
Search-based Model Merging
Marouane Kessentini, Wafa Werda

Computer Science Department
Missouri University of Science and Technology

Rolla, USA
{ marouanek, werdaw}@mst.edu

Philip Langer, Manuel Wimmer
Business Informatics Group

Vienna University of Technology
Vienna, Austria

{langer,wimmer}@big.tuwien.ac.at

ABSTRACT
In Model-Driven Engineering (MDE) adequate means for
collaborative modeling among multiple team members is crucial
for large projects. To this end, several approaches exist to identify
the operations applied in parallel, to detect conflicts among them,
as well as to construct a merged model by incorporating all non-
conflicting operations. Conflicts often denote situations where the
application of one operation disables the applicability of another
operation. Whether one operation disables the other, however,
often depends on their application order. To obtain a merged
model that maximizes the combined effect of all parallel
operations, we propose an automated approach for finding the
optimal merging sequence that maximizes the number of
successfully applied operations. Therefore, we adapted and used a
heuristic search algorithm to explore the huge search space of all
possible operation sequences. The validation results on merging
various versions of real-world models confirm that our approach
finds operation sequences that successfully incorporate a high
number of conflicting operations, which are otherwise not
reflected in the merge by current approaches.

Categories and Subject Descriptors
D.2.9 [Software Management]: Software development

Keywords
Search-based software engineering, model-driven software
engineering, model evolution, genetic algorithm.

1. INTRODUCTION
Nowadays, software systems are complex and large;

therefore, Model-Driven Engineering (MDE) [24] is applied
increasingly to cope with the complexity of software systems by
raising the level of abstraction. To address the size of software
systems, teams of developers have to cooperate and work in
parallel on software models. Thus, techniques to support building
models collaboratively are highly required.

When models are changed in parallel, they have to be merged
eventually to obtain a consolidated model. Therefore, several
approaches have been proposed for detecting the operations that
have been applied in parallel by developers. Once the applied
operations are available, conflict detection algorithms are used to

identify pairs of operations that interfere with each other (cf. [16]
for a survey on model versioning approaches). In this regard, a
conflict denotes a pair of operations, whereas one operation masks
the effect of the other (i.e., they do not commute) or one operation
disables the applicability of the other. An example for the former
is a pair of parallel operations that update the same feature in the
model with different values. The latter case is at hand if one
operation’s preconditions are not valid anymore after applying the
operations of the other developer. Such a scenario frequently
occurs if composite operations, e.g., model refactorings [4, 28],
are applied, because they have potentially complex preconditions
that may easily be invalidated by parallel operations.

For resolving conflicts, empirical studies [27] showed that
users prefer to work with a tentative merged model acting as a
basis for reasoning about possible conflict resolutions, instead of
working with the list of operations in terms of choosing to reject
one or the other conflicting operation for creating a merged
model. A few approaches respect this preference and produce a
merged model by applying all non-conflicting operations;
conflicting operations are omitted. However, especially in case of
a large number of conflicts, many operations are not merged with
this strategy, leading to a tentative merged model that lacks in
reflecting the maximal combined effect of the parallel operations.

With this paper, we address this issue by proposing a method
for producing a tentative merged model that reflects the maximum
combined effect of the parallel operations by also considering
conflicting operations. As mentioned already, an important kind
of conflict denotes pairs of operations where one operation
disables the applicability of the other. Whether one operation
disables the other, however, often depends on the order in which
they are applied. Thus, we aim at computing an operation
sequence that minimizes the number of disabled operations among
all parallel operations, including the conflicting ones. To cope
with the huge number of possible operation sequences, a heuristic
method is used to explore the space of possible solutions. To this
end, we propose to consider model merging as an optimization
problem. Our approach takes as input the initial model and the
revised ones (i.e., the different parallel versions) and a list of the
applied operations, which is computed as described in previous
work [25, 26], and generates as output a sequence of operations
that minimizes the number of disabled operations. Therefore, we
use and adapt genetic algorithm as global heuristic search, which
is a powerful heuristic search optimization method inspired by the
Darwinian theory of evolution [5].

The remainder of this paper is structured as follows.
Section 2 provides the background of model merging and
demonstrates the challenges addressed in this paper based on a
motivating example. In Section 3, we give an overview of our
proposal and explain how we adapted the genetic algorithm to
find optimal operation sequences. Section 4 discusses the results

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’13, July 6–10, 2013, Amsterdam, The Netherlands
Copyright © 2013 ACM 978-1-4503-1963-8/13/07...$15.00.

1453

of the evaluation of our approach. After surveying related work in
Section 5, we conclude with some future work in Section 6.

2. MODEL MERGING CHALLENGES
In this section, we define briefly the context and concepts of

model merging required for this paper. Then we describe the
challenges addressed in this paper based on a motivating example.

2.1 Background on Model Merging
In general, two kinds of merge approaches can be

distinguished [15]. First, state-based merge approaches aim at
merging two model versions by combining their model elements
into one merged model. Second, operation-based merge
approaches in contrast do not reason about the models’ states, but
consider recorded change histories and apply the combination of
the parallel histories to the common initial version to compute the
merged version.

