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ABSTRACT 
In Model-Driven Engineering (MDE) adequate means for 
collaborative modeling among multiple team members is crucial 
for large projects. To this end, several approaches exist to identify 
the operations applied in parallel, to detect conflicts among them, 
as well as to construct a merged model by incorporating all non-
conflicting operations. Conflicts often denote situations where the 
application of one operation disables the applicability of another 
operation. Whether one operation disables the other, however, 
often depends on their application order. To obtain a merged 
model that maximizes the combined effect of all parallel 
operations, we propose an automated approach for finding the 
optimal merging sequence that maximizes the number of 
successfully applied operations. Therefore, we adapted and used a 
heuristic search algorithm to explore the huge search space of all 
possible operation sequences. The validation results on merging 
various versions of real-world models confirm that our approach 
finds operation sequences that successfully incorporate a high 
number of conflicting operations, which are otherwise not 
reflected in the merge by current approaches. 

Categories and Subject Descriptors 
D.2.9 [Software Management]: Software development 

Keywords 
Search-based software engineering, model-driven software 
engineering, model evolution, genetic algorithm. 

1. INTRODUCTION 
Nowadays, software systems are complex and large; 

therefore, Model-Driven Engineering (MDE) [24] is applied 
increasingly to cope with the complexity of software systems by 
raising the level of abstraction. To address the size of software 
systems, teams of developers have to cooperate and work in 
parallel on software models. Thus, techniques to support building 
models collaboratively are highly required.  

When models are changed in parallel, they have to be merged 
eventually to obtain a consolidated model. Therefore, several 
approaches have been proposed for detecting the operations that 
have been applied in parallel by developers. Once the applied 
operations are available, conflict detection algorithms are used to 

identify pairs of operations that interfere with each other (cf. [16] 
for a survey on model versioning approaches). In this regard, a 
conflict denotes a pair of operations, whereas one operation masks 
the effect of the other (i.e., they do not commute) or one operation 
disables the applicability of the other. An example for the former 
is a pair of parallel operations that update the same feature in the 
model with different values. The latter case is at hand if one 
operation’s preconditions are not valid anymore after applying the 
operations of the other developer. Such a scenario frequently 
occurs if composite operations, e.g., model refactorings [4, 28], 
are applied, because they have potentially complex preconditions 
that may easily be invalidated by parallel operations. 

For resolving conflicts, empirical studies [27] showed that 
users prefer to work with a tentative merged model acting as a 
basis for reasoning about possible conflict resolutions, instead of 
working with the list of operations in terms of choosing to reject 
one or the other conflicting operation for creating a merged 
model. A few approaches respect this preference and produce a 
merged model by applying all non-conflicting operations; 
conflicting operations are omitted. However, especially in case of 
a large number of conflicts, many operations are not merged with 
this strategy, leading to a tentative merged model that lacks in 
reflecting the maximal combined effect of the parallel operations. 

With this paper, we address this issue by proposing a method 
for producing a tentative merged model that reflects the maximum 
combined effect of the parallel operations by also considering 
conflicting operations. As mentioned already, an important kind 
of conflict denotes pairs of operations where one operation 
disables the applicability of the other. Whether one operation 
disables the other, however, often depends on the order in which 
they are applied. Thus, we aim at computing an operation 
sequence that minimizes the number of disabled operations among 
all parallel operations, including the conflicting ones. To cope 
with the huge number of possible operation sequences, a heuristic 
method is used to explore the space of possible solutions. To this 
end, we propose to consider model merging as an optimization 
problem. Our approach takes as input the initial model and the 
revised ones (i.e., the different parallel versions) and a list of the 
applied operations, which is computed as described in previous 
work [25, 26], and generates as output a sequence of operations 
that minimizes the number of disabled operations. Therefore, we 
use and adapt genetic algorithm as global heuristic search, which 
is a powerful heuristic search optimization method inspired by the 
Darwinian theory of evolution [5]. 

The remainder of this paper is structured as follows. 
Section 2 provides the background of model merging and 
demonstrates the challenges addressed in this paper based on a 
motivating example. In Section 3, we give an overview of our 
proposal and explain how we adapted the genetic algorithm to 
find optimal operation sequences. Section 4 discusses the results 
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of the evaluation of our approach. After surveying related work in 
Section 5, we conclude with some future work in Section 6. 

2. MODEL MERGING CHALLENGES 
In this section, we define briefly the context and concepts of 

model merging required for this paper. Then we describe the 
challenges addressed in this paper based on a motivating example. 

