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ABSTRACT
Even though both population and quantitative genetics, and
evolutionary computation, deal with the same questions,
they have developed largely independently of each other.
I review key results from each field, emphasising those that
apply independently of the (usually unknown) relation be-
tween genotype and phenotype. The infinitesimal model
provides a simple framework for predicting the response of
complex traits to selection, which in biology has proved re-
markably successful. This allows one to choose the schedule
of population sizes and selection intensities that will max-
imise the response to selection, given that the total number
of individuals realised, C =

∑
tNt, is constrained. This ar-

gument shows that for an additive trait (i.e., determined by
the sum of effects of the genes), the optimum population size
and the maximum possible response (i.e., the total change

in trait mean) are both proportional to
√
C.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems

General Terms
Theory

Keywords
Theory, Genetic algorithms, Selection, Speedup technique,
Working principles of evolutionary computing, Population
genetics

1. INTRODUCTION
Evolutionary biology began with Darwin’s development of

the idea of natural selection, by analogy with the artificial se-
lection of domesticated plants and animals. The rediscovery
of Mendelian genetics in 1900 led to its eventual synthesis
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with Darwinian selection; by the 1930s, the population ge-
netics developed by Fisher, Haldane and Wright provided a
sophisticated quantitative theory of evolution [32]. Follow-
ing the elucidation of the physical basis of heredity in the
1960s, Kimura applied stochastic population genetics to the
evolution of DNA sequence [16]. In parallel, quantitative ge-
netics, developed in the practical context of plant and animal
breeding, provided a statistical description of the evolution
of complex traits that is largely independent of the genetic
details.

It was realised very early that selection provides a pow-
erful and general algorithm for designing complex systems:
indeed, this was the central problem which Darwin set out
to explain. Fisher [7] presented a simple geometrical model
for optimisation in multiple dimensions, which has been
widely applied in recent years [28]. Wright [42] introduced
the metaphor of the “adaptive landscape”, and the theory
of a “shifting balance”, to understand how evolution might
avoid being trapped at local optima. Kimura [16] estimated
the amount of information that could be accumulated by
selection

(
∼ 108 bits since the Cambrian). Digital comput-

ers were first used to simulate evolving populations in the
1950’s, and the idea that such simulations could be used to
solve computational problems was taken up soon after [9].
This has led to diverse approaches to evolutionary compu-
tation: genetic algorithms, genetic programming, artificial
life, and so on. Population geneticists also used computer
simulation extensively, yet there has been remarkably little
interaction between these parallel developments.

Why have the fields developed almost independently? Evo-
lutionary biology is concerned with many issues that are not
directly relevant to computation: tracing the actual history
of species and genes, understanding the genetic basis of phe-
notypic variation and the processes that maintain it, under-
standing the origin of new species, and so on. Yet, natural
selection plays a special role as the sole cause of adaptation,
and understanding how selection leads to complex adapta-
tion is central to both evolutionary biology and evolutionary
computation.

An important difference between the fields is that evolu-
tionary biologists are resistant to ideas that evolution is in
any sense optimal, leading to “progress”, or to any necessary
increase in complexity (though, see [37]). This is largely
a reaction against naive ideas that evolution acts “for the
good of the species” (see [41]). Thus, rather than asking
what genetic system would be most effective, we ask what
in fact evolves - which may in extreme cases even lead to ex-
tinction (e.g. [8]). Another difference is that in evolutionary
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computation, we are free to make up arbitrary rules - retain-
ing the fittest individuals indefinitely, allowing sex between
more than two individuals, and changing parameters at will.
Nevertheless, actual algorithms tend to use the same basic
processes, and as we shall see, diverse implementations are
often equivalent. The lack of communication between evo-
lutionary biology and evolutionary computation may sim-
ply reflect the human tendency to form separate communi-
ties; indeed, both fields are fragmented into many subfields,
grouped around different journals and conferences. The ar-
guments set out here suggest that recombination between
fields as well as subfields would be beneficial.

Evolutionary biology and evolutionary computation share
the same fundamental questions, and can learn much from
each other. First, how effective can selection be? Think-
ing on the largest scale, were ∼ 4,000 million years (Myr)
needed for the present complexity of life to evolve? Could
we have evolved in 400 Myr, or in 40 Myr? What limits
the ability of selection to evolve and maintain complex or-
ganisms and complex algorithms? On a smaller scale, how
should we optimise a selection scheme, given constraints on
the number of organisms and their reproductive capacity,
or on the number of computations? Second, does the ge-
netic system evolve to be evolvable? In evolutionary biol-
ogy, a long-standing question has been whether mutation
and recombination are maintained because these processes
produce the variation that is essential for adaptation; such
questions are close to the parallel questions in evolutionary
computation, of what are the optimal rates of mutation and
cross-over, and how can they be chosen. A harder question -
which has only recently received sustained attention in biol-
ogy - concerns the relation between genotype and phenotype
[20]. In evolutionary computation, it is clear that the way
an algorithm is coded is crucial. It is extraordinary that the
development and behaviour of a complex organism can be
coded by relatively little information (at most 6 × 109 bits
in the human genome, for example), and that organisms are
robust to random changes in this code.