For both approaches, the notion of conflict is essential,
because when having two parallel evolutions of one model, not all
changes may be combined to compute one unique merged model.
Basically, we can distinguish between two kinds of conflicts.
First, two operations are conflicting if one operation masks the
effect of the other operation in the merged version: e.g., for
update/update conflicts, the latter update in the change sequence
applied on the model is effective, while the former update is lost.
Thus, such conflicting operations are not confluent: different
operation sequences result in different models. Second, a conflict
also occurs if one operation disables the applicability of the other.
Every operation has specific preconditions, e.g., an update of an
element can only be performed when the element still exists;
otherwise a delete/update conflict is raised.

Operation-based merge approaches [17] usually consider
besides atomic operations (i.e, additions, deletions, and updates),
also composite operations, such as model refactorings, which
consist of a set of atomic operations and additional potentially
more complex preconditions. For instance, in the case of model
refactorings, certain conditions have to be fulfilled before a
refactoring is applicable in order to preserve the semantics of a
model after the refactoring has been applied. While in the change
history produced by one single developer, the preconditions of the
operations are clearly fulfilled, this is not guaranteed when two
change histories from two different developers are combined. But
this is exactly what is required to perform operation-based
merging with the goal of maximizing the combined effect of the
parallel operations.

A pure phasing-based approach is in general not solving this
problem. For instance, applying first the change history of
developer A and afterwards the change history of developer B,
only the applicability of the operations of developer A is
maximized. But there may be better solutions by intermingling the
change histories of developer A and B. Considering all possible
permutations of two change histories, we end up with a
complexity of n! (where n is the amount of all applied changes of
both developers). Considering the length of change histories in
practice, using an enumeration based approach is not feasible.

2.2 Motivating Example
For making the problem statement more concrete, we make

use of a motivating example. The starting point is the UML class
diagram shown in Figure 1. This version of a person management
system has been subject to parallel evolution by two developers
who concurrently applied a set of atomic and composite changes.

«abstract»
Person

Male Female

birthday : Date [1..1]
city : String [1..1]
citycode : Integer [1..1]

fname : String [1..1] familyName : String [1..1]

getAge() : Int

Figure 1: Initial Model v0.

«abstract»
Person

Male Female

birthday : Date [1..1]
familyName : String [1..1]
city : String [1..1]
cityCode : String [1..1]

familyName : String
[1..1] familyName : String [1..1]

getAge() : Int

1

2

rename fName
to familyName

pullUp
familyName

2

3 delete city
attribute

Figure 2: Revised Model v1a.

«abstract»
Person

Male Female

birthday : Date [1..1]

fName : String [1..2] familyName : String [1..1]

getAge() : Int

1
Update Upper-
cardinality

Address
city : String [1..1]
cityCode : String [1..1]

address

1..1

2 ExtractClass Address with
city, cityCode

Figure 3: Revised Model v1b.

Developer A is first renaming the fname attribute of class
Male to familyName in order to apply the PullUpAttribute
refactoring in a second step: the familyName attribute of class
Male is moved to the class Person and the familyName attribute
of class Female is deleted. This refactoring is represented by one
composite operation which contains both atomic operations. The
precondition of this refactoring is clearly fulfilled: both subclasses
of class Person have the familyName attribute with the same
property values, i.e., same data type and multiplicities. Finally,
developer A deletes the city attribute of class Person, because she
identifies that this attribute is redundant, as the information is
already covered by cityCode attribute. The resulting model
incorporating all mentioned changes is shown in Figure 2.

Developer B changes the upper bound cardinality of the
fName attribute of class Male from one to two, and subsequently,
applies the ExtractClass refactoring to create an explicit class for
the address information. Again, this refactoring is represented by
a composite operation consisting of several atomic operations.
The resulting model is depicted in Figure 3.

1454

Now a naive operation-based merge approach may apply the
operations of developer A to the initial model, and subsequently,
on this intermediate version, the changes of developer B.
However, in this sequence, the ExtractClass refactoring is not
applicable anymore, because the city attribute is already missing.
Starting with the operations of developer B and continuing with
the changes of developer A, also leads to one disabled operation:
the fName attribute of class Male can be renamed to familyName,
but the PullUpAttribute refactoring cannot be executed, because
the familyName attributes in both subclasses have different
cardinalities. Thus, the precondition of the refactoring is not
fulfilled, and consequently, the operation cannot be applied.

Now the question arises whether there are more appropriate
solutions in terms of sequences of operations that enable
constructing a merged model that maximizes the combined effect
of both developers. In our example, 118 different operation
sequences have to be considered in addition to the previous two.
In fact, solutions exist that allow for applying all operations
successfully in our example by intermingling the operations of
developer A and B. For instance, executing the ExtractClass
refactoring, deleting the cityName attribute, renaming the fName
attribute to lastName, executing the PullUpAttribute refactoring,
and finally, setting the upper bound cardinality represents one
operation sequence that is fully applicable. For five changes, an
enumeration based approach is applicable, but when doubling the
changes, we already have to explore 3.6 million combinations
because n! solutions exist where n is the number of changes.
Thus, in the next section a more scalable approach to solve this
problem is presented.