2.1 Background on Model Merging  
In general, two kinds of merge approaches can be 

distinguished [15]. First, state-based merge approaches aim at 
merging two model versions by combining their model elements 
into one merged model. Second, operation-based merge 
approaches in contrast do not reason about the models’ states, but 
consider recorded change histories and apply the combination of 
the parallel histories to the common initial version to compute the 
merged version.  

For both approaches, the notion of conflict is essential, 
because when having two parallel evolutions of one model, not all 
changes may be combined to compute one unique merged model. 
Basically, we can distinguish between two kinds of conflicts. 
First, two operations are conflicting if one operation masks the 
effect of the other operation in the merged version: e.g., for 
update/update conflicts, the latter update in the change sequence 
applied on the model is effective, while the former update is lost. 
Thus, such conflicting operations are not confluent: different 
operation sequences result in different models. Second, a conflict 
also occurs if one operation disables the applicability of the other. 
Every operation has specific preconditions, e.g., an update of an 
element can only be performed when the element still exists; 
otherwise a delete/update conflict is raised.  

Operation-based merge approaches [17] usually consider 
besides atomic operations (i.e, additions, deletions, and updates), 
also composite operations, such as model refactorings, which 
consist of a set of atomic operations and additional potentially 
more complex preconditions. For instance, in the case of model 
refactorings, certain conditions have to be fulfilled before a 
refactoring is applicable in order to preserve the semantics of a 
model after the refactoring has been applied. While in the change 
history produced by one single developer, the preconditions of the 
operations are clearly fulfilled, this is not guaranteed when two 
change histories from two different developers are combined. But 
this is exactly what is required to perform operation-based 
merging with the goal of maximizing the combined effect of the 
parallel operations. 

A pure phasing-based approach is in general not solving this 
problem. For instance, applying first the change history of 
developer A and afterwards the change history of developer B, 
only the applicability of the operations of developer A is 
maximized. But there may be better solutions by intermingling the 
change histories of developer A and B. Considering all possible 
permutations of two change histories, we end up with a 
complexity of n! (where n is the amount of all applied changes of 
both developers). Considering the length of change histories in 
practice, using an enumeration based approach is not feasible. 

2.2 Motivating Example 
For making the problem statement more concrete, we make 

use of a motivating example. The starting point is the UML class 
diagram shown in Figure 1. This version of a person management 
system has been subject to parallel evolution by two developers 
who concurrently applied a set of atomic and composite changes.  

«abstract»
Person

Male Female

birthday : Date [1..1]
city : String [1..1]
citycode : Integer [1..1]

fname : String [1..1] familyName : String [1..1]

getAge() : Int

 
Figure 1: Initial Model v0. 

«abstract»
Person

Male Female

birthday : Date [1..1]
familyName : String [1..1]
city : String [1..1]
cityCode : String [1..1]

familyName : String 
[1..1] familyName : String [1..1]

getAge() : Int

1

2

rename fName
to familyName

pullUp
familyName

2

3 delete city
attribute

 
Figure 2: Revised Model v1a. 

«abstract»
Person

Male Female

birthday : Date [1..1]

fName : String [1..2] familyName : String [1..1]

getAge() : Int

1
Update Upper-
cardinality

Address
city : String [1..1] 
cityCode : String [1..1] 

address

1..1

2 ExtractClass Address with
city, cityCode

 
Figure 3: Revised Model v1b. 

Developer A is first renaming the fname attribute of class 
Male to familyName in order to apply the PullUpAttribute 
refactoring in a second step: the familyName attribute of class 
Male is moved to the class Person and the familyName attribute 
of class Female is deleted. This refactoring is represented by one 
composite operation which contains both atomic operations. The 
precondition of this refactoring is clearly fulfilled: both subclasses 
of class Person have the familyName attribute with the same 
property values, i.e., same data type and multiplicities. Finally, 
developer A deletes the city attribute of class Person, because she 
identifies that this attribute is redundant, as the information is 
already covered by cityCode attribute. The resulting model 
incorporating all mentioned changes is shown in Figure 2. 

