1000  2000  3000  4000  5000  6000  7000  8000

F
itn

es
s

Evaluations

GenGA
cGA

CCGA-1
CCGA-2

Figure 4: Convergence of the 11−hour original
model.

6.2 The 3-hour Instance
Table 3 shows the same experimental results as in Table 2,

for the shorter 3−hour time-frame and with corresponding
convergence plots in Fig. 6 and 7. The Wilcoxon tests indi-
cate less difference amongst the algorithms in the modified
model, and the only significant conclusion is that CCGA-1
is significantly better than GenGA. CCGA-1 still provides
the overall best solution with 2884. We expect this is due
to the less complex nature of the problem with a reduced
number of time slots.

On the original model however, CCGA-1 is significantly
better than all other algorithms, even CCGA-2 according to
the Wilcoxon tests. In terms of initial convergence and best
results achieved, the CCGA-1 is dominating in both original
and standard models with 3− and 11−hour instances.

6.3 Comparing 3h- and 11h- Instances
To compare the best results achieved in the 3− and 11−

hour instances better, we calculate the ratio of the best
found individuals of the two models to the total flow in-
jected into the model. The total number of vehicles injected
for 3− and 11− hour instances respectively are 17342 and
46121. This results in the ratios 16, 63% and 22, 38% for the
best found results of 2884 and 10320. Clearly the shorter
time-frame allows the algorithms to fit the flow better.

6.4 Shuffled vs. grouped sub-populations
Another important aspect to study was the effect of group-

ing attractivity areas and assign them to sub-populations
based on their geographic location in the model, i.e. model

Table 3: Summary of results for the 3-hour model
Algorithm Bestfitness Avg.fitness

M
o
d
ifi
e
d
m
o
d
e
l GenGA 3007 3272.367±136.323

cGA 2961 3207.500±109.123

CCGA-1 2884 3189.700±145.070

CCGA-2 2927 3227.200±138.607

CCGA-1 shfl 3006 3303.900±158.914

CCGA-2 shfl 3007 3330.200±210.293

O
rg

.
m
o
d
e
l

GenGA 4869 4954.633±43.615

cGA 4865 4950.800±53.351

CCGA-1 4848 4933.067±86.745

CCGA-2 4864 4990.733±99.371
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Figure 5: Convergence of the 11−hour modified
model.

knowledge based decomposition. For both 3− and 11−hour
instances we observe noticeable worse results when the sub-
populations are shuffled. Considering the average fitness,
the shuffled model represents the worst results for both in-
stances, which is also the case for the best found solutions,
except the 3−hour model where it represents the 2nd worst.
Overall the average performance of the CCGA-1 algorithm
becomes 3.58% and 2.88% worse for the 3− and 11−hour
shuffled models respectively andWilcoxon tests indicate that
the shuffled CCGA-1 is significantly worse than any non-
shuffled version. Further the experiments with shuffled vari-
ables, have the highest variation in their final results indicat-
ing that some decompositions have been very unfavorable.
These observations all underline the advantage of the pro-
posed decomposition of the model into geographically deter-
mined slices each optimized by their respective coevolution-
ary sub-population.

7. CONCLUSIONS AND PERSPECTIVES
In this paper we presented a number of changes to the

VehILux mobility model to firstly make the model more
suitable for optimization with a Cooperative Coevolutionary
Genetic Algorithm (CCGA), secondly to increase the solu-
tion quality in general. To reduce epistatic links among coe-
volving sub-populations, model knowledge is used to decom-
pose the variables and group them according to geographical
locations in the model. This effort was shown to have sig-
nificant impact when comparing the same experiments to
a randomized decomposition. By shuffling members of the
sub-populations the performance of the CCGA-1 algorithm
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Figure 6: Convergence of the 3−hour original model.
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Figure 7: Convergence of the 3− hour modified
model.

on average becomes 3.58% and 2.88% worse for the 3− and
11−hour models, with an additional increase in deviation
of results indicating bad worst-case performances. As the
Wilcoxon tests further confirm that results are statistically
significantly better applying the intelligent decomposition
by means of model knowledge, we succeeded in reaching the
goal set for this work.

By optimizing the model for a shorter time-span, we also
reduced the mismatch compared to the total flow from 22, 38%
to 16, 63%. The modified model with added attractivity ar-
eas was able to decrease the mismatch in flow compared
to the original model by 40.5% and 27.6% for the 3− and
11−hour instances respectively.

Future work will be focused on proposing an adaptive con-
trol of the mobility models simulation precision from the al-
gorithm’s point of view. Finally the newly generated traces
will be used in the SUMO microscopic simulator and com-
pared to the original model accuracy.
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