3. FINDING THE BEST REFACTORING
SEQUENCE FOR MODEL MERGING

We now describe our proposal and how we consider merging
different model versions as an optimization problem. We start by
giving an overview of our approach and provide subsequently a
more detailed description on how we adapted and used the genetic
algorithm, including the representation of refactorings and
refactoring sequences, as well as the fitness function.1

3.1 Overview
The goal of our approach is to construct a tentative merged

model that maximizes the (at least partial) combined effect of the
parallel operations. Therefore, we use a mono-objective
optimization algorithm to compute an optimal sequence of
merging operations in terms of minimizing the number of
refactorings that are disabled by preceding operations.

The general structure of our approach is sketched in Figure 4.
The search-based process takes as inputs the sequences of
operations that have been applied concurrently to a model by an
arbitrary number of developers. These sequences can be detected
using operation detection algorithms presented in previous work
[25, 26]. Note that these sequences may also be obtained
alternatively by tools that record operations directly in the
modeling editor. The sequences are composed of operation
applications, thereby each entry in a sequence states the operation
type as well as the elements on which it has been applied. Having

1 In the following, we focus on refactorings, but the presented

techniques apply for all kinds of changes in general.

these sequences2 at hand, we may now combine them into one
common sequence of operations and compute the number of
disabled operations. Therefore, we use composite operation
specifications that contain explicitly specified preconditions in
combination with a condition evaluation engine [12] to verify
whether the preconditions of each operation in a sequence are
fulfilled in a certain state of a model after the preceding
operations in the sequence have been applied. If we determine an
operation with invalid preconditions in a certain state of the
model, we consider this operation to be disabled in the respective
operation sequence.

Developer 1:
1. R11: Rename(…);
2. R12: PullUpAttribute(…);
3. R13: DeleteAttribute(..);

Developer 2:
1. R21: UpdateAttribute(…);
2. R22: ExtractClass(…);

Finding the
best change sequence
to minimize conflicts

Best sequence:
1. R22: ExtractClass(…);
2. R13: DeleteAttribute(..);
3. R11: Rename(…);
4. R12: PullUpAttribute(…);
5. R21: UpdateAttribute(…);

«abstract»
Person

Male Female

birthday : Date [1..1]
familyName : String [1..2]

getAge() : Int

Address

cityCode : String [1..1]
address

1..1

«abstract»
Person

Male Female

birthday : Date [1..1]
city : String [1..1]
citycode : Integer [1..1]

fname : String [1..1] familyName : String [1..1]

getAge() : Int

Figure 4: Finding the Best Operation Sequence.
The process of generating a solution can be viewed as the

mechanism that finds the best order among all possible operation
sequences that minimizes the number of disabled operations. The
size of the search space is determined not only by the number of
operations applied by the different developers on the same model,
but also by the order in which they are applied. Due to the large
number of possible refactoring sequences, we considered
refactoring merging as an optimization problem. In the next
subsection, we describe the adaptation of genetic algorithm to our
problem domain.

3.2 Adaptation of the Genetic Algorithm
3.2.1 Genetic Algorithm

By using genetic algorithm (GA), the basic idea is to explore
the search space by creating a population of candidate solutions,
also called individuals, and evolve them towards an optimal
solution for a specific problem.

In GA, a solution can be represented as a vector. Each
dimension of this vector must contain symbols that are
appropriate for the specific problem. Each individual of the
population is evaluated by a fitness function that determines a
quantitative measure of its ability to solve the specific problem.

The exploration of the search space is achieved by evolving
candidate solutions using selection and genetic operators, such as
crossover and mutation. The selection operator chooses the fittest
individuals of the current population that are allowed to transmit

2 Please note that the length of the operation sequences of the

different developers may vary as shown in Figure 4.

1455

their features to new individuals by undergoing crossover and
mutation. The crossover operator ensures generation of new
children based on parent individuals and allows the transmission
of the features of the best fitted parent individuals to new
individuals. This is usually achieved by replacing randomly
selected dimensions of one parent individual with randomly
chosen dimensions from another parent individual to obtain one
child. A second child is obtained by inverting parents. Finally, the
mutation operator is applied, with a probability that is inversely
proportional to its fitness value, to modify some randomly
selected nodes in a single individual. The mutation operator
introduces diversity into the population and allows escaping local
optima found during the search.

Once selection, mutation, and crossover have been applied
according to given probabilities, individuals of the newly created
generation are evaluated using the fitness function. This process is
repeated iteratively until a stopping criterion is met. This criterion
usually corresponds to a fixed number of generations. The final
result (the best solution found) is the fittest individual produced
along all generations.