Developer B changes the upper bound cardinality of the 
fName attribute of class Male from one to two, and subsequently, 
applies the ExtractClass refactoring to create an explicit class for 
the address information. Again, this refactoring is represented by 
a composite operation consisting of several atomic operations. 
The resulting model is depicted in Figure 3. 
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Now a naive operation-based merge approach may apply the 
operations of developer A to the initial model, and subsequently, 
on this intermediate version, the changes of developer B. 
However, in this sequence, the ExtractClass refactoring is not 
applicable anymore, because the city attribute is already missing. 
Starting with the operations of developer B and continuing with 
the changes of developer A, also leads to one disabled operation: 
the fName attribute of class Male can be renamed to familyName, 
but the PullUpAttribute refactoring cannot be executed, because 
the familyName attributes in both subclasses have different 
cardinalities. Thus, the precondition of the refactoring is not 
fulfilled, and consequently, the operation cannot be applied. 

Now the question arises whether there are more appropriate 
solutions in terms of sequences of operations that enable 
constructing a merged model that maximizes the combined effect 
of both developers. In our example, 118 different operation 
sequences have to be considered in addition to the previous two. 
In fact, solutions exist that allow for applying all operations 
successfully in our example by intermingling the operations of 
developer A and B. For instance, executing the ExtractClass 
refactoring, deleting the cityName attribute, renaming the fName 
attribute to lastName, executing the PullUpAttribute refactoring, 
and finally, setting the upper bound cardinality represents one 
operation sequence that is fully applicable. For five changes, an 
enumeration based approach is applicable, but when doubling the 
changes, we already have to explore 3.6 million combinations 
because n! solutions exist where n is the number of changes. 
Thus, in the next section a more scalable approach to solve this 
problem is presented. 

3. FINDING THE BEST REFACTORING 
SEQUENCE FOR MODEL MERGING 

We now describe our proposal and how we consider merging 
different model versions as an optimization problem. We start by 
giving an overview of our approach and provide subsequently a 
more detailed description on how we adapted and used the genetic 
algorithm, including the representation of refactorings and 
refactoring sequences, as well as the fitness function.1 

3.1 Overview 
The goal of our approach is to construct a tentative merged 

model that maximizes the (at least partial) combined effect of the 
parallel operations. Therefore, we use a mono-objective 
optimization algorithm to compute an optimal sequence of 
merging operations in terms of minimizing the number of 
refactorings that are disabled by preceding operations.  

The general structure of our approach is sketched in Figure 4. 
The search-based process takes as inputs the sequences of 
operations that have been applied concurrently to a model by an 
arbitrary number of developers. These sequences can be detected 
using operation detection algorithms presented in previous work 
[25, 26]. Note that these sequences may also be obtained 
alternatively by tools that record operations directly in the 
modeling editor. The sequences are composed of operation 
applications, thereby each entry in a sequence states the operation 
type as well as the elements on which it has been applied. Having 

                                                                 
1 In the following, we focus on refactorings, but the presented 

techniques apply for all kinds of changes in general. 

these sequences2 at hand, we may now combine them into one 
common sequence of operations and compute the number of 
disabled operations. Therefore, we use composite operation 
specifications that contain explicitly specified preconditions in 
combination with a condition evaluation engine  [12] to verify 
whether the preconditions of each operation in a sequence are 
fulfilled in a certain state of a model after the preceding 
operations in the sequence have been applied. If we determine an 
operation with invalid preconditions in a certain state of the 
model, we consider this operation to be disabled in the respective 
operation sequence.  

Developer 1:
1. R11: Rename(…);
2. R12: PullUpAttribute(…);
3. R13: DeleteAttribute(..);

Developer 2:
1. R21: UpdateAttribute(…);
2. R22: ExtractClass(…);

Finding the 
best change sequence 
to minimize conflicts 

Best sequence: 
1. R22: ExtractClass(…);
2. R13: DeleteAttribute(..);
3. R11: Rename(…);
4. R12: PullUpAttribute(…);
5. R21: UpdateAttribute(…);

«abstract»
Person

Male Female

birthday : Date [1..1]
familyName : String [1..2] 

getAge() : Int

Address

cityCode : String [1..1] 
address

1..1

«abstract»
Person

Male Female

birthday : Date [1..1]
city : String [1..1]
citycode : Integer [1..1]

fname : String [1..1] familyName : String [1..1]

getAge() : Int

Figure 4: Finding the Best Operation Sequence. 
The process of generating a solution can be viewed as the 

mechanism that finds the best order among all possible operation 
sequences that minimizes the number of disabled operations. The 
size of the search space is determined not only by the number of 
operations applied by the different developers on the same model, 
but also by the order in which they are applied. Due to the large 
number of possible refactoring sequences, we considered 
refactoring merging as an optimization problem. In the next 
subsection, we describe the adaptation of genetic algorithm to our 
problem domain. 

3.2 Adaptation of the Genetic Algorithm 
3.2.1 Genetic Algorithm 

By using genetic algorithm (GA), the basic idea is to explore 
the search space by creating a population of candidate solutions, 
also called individuals, and evolve them towards an optimal 
solution for a specific problem. 

In GA, a solution can be represented as a vector. Each 
dimension of this vector must contain symbols that are 
appropriate for the specific problem. Each individual of the 
population is evaluated by a fitness function that determines a 
quantitative measure of its ability to solve the specific problem.  

The exploration of the search space is achieved by evolving 
candidate solutions using selection and genetic operators, such as 
crossover and mutation. The selection operator chooses the fittest 
individuals of the current population that are allowed to transmit 
                                                                 
2 Please note that the length of the operation sequences of the 

different developers may vary as shown in Figure 4.  
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their features to new individuals by undergoing crossover and 
mutation. The crossover operator ensures generation of new 
children based on parent individuals and allows the transmission 
of the features of the best fitted parent individuals to new 
individuals. This is usually achieved by replacing randomly 
selected dimensions of one parent individual with randomly 
chosen dimensions from another parent individual to obtain one 
child. A second child is obtained by inverting parents. Finally, the 
mutation operator is applied, with a probability that is inversely 
proportional to its fitness value, to modify some randomly 
selected nodes in a single individual. The mutation operator 
introduces diversity into the population and allows escaping local 
optima found during the search. 

Once selection, mutation, and crossover have been applied 
according to given probabilities, individuals of the newly created 
generation are evaluated using the fitness function. This process is 
repeated iteratively until a stopping criterion is met. This criterion 
usually corresponds to a fixed number of generations. The final 
result (the best solution found) is the fittest individual produced 
along all generations. 

To adopt GA for solving the problem of finding an operation 
sequence that maximizes the combined effect of all concurrent 
operations, we start by constructing an initial GA population that 
represents possible operation sequences. Then, the main GA 
fragment explores the search space by constructing new 
individuals by reordering the operations using the aforementioned 
crossover and mutation operators, whereas promoting the 
individual with the best fitness; that is, the operation sequences 
with the lowest number of disabled operations. The process 
terminates when the termination criterion (maximum iteration 
number) is met, and returns the best sequence of operations. 

3.2.2 Genetic Algorithm for Model Merging 
In the following, we discuss how we adapted the genetic 

algorithm to solve the model merging problem. Therefore, we 
present the representation of operation sequences and the applied 
fitness function to evaluate the quality of operation sequences. 

3.2.2.1 Generation of a Population 
To represent a candidate solution (individual), we use a vector 

containing all operations that have been applied by the developers 
in parallel, whereas each item in the vector represents a single 
operation (with links to the elements to which it is applied) and 
the order of operations in this vector represents the sequence in 
which the operations are applied. Please note that some operations 
can be eliminated in case they are equivalent; that is, two 
developers applied the same operation to the same model 
elements. Thus, we exclude duplicates. Consequently, all vectors, 
each representing one candidate solution, have the same number 
of dimensions that corresponds to the number of all parallel 
operations applied by all developers. 

Figure 5 depicts a possible population of operation sequences 
for the running example introduced above, whereas R** refers to 
the label of the respective refactoring introduced in Figure 4. For 
instance, the solutions represented in Figure 5 are composed of 
five dimensions corresponding to five operations proposed by two 
different developers. All the solutions have the same length, but 
they constitute a different order. 

 

R21 R11 R22 R12 R13

…..
Population 
of solutions

R11 R21 R12 R22 R13

R22 R11 R12 R13 R22  
Figure 5: A Population of Operation Sequences. 

The proposed algorithm first generates a population randomly 
from the list of all operations. Second, crossover and mutation 
operators are used to generate new populations in the next 
iterations as explained in the following. 

3.2.2.2 Generating New Populations 
We used the principle of the Roulette wheel [5] to select 

individuals for mutation and crossover. The probability to select 
an individual for crossover and mutation is directly proportional 
to its relative fitness in the population. In each iteration, we select 
population_size / 2 individuals from the population popi to form 
population popi+1. These (population_size / 2) selected 
individuals will “give birth” to another (population_size / 2) new 
individuals using a crossover operator. Therefore, two parent 
individuals are selected, and a sub-vector is picked on each one. 
Then, the crossover operator swaps the dimensions and their 
relative sub-vector from one parent to the other. When applying 
the crossover, we ensure that the length of the vector remains the 
same. The crossover operator allows creating two offspring p’1 
and p’2 from the two selected parents p1 and p2. It is defined as 
follows: a random position, k, is selected. The first k operations of 
p1 become the first k elements of p’1. Similarly, the first k 
operations of p2 become the first k operations of p’2. 