To adopt GA for solving the problem of finding an operation
sequence that maximizes the combined effect of all concurrent
operations, we start by constructing an initial GA population that
represents possible operation sequences. Then, the main GA
fragment explores the search space by constructing new
individuals by reordering the operations using the aforementioned
crossover and mutation operators, whereas promoting the
individual with the best fitness; that is, the operation sequences
with the lowest number of disabled operations. The process
terminates when the termination criterion (maximum iteration
number) is met, and returns the best sequence of operations.

3.2.2 Genetic Algorithm for Model Merging
In the following, we discuss how we adapted the genetic

algorithm to solve the model merging problem. Therefore, we
present the representation of operation sequences and the applied
fitness function to evaluate the quality of operation sequences.

3.2.2.1 Generation of a Population
To represent a candidate solution (individual), we use a vector

containing all operations that have been applied by the developers
in parallel, whereas each item in the vector represents a single
operation (with links to the elements to which it is applied) and
the order of operations in this vector represents the sequence in
which the operations are applied. Please note that some operations
can be eliminated in case they are equivalent; that is, two
developers applied the same operation to the same model
elements. Thus, we exclude duplicates. Consequently, all vectors,
each representing one candidate solution, have the same number
of dimensions that corresponds to the number of all parallel
operations applied by all developers.

Figure 5 depicts a possible population of operation sequences
for the running example introduced above, whereas R** refers to
the label of the respective refactoring introduced in Figure 4. For
instance, the solutions represented in Figure 5 are composed of
five dimensions corresponding to five operations proposed by two
different developers. All the solutions have the same length, but
they constitute a different order.

R21 R11 R22 R12 R13

…..
Population
of solutions

R11 R21 R12 R22 R13

R22 R11 R12 R13 R22
Figure 5: A Population of Operation Sequences.

The proposed algorithm first generates a population randomly
from the list of all operations. Second, crossover and mutation
operators are used to generate new populations in the next
iterations as explained in the following.

3.2.2.2 Generating New Populations
We used the principle of the Roulette wheel [5] to select

individuals for mutation and crossover. The probability to select
an individual for crossover and mutation is directly proportional
to its relative fitness in the population. In each iteration, we select
population_size / 2 individuals from the population popi to form
population popi+1. These (population_size / 2) selected
individuals will “give birth” to another (population_size / 2) new
individuals using a crossover operator. Therefore, two parent
individuals are selected, and a sub-vector is picked on each one.
Then, the crossover operator swaps the dimensions and their
relative sub-vector from one parent to the other. When applying
the crossover, we ensure that the length of the vector remains the
same. The crossover operator allows creating two offspring p’1
and p’2 from the two selected parents p1 and p2. It is defined as
follows: a random position, k, is selected. The first k operations of
p1 become the first k elements of p’1. Similarly, the first k
operations of p2 become the first k operations of p’2.

The mutation operator can be applied to pairs of dimensions
selected randomly. Given a selected solution, the mutation
operator first randomly selects one or many pairs of dimensions of
the vector. Then, for each selected pair, the dimensions are
swapped.

3.2.2.3 Evaluating Generated Solutions
The quality of an individual is computed based on the quality

of its represented operation sequence. In each operation sequence,
different operations may be disabled after certain preceding
operations have been applied. Thus, the quality of a solution is
determined with respect to the number of disabled operations
within a certain operation sequence. In other words, the best
solution is the one that minimizes the number of disabled
operations, obtained by applying the respective operation
sequence to the initial model.

The evaluation of an individual is formalized in terms of a
mathematical function called fitness function. The fitness function
quantifies the quality of the proposed solution. The goal is to
define an efficient and simple—in the sense that it is not
computationally expensive—fitness function in order to reduce
the computational complexity. This function should evaluate the
number of disabled operations. Therefore, we use previously
developed tools to specify composite operations including their
preconditions in combination with an engine for evaluating the
conditions in a certain model state (cf. [12] for details). As
evaluating conditions can be rather expensive, we only compute
whether one operation in a sequence disables another for each
possible pair-wise combination of operations in advance, instead
of checking the preconditions of each operation with the
combined effect of every operation that precedes the operation in
the sequence. Please note that this might miss to detect some

1456

disabled operations in certain scenarios: the preconditions of an
operation might be valid with each single preceding operation, but
the preceding operations in combination might still invalidate the
preconditions of the subsequent operations. As this is a rather rare
case, we left this issue as a topic of future work.

The information on which operation in a sequence disables
the other is represented in terms of a matrix n × n where n is the
number of operations applied originally by the different
developers in total (after eliminating duplicates). Each item in this
matrix represents a combination of two operations and holds a
value of either 0 or 1: if an operation i disables the operation j
then, the item (i,j) in the matrix takes the value 1, otherwise it
takes 0. Based on this matrix, we may determine easily the
number of disabled operations for a specific operation sequence
by summing up all values in the matrix.

To illustrate the fitness function, we consider one solution (cf.
Figure 6) from our running example to evaluate. Since 5
operations have been applied in parallel, the computed matrix has
a size of 5 × 5. To determine the number of disabled operations
for the given sequence, we iterate over the operations of the
sequence and sum the values of the matrix at the items
representing current operation (row) and all operations that are
after that operation in the sequence (column). For the example,
the fitness function is fi = 2.

R11 R12 R13 R21 R22

R11 - 0 0 0 0

R12 0 - 0 0 0

R13 0 0 - 0 1

R21 0 1 0 - 0

R22 0 0 0 0 -

R21 R11 R12 R13 R22
Possible solution:

disables disables

Figure 6: An Illustration of the Fitness Function.

4. EVALUATION
To evaluate our proposal, we conducted experiments on six

real-world models. We present first the objectives of this
exploratory study and then we describe and discuss the obtained
results. For replication purposes, the experimentation material can
be downloaded from [7].

4.1 Research Questions and Experimental
Setting

The study was conducted to quantitatively assess the
performance of our approach when applied to real-world
scenarios. Thereby, we aimed at answering the following research
questions (RQ).

RQ1. To what extent can the proposed approach reduce the
number of disabled operations?

RQ2. To what extent the best merging solutions make sense
semantically?

To answer RQ1 and RQ2, we used a corpus containing an
extensive evolution of multiple open source systems.
Furthermore, we compared our results to those produced without
taking into consideration the order of operations. We also
investigated manually the semantics of merged models after
applying the best solution generated by our algorithm. In the
following, we describe details about our experiments’ setting.

We chose to analyze the extensive evolution of three Ecore
metamodels coming from the Graphical Modeling Framework
(GMF) [8], an open source project for generating graphical
modeling editors. We considered the evolution from GMF’s
release 1.0 over 2.0 to release 2.1 covering a period of two years.
For achieving a broader data basis, we analyzed the revisions of
three models, namely the Graphical Definition Metamodel (GMF
Graph), the Generator Metamodel (GMF Gen), and the Mappings
Metamodel (GMF Map). Therefore, the respective metamodel
versions had to be extracted from GMF’s version control system
and, subsequently, manually analyzed to determine the actually
applied operations between successive metamodel versions. In
addition to GMF, we used model fragments extracted from three
open source projects: GanttProject (Gantt for short) [9],
JHotDraw [10], and Xerces-J [11]. We considered the evolution
across three versions of Gantt (v1.7, v1.8, and v1.9.10), three
versions of JHotDraw (v5.1, 5.2, and 5.3) and four versions of
Xerxes-J (v1.4.4, v2.5.0, v2.6.0, and v2.6.1). Table 1 summarizes
for each model evolution scenario the number of applied
refactorings, as well as the number of model elements for the
smallest and largest model version.

Additionally, we had to specify all operation types (i.e., their
comprised atomic operations and preconditions) that have been
applied across all versions leading to 38 different types of
operations. The evolution of the analyzed models provides a
relatively large set of revisions containing overall 401 different
applications of the operation types as shown in Table 1.

Due to the lack of existing parallel revision histories that we
could have used for evaluating our approach, we emulate parallel
evolution by dividing the applied operations from the single
revisions into parallel sequences of operations manually and
asked five graduate students to additionally modify different
model fragments of these open source systems in order to cause
disabled operations in the considered evolutions.

To assess the accuracy of our approach, we evaluate
manually the number of conflicts (NC), i.e., number of disabled
operations of the best operation sequence found by our approach,
as well as the correctness of the found operation sequences.

Automatic correctness (AC) consists of comparing the
suggested operation order to the expected one, operation by
operation. AC method has the advantage of being automatic and
objective. However, since different possibilities exist to avoid
disabled operations, AC could reject a good solution because it
yields different operation sequences from the original one. To
account for those situations, we also use manual correctness (MC)
for evaluating the correctness of the proposed sequence, again
operation by operation. When calculating MC, we verify whether
the proposed operation sequence preserves the semantics of the
design (and not only avoids disabled operations).

Table 1: Number of Refactoring Operations.

Model
Number of

refactorings
Number of elements

(min, max)
GMF Map 14 367, 428
GMF Graph 36 277,310
GMF Gen 112 883,1295
GanttProject 72 451, 572
Xerces-J 86 1698,1732
JHotDraw 81 985, 1457

1457

We compared our results with: (i) a randomly generated
order (random search), (ii) a traditional technique where internal
sequence is not considered (we apply operations originally
applied by developer 1 then developer 2, etc.), and (iii) another
local search algorithm (Simulated Annealing) [6].

We used the AC and NC scores for the comparison. The
different scores (AC, MC, and NC) are calculated as an average of
30 runs to ensure the stability of the results. In addition, the
comparison between SA, random search and GA is also based on
an average of 30 runs.

4.2 Results and Discussions
Table 2 summarizes our findings over an average of 30 runs.

In general, using our search-based approach, we were able to
reduce the number of conflicts. For instance, in JHotDraw only 11
disabled operations are detected after executing the optimal
operation sequence. However, 37 disabled operations are detected
by executing the operations as they appear without altering the
internal order provided by different developers. Thus, we reduced
the number of disabled operations by 70% (1 - 11/37). Similar
results are obtained on remaining open-source systems where the
number of conflicts is reduced by 63% (1 - 3/8), 69% (1 - 5/16),
68% (1 - 16/49), 43% (1 - 19/33), 59% (1 - 12/29) for GMF Map,
GMF Graph, GMF Gen, GanttProject, and Xerces-J, respectively.
Thus, we conclude that our proposal reduces significantly the
number of disabled operations.