The mutation operator can be applied to pairs of dimensions 
selected randomly. Given a selected solution, the mutation 
operator first randomly selects one or many pairs of dimensions of 
the vector. Then, for each selected pair, the dimensions are 
swapped.  

3.2.2.3 Evaluating Generated Solutions 
The quality of an individual is computed based on the quality 

of its represented operation sequence. In each operation sequence, 
different operations may be disabled after certain preceding 
operations have been applied. Thus, the quality of a solution is 
determined with respect to the number of disabled operations 
within a certain operation sequence. In other words, the best 
solution is the one that minimizes the number of disabled 
operations, obtained by applying the respective operation 
sequence to the initial model. 

The evaluation of an individual is formalized in terms of a 
mathematical function called fitness function. The fitness function 
quantifies the quality of the proposed solution. The goal is to 
define an efficient and simple—in the sense that it is not 
computationally expensive—fitness function in order to reduce 
the computational complexity. This function should evaluate the 
number of disabled operations. Therefore, we use previously 
developed tools to specify composite operations including their 
preconditions in combination with an engine for evaluating the 
conditions in a certain model state (cf. [12] for details). As 
evaluating conditions can be rather expensive, we only compute 
whether one operation in a sequence disables another for each 
possible pair-wise combination of operations in advance, instead 
of checking the preconditions of each operation with the 
combined effect of every operation that precedes the operation in 
the sequence. Please note that this might miss to detect some 
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disabled operations in certain scenarios: the preconditions of an 
operation might be valid with each single preceding operation, but 
the preceding operations in combination might still invalidate the 
preconditions of the subsequent operations. As this is a rather rare 
case, we left this issue as a topic of future work. 

The information on which operation in a sequence disables 
the other is represented in terms of a matrix n × n where n is the 
number of operations applied originally by the different 
developers in total (after eliminating duplicates). Each item in this 
matrix represents a combination of two operations and holds a 
value of either 0 or 1: if an operation i disables the operation j 
then, the item (i,j) in the matrix takes the value 1, otherwise it 
takes 0. Based on this matrix, we may determine easily the 
number of disabled operations for a specific operation sequence 
by summing up all values in the matrix. 

To illustrate the fitness function, we consider one solution (cf. 
Figure 6) from our running example to evaluate. Since 5 
operations have been applied in parallel, the computed matrix has 
a size of 5 × 5. To determine the number of disabled operations 
for the given sequence, we iterate over the operations of the 
sequence and sum the values of the matrix at the items 
representing current operation (row) and all operations that are 
after that operation in the sequence (column). For the example, 
the fitness function is fi = 2. 

R11 R12 R13 R21 R22

R11 - 0 0 0 0

R12 0 - 0 0 0

R13 0 0 - 0 1

R21 0 1 0 - 0

R22 0 0 0 0 -

R21 R11 R12 R13 R22
Possible solution:

disables disables

 
Figure 6: An Illustration of the Fitness Function. 

4. EVALUATION 
To evaluate our proposal, we conducted experiments on six 

real-world models. We present first the objectives of this 
exploratory study and then we describe and discuss the obtained 
results. For replication purposes, the experimentation material can 
be downloaded from [7]. 

4.1 Research Questions and Experimental 
Setting  

The study was conducted to quantitatively assess the 
performance of our approach when applied to real-world 
scenarios. Thereby, we aimed at answering the following research 
questions (RQ). 

RQ1. To what extent can the proposed approach reduce the 
number of disabled operations? 

RQ2. To what extent the best merging solutions make sense 
semantically? 

To answer RQ1 and RQ2, we used a corpus containing an 
extensive evolution of multiple open source systems. 
Furthermore, we compared our results to those produced without 
taking into consideration the order of operations. We also 
investigated manually the semantics of merged models after 
applying the best solution generated by our algorithm. In the 
following, we describe details about our experiments’ setting. 