Table 2: Number of Disabled Operations (NC).

Systems

Number of disabled
operations (with
heuristic search)

Number of disabled
operations (without

heuristic search)

GMF Map 3 8

GMF Graph 5 16

GMF Gen 16 49

GanttProject 19 33

Xerces-J 12 29

JHotDraw 11 37

50
55
60
65
70
75
80
85
90
95

100

Automatic Correctness

Manual Correctness

Figure 7: AC and MC Scores for the Case Studies.

Figure 7 illustrates the AC and MC scores on the different
models. For the automatic precision, we compared the generated
operation order to the expected (original) one provided manually
by a group of five developers. The AC was more than 80% for all
the various models. The lower AC score was found in JHotDraw.
JHotDraw was extensively modified within only one large
revision comprising 27 refactoring operations that will potentially
lead to disabled operations when divided and applied in parallel.

Thus, the evolution of this model is a very representative mixture
of different scenarios for the application of operations leading to
many disabled operations (as described in Table 2). However, our
approach finds approximately the best order of operations to
avoid disabled ones with an acceptable score (more than 80%)
even if the number of all operations and disabled ones is large.

Similar to JHotDraw, Xerces-J versions were extensively
revised leading to a huge list of operations. This can explain also
the AC obtained by our approach (82%). The remaining models
contain less model elements and revisions, thus AC scores were
higher with more than 85%. For instance, the evolution of GMF
Map contained four revisions, having in each revision a maximum
number of three refactoring operations. Using our approach, we
could find almost a very similar order to the reference one. We
noticed that our technique does not have a bias towards the types
of operations since most of them were used in the suggested
solutions.

With regards to MC, the score for all the six models were
improved since we found interesting operation order alternatives
that deviate from the reference ones proposed by the experts: for
all the six models, we obtained approximately more than 85% as
MC, e.g., for GMF Graph 94% and for GMF Gen 96%. When we
manually analyzed the results, we found that many disabled
operations can be avoided in different manners and sometimes
changing the order of some operations does not affect the number
of disabled operations. In the context of this experiment, we
conclude that our technique was able to find the best order of
merging operations that reduces the disabled ones.

0

10

20

30

40

50

60

70

80

90

Automatic
Correctness

Manual
Correctness

Disabled
Operations

Genetic Algorithm

Simulated Annealing

Random search

Figure 8: Comparison: Genetic Algorithm, Simulated

Annealing, and Random Search for XercesJ.
In Figure 8, we compared our genetic algorithm (GA) results

with a random search (without the use of change operators) and a
local search algorithm, namely simulated annealing (SA). The
local search starts from only one solution (instead of a population
of solutions) generated randomly and then refined using mutation
in the next iterations. The AC, MC, and NC scores for SA were
also acceptable. However, GA performs better than SA in the case
of Xerces-J, because Xerces-J exhibits a larger model and a larger
list of applied refactorings, and GA usually provides better results
than SA in scenarios having a larger search space.

The correctness results might vary depending on the
operation sequence which is randomly generated, though guided
by a meta-heuristic. To ensure that our results are relatively stable,
we compared the results of multiple executions of GA as shown in
Figure 9. We consequently believe that our technique is stable,
since the AC and MC precision scores are approximately the same
for several executions.

1458

72

74

76

78

80

82

84

86

1 2 3 4 5
Runs

Automatic Correctness

Manual Correctness

Figure 9: AC and MC Scores for Multiple Executions (5 runs).

60

65

70

75

80

85

90

95

100

14 36 72 81 86 112
Number of operations

Automatic Correctness

Manual Correctness

Figure 10: AC and MC in Comparison to

Number of Operations.
Figure 10 analyzes the correlation between the number of

operations and the correctness values. More precisely, we sort AC
and MC based on the number of refactorings for each open source
system described in Table 1. From this data, we conclude that AC
and MC are not necessarily affected negatively by a larger number
of refactorings. For example, MC even increases from 85% to
96% when the number of refactorings increases from 86 to 112.
Thus, we can conclude that our proposal shows a good scalability
and is not affected negatively by the number of refactorings.
However, when the number of operations increases, it does not
necessarily mean that the number of disabled operations does.

5. RELATED WORK
With respect to the contribution of this paper, namely to

integrate two parallel operation histories into one operation
sequence that maximizes the number of successfully applied
operations, related work dates back to the early 1990ies. Before
that time, merging has been mostly achieved based on the states of
the artifacts under version control [23]. The origin work on
operation-based merging has been published by Lippe [14]. He
pointed out several advantages of operation-based merging over
purely state-based merging and contributed the important notion
of frontier set. The frontier set, including frontier points, is an
indicator how far one can merge two sequences of changes. One
goal is to shift the frontier points as far away from the original
model version as possible to maximize the applicability of the
performed operations. One way to shift the frontier points is to
reorder the atomic operations, i.e., to apply all non-conflicting
atomic operations before the conflicting ones. What we have
contributed with our search-based approach is a mechanism to
minimize the critical points in the merge process where users have

to be involved, even when composite operations, such as
refactorings, have been applied.

Operation-based merging has been heavily applied in
asynchronous collaborative graphical editing. Edwards [13] has
defined several strategies for combining two operation sequences
into one sequence. The strategies range from fully automatic
merging by computing each possible sequence of non-conflicting
changes to interactive merging allowing the user to decide how
each change of a conflicting change pair should be incorporated in
the finally merged model. Ignat and Norrie [15] have compared an
operation-based approach and a state-based approach for merging
change logs of collaborative graphical editors. They distinguish
“real” conflicts from resolvable conflicts. The latter may be
resolved by finding an appropriate order to incorporate the
changes to the finally merged model. For finding the appropriate
order, priority lists for change types have to be defined.

With the advent of MDE, the research topic collaborative
modeling is gaining momentum. Several state-based approaches
for model versioning have been proposed (cf. [16, 23] for an
overview), as well as a few operation-based approaches. Koegel et
al. [18] record changes in modeling editors and provide conflict
detection for two sequences of recorded changes. They also
support composite changes, but only consider how these
operations are build up from atomic changes while explicit
preconditions are disregarded. If they detect that a composite
change is in conflict with an atomic change, they let the user
decide which one to take. Similarly, Barret et al. [19] discuss
pushing the frontier points as far as possible by incorporating all
non-conflicting changes to produce a merged model and then let
again the user decide which change of a conflict pair to prioritize.
Other operation-based approaches for models have been presented
in [20, 22], but no dedicated reordering strategies have been
discussed. In [21], the authors mention that finding an appropriate
sequence for unifying the changes of two parallel change sets is an
optimization problem, but they based their approach on manual
conflict resolution during the merge process.

In summary, reasoning on arbitrary application orders of the
operations to unify (including composite changes) to find the
order that is maximizing the successful application of the
operations is not considered by existing operation-based merge
approaches. State-of-the-art approaches mostly reside on a two-
phase process: first, they apply the non-conflicting changes and
then let the user select the change to be prioritized out of two
conflicting changes. In contrast, our approach explores arbitrary
sequences and the result is the most applicable sequence of
operations found by the genetic algorithm. Thus, we are able to
minimize the critical and labor-intensive tasks involving user
interaction in the merge process going beyond existing state-of-
the-art approaches.

Our proposal is part of the search-based software engineering
(SBSE) contributions [29]. SBSE uses search-based approaches
to solve optimization problems in software engineering. Based on
surveys proposed by Harman et al. [29, 30], our work represents
the first attempt to treat the problem of model merging as a
combinatorial optimization problem.

6. CONCLUSION
This paper proposes a novel approach for merging parallel

versions of models by finding the best operation sequence. Such a
sequence is very useful in model versioning to find a tentative
merge, as a basis for subsequently resolving the remaining

1459

conflicts manually. Therefore, a merged model is necessary that
maximizes the combined effect of all operations that have been
applied by multiple developers in parallel to the same model. This
is achieved by finding an optimal (potentially intermingled) order
of operations that minimizes the number of disabled operations.
As the search space in terms of all possible sequences of
operations is potentially huge, we consider the merging process as
an optimization problem.

We evaluated our proposal with six real-world models
extracted from different open source systems. The experiment
results indicate clearly that the number of disabled operations is
reduced significantly in comparison to the number of disabled
operations without taking into consideration the different possible
operation orders. We further evaluated successfully that the
computed operation sequences lead to correct models in terms of
their semantics in most of the considered cases.

Although our approach has been evaluated with real-world
models with a reasonable number of applied operations, we are
working now on larger models and with larger list of operations
applied in parallel. This is necessary to investigate more deeply
the applicability of the approach in practice, but also to study the
performance of approach when dealing with very large models.
Moreover, we plan to investigate an empirical study to compare
with other search-based algorithms. More generally, we plan to
extend this work by fixing detected conflicts since this work focus
only on minimizing the number of disabled operations.

7. REFERENCES
[1] D. Dig, K. Manzoor, R. E. Johnson, T. N. Nguyen. Effective

Software Merging in the Presence of Object-Oriented
Refactorings. IEEE Transactions on Software Engineering,
34(3):321-335, 2008.

[2] T. Ekman, U. Asklund. Refactoring-aware Versioning in
Eclipse. Electronic Notes in Theoretical Computer Science
107:57-69, 2004.

[3] M. Koegel, M. Herrmannsdoerfer, Y. Li, J. Helming, D.
Joern. Comparing State- and Operation-based Change
Tracking on Models. In Proceedings of EDOC, 2010.

[4] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.
Refactoring – Improving the Design of Existing Code. 1st ed.
Addison-Wesley, 1999.