We chose to analyze the extensive evolution of three Ecore 
metamodels coming from the Graphical Modeling Framework 
(GMF) [8], an open source project for generating graphical 
modeling editors. We considered the evolution from GMF’s 
release 1.0 over 2.0 to release 2.1 covering a period of two years. 
For achieving a broader data basis, we analyzed the revisions of 
three models, namely the Graphical Definition Metamodel (GMF 
Graph), the Generator Metamodel (GMF Gen), and the Mappings 
Metamodel (GMF Map). Therefore, the respective metamodel 
versions had to be extracted from GMF’s version control system 
and, subsequently, manually analyzed to determine the actually 
applied operations between successive metamodel versions. In 
addition to GMF, we used model fragments extracted from three 
open source projects: GanttProject (Gantt for short) [9], 
JHotDraw [10], and Xerces-J [11]. We considered the evolution 
across three versions of Gantt (v1.7, v1.8, and v1.9.10), three 
versions of JHotDraw (v5.1, 5.2, and 5.3) and four versions of 
Xerxes-J (v1.4.4, v2.5.0, v2.6.0, and v2.6.1). Table 1 summarizes 
for each model evolution scenario the number of applied 
refactorings, as well as the number of model elements for the 
smallest and largest model version.  

Additionally, we had to specify all operation types (i.e., their 
comprised atomic operations and preconditions) that have been 
applied across all versions leading to 38 different types of 
operations. The evolution of the analyzed models provides a 
relatively large set of revisions containing overall 401 different 
applications of the operation types as shown in Table 1. 

Due to the lack of existing parallel revision histories that we 
could have used for evaluating our approach, we emulate parallel 
evolution by dividing the applied operations from the single 
revisions into parallel sequences of operations manually and 
asked five graduate students to additionally modify different 
model fragments of these open source systems in order to cause 
disabled operations in the considered evolutions. 

To assess the accuracy of our approach, we evaluate 
manually the number of conflicts (NC), i.e., number of disabled 
operations of the best operation sequence found by our approach, 
as well as the correctness of the found operation sequences. 

Automatic correctness (AC) consists of comparing the 
suggested operation order to the expected one, operation by 
operation. AC method has the advantage of being automatic and 
objective. However, since different possibilities exist to avoid 
disabled operations, AC could reject a good solution because it 
yields different operation sequences from the original one. To 
account for those situations, we also use manual correctness (MC) 
for evaluating the correctness of the proposed sequence, again 
operation by operation. When calculating MC, we verify whether 
the proposed operation sequence preserves the semantics of the 
design (and not only avoids disabled operations). 

 

Table 1: Number of Refactoring Operations. 

Model 
Number of 

refactorings  
Number of elements 

(min, max) 
GMF Map 14 367, 428 
GMF Graph 36 277,310 
GMF Gen 112 883,1295 
GanttProject 72 451, 572 
Xerces-J 86 1698,1732 
JHotDraw 81 985, 1457 
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We compared our results with: (i) a randomly generated 
order (random search), (ii) a traditional technique where internal 
sequence is not considered (we apply operations originally 
applied by developer 1 then developer 2, etc.), and (iii) another 
local search algorithm (Simulated Annealing) [6]. 

We used the AC and NC scores for the comparison. The 
different scores (AC, MC, and NC) are calculated as an average of 
30 runs to ensure the stability of the results. In addition, the 
comparison between SA, random search and GA is also based on 
an average of 30 runs. 

4.2 Results and Discussions 
Table 2 summarizes our findings over an average of  30 runs. 

In general, using our search-based approach, we were able to 
reduce the number of conflicts. For instance, in JHotDraw only 11 
disabled operations are detected after executing the optimal 
operation sequence. However, 37 disabled operations are detected 
by executing the operations as they appear without altering the 
internal order provided by different developers.  Thus, we reduced 
the number of disabled operations by 70% (1 - 11/37). Similar 
results are obtained on remaining open-source systems where the 
number of conflicts is reduced by 63% (1 - 3/8), 69% (1 - 5/16), 
68% (1 - 16/49), 43% (1 - 19/33), 59% (1 - 12/29) for GMF Map, 
GMF Graph, GMF Gen, GanttProject, and Xerces-J, respectively. 
Thus, we conclude that our proposal reduces significantly the 
number of disabled operations. 

Table 2: Number of Disabled Operations (NC). 

Systems 

Number of disabled 
operations (with 
heuristic search) 

Number of disabled 
operations (without 

heuristic search) 

GMF Map 3 8 

GMF Graph 5 16 

GMF Gen 16 49 

GanttProject  19 33 

Xerces-J  12 29 

JHotDraw  11 37 
 

50
55
60
65
70
75
80
85
90
95

100

Automatic Correctness

Manual Correctness

 
Figure 7: AC and MC Scores for the Case Studies.  

Figure 7 illustrates the AC and MC scores on the different 
models. For the automatic precision, we compared the generated 
operation order to the expected (original) one provided manually 
by a group of five developers. The AC was more than 80% for all 
the various models. The lower AC score was found in JHotDraw. 
JHotDraw was extensively modified within only one large 
revision comprising 27 refactoring operations that will potentially 
lead to disabled operations when divided and applied in parallel. 

Thus, the evolution of this model is a very representative mixture 
of different scenarios for the application of operations leading to 
many disabled operations (as described in Table 2). However, our 
approach finds approximately the best order of operations to 
avoid disabled ones with an acceptable score (more than 80%) 
even if the number of all operations and disabled ones is large.  

Similar to JHotDraw, Xerces-J versions were extensively 
revised leading to a huge list of operations. This can explain also 
the AC obtained by our approach (82%). The remaining models 
contain less model elements and revisions, thus AC scores were 
higher with more than 85%. For instance, the evolution of GMF 
Map contained four revisions, having in each revision a maximum 
number of three refactoring operations. Using our approach, we 
could find almost a very similar order to the reference one. We 
noticed that our technique does not have a bias towards the types 
of operations since most of them were used in the suggested 
solutions.  

With regards to MC, the score for all the six models were 
improved since we found interesting operation order alternatives 
that deviate from the reference ones proposed by the experts: for 
all the six models, we obtained approximately more than 85% as 
MC, e.g., for GMF Graph 94% and for GMF Gen 96%. When we 
manually analyzed the results, we found that many disabled 
operations can be avoided in different manners and sometimes 
changing the order of some operations does not affect the number 
of disabled operations. In the context of this experiment, we 
conclude that our technique was able to find the best order of 
merging operations that reduces the disabled ones. 
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Figure 8: Comparison: Genetic Algorithm, Simulated 

Annealing, and Random Search for XercesJ. 
In Figure 8, we compared our genetic algorithm (GA) results 

with a random search (without the use of change operators) and a 
local search algorithm, namely simulated annealing (SA). The 
local search starts from only one solution (instead of a population 
of solutions) generated randomly and then refined using mutation 
in the next iterations. The AC, MC, and NC scores for SA were 
also acceptable. However, GA performs better than SA in the case 
of Xerces-J, because Xerces-J exhibits a larger model and a larger 
list of applied refactorings, and GA usually provides better results 
than SA in scenarios having a larger search space.  

The correctness results might vary depending on the 
operation sequence which is randomly generated, though guided 
by a meta-heuristic. To ensure that our results are relatively stable, 
we compared the results of multiple executions of GA as shown in 
Figure 9. We consequently believe that our technique is stable, 
since the AC and MC precision scores are approximately the same 
for several executions. 

1458



 

72

74

76

78

80

82

84

86

1 2 3 4 5
Runs

Automatic Correctness

Manual Correctness

 
Figure 9: AC and MC Scores for Multiple Executions (5 runs). 
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Figure 10: AC and MC in Comparison to  

Number of Operations. 
Figure 10 analyzes the correlation between the number of 

operations and the correctness values. More precisely, we sort AC 
and MC based on the number of refactorings for each open source 
system described in Table 1. From this data, we conclude that AC 
and MC are not necessarily affected negatively by a larger number 
of refactorings. For example, MC even increases from 85% to 
96% when the number of refactorings increases from 86 to 112. 
Thus, we can conclude that our proposal shows a good scalability 
and is not affected negatively by the number of refactorings. 
However, when the number of operations increases, it does not 
necessarily mean that the number of disabled operations does.  

5. RELATED WORK 
With respect to the contribution of this paper, namely to 

integrate two parallel operation histories into one operation 
sequence that maximizes the number of successfully applied 
operations, related work dates back to the early 1990ies. Before 
that time, merging has been mostly achieved based on the states of 
the artifacts under version control [23]. The origin work on 
operation-based merging has been published by Lippe [14]. He 
pointed out several advantages of operation-based merging over 
purely state-based merging and contributed the important notion 
of frontier set. The frontier set, including frontier points, is an 
indicator how far one can merge two sequences of changes. One 
goal is to shift the frontier points as far away from the original 
model version as possible to maximize the applicability of the 
performed operations. One way to shift the frontier points is to 
reorder the atomic operations, i.e., to apply all non-conflicting 
atomic operations before the conflicting ones. What we have 
contributed with our search-based approach is a mechanism to 
minimize the critical points in the merge process where users have 

to be involved, even when composite operations, such as 
refactorings, have been applied. 