[5] J. R. Koza. Genetic Programming: On the Programming of
Computers by Means of Natural Selection. MIT Press,
Cambridge, 1992.

[6] S. Kirkpatrick, C. D. Jr. Gelatt, M. P. Vecchi. Optimization
by simulated annealing. Sciences, 220(4598):671–680, 1983.

[7] http://web.mst.edu/~marouanek/gecco13/merging
[8] www.eclipse.org/gmf
[9] http://www.ganttproject.biz
[10] http://www.jhotdraw.org
[11] http://xerces.apache.org/xerces-j

[12] P. Langer. Adaptable Model Versioning based on Model
Transformation By Demonstration. PhD Thesis, Vienna
University of Technology, 2011.

[13] W. K. Edwards: Flexible Conflict Detection and
Management in Collaborative Applications. In Proceedings
of Symposium on User Interface Software and Technology,
pages 139-148, 1997.

[14] E. Lippe, N. van Oosterom. Operation-based merging. In
Proceedings of SDE, pages 78-87, 1992.

[15] C. Ignat and M. C. Norrie. Operation-based versus State-
based Merging in Asynchronous Graphical Collaborative
Editing. In Workshop on Collaborative Editing, 2004.

[16] P. Brosch, G. Kappel, P. Langer, M. Seidl, K. Wieland, M.
Wimmer: An Introduction to Model Versioning. In
Proceedings of SFM, 2012.

[17] P. Brosch, P. Langer, M. Seidl, K. Wieland, M. Wimmer, G.
Kappel. The Past, Present, and Future of Model Versioning;
Emerging Technologies for the Evolution and Maintenance
of Software Models, IGI Global, 2011.

[18] M. Koegel, H. Naughton, J. Helming, M. Herrmannsdoerfer.
Collaborative model merging. In OOPSLA Companion,
2010.

[19] S. Barrett, P. Chalin, G. Butler. Table-Driven Detection and
Resolution of Operation-Based Merge Conflicts with
Mirador. In Proceedings of ECMFA, 2011.

[20] C. Schneider, A. Zündorf, J. Niere. CoObRA - a small step
for development tools to collaborative environments. In
Workshop on Directions in Software Engineering
Environments, 2004.

[21] M. Schmidt, S. Wenzel, T. Kehrer, U. Kelter. History-based
Merging of Models. In Workshop on Comparison and
Versioning of Software Models, 2009.

[22] A. Mougenot, X. Blanc, M. Gervais. D-Praxis: A Peer-to-
Peer Collaborative Model Editing Framework. In
Proceedings of DAIS, 2009.

[23] T. Mens. A State-of-the-Art Survey on Software Merging.
IEEE Transactions on Software Engineering, 28(5):449-462,
2002.

[24] J. Bézivin. On the Unification Power of Models. Software
and Systems Modeling, 4(2):171-188, (2005).

[25] A. ben Fadhel, M. Kessentini, P. Langer, M. Wimmer.
Search-based Detection of High-level Model Changes. In
Proceedings of ICSM, 2012.

[26] P. Langer, M. Wimmer, P. Brosch, M. Herrmannsdoerfer, M.
Seidl, K. Wieland, G. Kappel. A Posteriori Operation
Detection in Evolving Software Models. Journal of Systems
and Software, 86(2):551-566, 2013.

[27] K. Wieland, P. Langer, M. Seidl, M. Wimmer, G. Kappel.
Turning Conflicts into Collaboration - Concurrent Modeling
in the Early Phases of Software Development. Computer
Supported Cooperative Work, 22(2-3):181-240, 2013.

[28] G. Sunyé, D. Pollet, Y. Le Traon, J. M. Jézéquel. Refactoring
UML Models. In Proceedings of UML, 2001.

[29] M. Harman. The current state and future of search based
software engineering. In Proceedings of ICSE, 2007.

[30] M. Harman, S. A. Mansouri, Y. Zhang. Search-based
software engineering: Trends, techniques and applications.
ACM Computing Surveys 45(1):Article11, 2012.

1460

http://www.informatik.uni-trier.de/~ley/db/conf/uist/uist1997.html#Edwards97
http://www.informatik.uni-trier.de/~ley/db/conf/uist/uist1997.html#Edwards97
http://www.informatik.uni-trier.de/~ley/db/journals/cscw/cscw22.html#WielandLSWK13

	1. INTRODUCTION
	2. MODEL MERGING CHALLENGES
	2.1 Background on Model Merging
	2.2 Motivating Example

	3. Finding the Best Refactoring Sequence for Model Merging
	3.1 Overview
	3.2 Adaptation of the Genetic Algorithm
	3.2.1 Genetic Algorithm
	3.2.2 Genetic Algorithm for Model Merging
	3.2.2.1 Generation of a Population
	3.2.2.2 Generating New Populations
	3.2.2.3 Evaluating Generated Solutions

	4. EVALUATION
	4.1 Research Questions and Experimental Setting
	4.2 Results and Discussions

	5. RELATED WORK
	6. CONCLUSION
	7. REFERENCES