Operation-based merging has been heavily applied in 
asynchronous collaborative graphical editing. Edwards [13] has 
defined several strategies for combining two operation sequences 
into one sequence. The strategies range from fully automatic 
merging by computing each possible sequence of non-conflicting 
changes to interactive merging allowing the user to decide how 
each change of a conflicting change pair should be incorporated in 
the finally merged model. Ignat and Norrie [15] have compared an 
operation-based approach and a state-based approach for merging 
change logs of collaborative graphical editors. They distinguish 
“real” conflicts from resolvable conflicts. The latter may be 
resolved by finding an appropriate order to incorporate the 
changes to the finally merged model. For finding the appropriate 
order, priority lists for change types have to be defined.  

With the advent of MDE, the research topic collaborative 
modeling is gaining momentum. Several state-based approaches 
for model versioning have been proposed (cf. [16, 23] for an 
overview), as well as a few operation-based approaches. Koegel et 
al. [18] record changes in modeling editors and provide conflict 
detection for two sequences of recorded changes. They also 
support composite changes, but only consider how these 
operations are build up from atomic changes while explicit 
preconditions are disregarded. If they detect that a composite 
change is in conflict with an atomic change, they let the user 
decide which one to take. Similarly, Barret et al. [19] discuss 
pushing the frontier points as far as possible by incorporating all 
non-conflicting changes to produce a merged model and then let 
again the user decide which change of a conflict pair to prioritize. 
Other operation-based approaches for models have been presented 
in [20, 22], but no dedicated reordering strategies have been 
discussed. In [21], the authors mention that finding an appropriate 
sequence for unifying the changes of two parallel change sets is an 
optimization problem, but they based their approach on manual 
conflict resolution during the merge process.  

In summary, reasoning on arbitrary application orders of the 
operations to unify (including composite changes) to find the 
order that is maximizing the successful application of the 
operations is not considered by existing operation-based merge 
approaches. State-of-the-art approaches mostly reside on a two-
phase process: first, they apply the non-conflicting changes and 
then let the user select the change to be prioritized out of two 
conflicting changes. In contrast, our approach explores arbitrary 
sequences and the result is the most applicable sequence of 
operations found by the genetic algorithm. Thus, we are able to 
minimize the critical and labor-intensive tasks involving user 
interaction in the merge process going beyond existing state-of-
the-art approaches.  

Our proposal is part of the search-based software engineering 
(SBSE) contributions [29]. SBSE uses search-based approaches 
to solve optimization problems in software engineering. Based on 
surveys proposed by Harman et al. [29, 30], our work represents 
the first attempt to treat the problem of model merging as a 
combinatorial optimization problem. 

6. CONCLUSION 
This paper proposes a novel approach for merging parallel 

versions of models by finding the best operation sequence. Such a 
sequence is very useful in model versioning to find a tentative 
merge, as a basis for subsequently resolving the remaining 
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conflicts manually. Therefore, a merged model is necessary that 
maximizes the combined effect of all operations that have been 
applied by multiple developers in parallel to the same model. This 
is achieved by finding an optimal (potentially intermingled) order 
of operations that minimizes the number of disabled operations. 
As the search space in terms of all possible sequences of 
operations is potentially huge, we consider the merging process as 
an optimization problem. 

We evaluated our proposal with six real-world models 
extracted from different open source systems. The experiment 
results indicate clearly that the number of disabled operations is 
reduced significantly in comparison to the number of disabled 
operations without taking into consideration the different possible 
operation orders. We further evaluated successfully that the 
computed operation sequences lead to correct models in terms of 
their semantics in most of the considered cases. 

Although our approach has been evaluated with real-world 
models with a reasonable number of applied operations, we are 
working now on larger models and with larger list of operations 
applied in parallel. This is necessary to investigate more deeply 
the applicability of the approach in practice, but also to study the 
performance of approach when dealing with very large models. 
Moreover, we plan to investigate an empirical study to compare 
with other search-based algorithms. More generally, we plan to 
extend this work by fixing detected conflicts since this work focus 
only on minimizing the number of disabled operations. 
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