2. A COMMON FRAMEWORK
The basic theoretical framework is common to both fields.

A genotype is represented by a linear sequence that repre-
sents a DNA molecule or a bit string. In real organisms, each
nucleotide can take one of four values {A, T,G,C}, but this
is most often approximated by {0, 1}, since there are usu-
ally at most two variants per site. Blocks of sequence can
be represented by multiple discrete values (termed alleles)
or by a continuous value. Nevertheless, for most cases a bit
string X suffices.

Selection acts through the fitness of each individual; we
take the fitness of an individual to be the number of off-
spring it produces after one discrete generation, W , or its
rate of reproduction in continuous time, r. A full stochastic
model would require the distribution of fitness of each geno-
type. However, when selection is weak, all that matters is
the expected fitness; the variance in fitness determines the
rate of random fluctuation, and can be taken to be the same
for all genotypes. We write the expected fitness of geno-
type X as W (X) or r(X), in discrete or continuous time.
In evolutionary computation, “fitness” often refers to some
measure that is to be optimised, and reproduction is some
function of this measure. We will keep to the population

genetic usage, referring to such measures as fitness compo-
nents, ω(X). Often, we also need to consider a set of traits,
whose expected value is an arbitrary function of genotype,
z(X), and which in turn determine the fitness components,
ω(z); traits can be arbitrary functions of genotype. To give
a concrete example, a cow can be described by a set of traits
(milk yield, growth rate, lifespan, etc), and these depend in
a complex way on both genotype and environment. These
traits in turn determine some selection index, ω, which the
farmer uses to determine which cows will breed: for exam-
ple, those below some threshold all have zero fitness (note
that there are complex issues concerning the way we average
over variation at each level, which we ignore). Population
genetic terms and notation are summarised in Table 1 of the
accompanying paper (Paixão and Barton, 2013).

Crucially, in both the real and the virtual worlds, the re-
lation between phenotype (i.e., the traits, z) and genotype,
X, is unknown. It can be determined for any particular
X by rearing an organism, or by carrying out a computa-
tion, both being expensive. We take this realisation of the
organism or algorithm to determine the cost of the breed-
ing program. Of course, in a computer we directly observe
the code, and in biology, it is now feasible to determine the
entire genome of an organism. However, observing the phe-
notype of even a very large number of individual genotypes
does not tell us which sites cause differences in phenotype,
or how they interact: this fundamental problem frustrates
large-scale genome-wide association studies aimed at finding
the variants that cause human disease. In plant and animal
breeding, it is not at all clear how much knowing the full
genome sequence helps.

The basic processes of selection, mutation, recombination
and random sampling are common to both fields. (Migration
between distinct populations may also be important, but is
not considered here). In evolutionary computation, any kind
of mutation or recombination can be invented, but also in
biology, there can be arbitrary errors and rearrangements in
copying the DNA sequence.

Provided that the composition of a population changes
slowly, evolution can be approximated as being continuous
in time, with the details of each process being absorbed into
a single parameter - the selection coefficient, s, the rate of
random sampling fluctuations, 1 /Ne , the rate of mutation,
µ, and so on. As we shall see, the evolution of allele frequen-
cies at individual loci may be slow, even when selection on
the overall phenotype is strong. The outcome depends on
the ratios between these rates (Nes , Neµ, etc.); this gives
population genetics a remarkable generality, which carries
over to describe the idiosyncrasies of genetic algorithms.

Under this continuous time approximation, the distribu-
tion of states of the population follows a diffusion equa-
tion that depends on the mean and variance of change be-
tween generations: there is a precise analogy between the
stochastic evolution of a population, and the diffusion of a
molecule. In physics, we may deal with an actual collection
of molecules, whereas in population genetics, we must imag-
ine an abstract probability distribution across possible states
of a single population; however, the mathematical descrip-
tion is the same. (The diffusion approximation developed
independently in physics and population genetics, both trac-
ing back originally to a model for share prices; [5]). Kimura
[17] developed the diffusion approximation and applied it to
molecular evolution; it is intimately connected with the co-
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alescent process that describes the evolution of genealogical
relations between sampled genes.

Even where the diffusion equation cannot be solved, it
plays a key role in justifying the use of scaled parameter
combinations, and allowing extrapolation from simulations
of small populations over short times out to very large pop-
ulations over long times. Moreover, it provides a precise
connection with statistical physics, which rests on the same
mathematical foundation.

2.1 Some key results
Although any model can in principle be solved numeri-

cally, we seek general analytical results that aid our intuitive
understanding. The main difficulty is in dealing with arbi-
trary interactions in the nonlinear relation between genotype
and phenotype, z(X). Nevertheless, there are some general
results, summarised in Table 1. Most of these results apply
with arbitrary interactions; exceptions are the three results
for genetic load are derived assuming no interaction, but
which extend to allow some forms of interaction.

It is surprising that few results have been transferred be-
tween the fields, or independently re-derived. Perhaps the
most prominent theoretical concept in evolutionary compu-
tation is Holland’s [14] idea of “schema”, which correspond
in population genetics to the average excess of a combina-
tion of alleles; Livnat et al.’s [22] coefficients of “mixability”
are closely related, and correspond to average effects - a
regression of trait values onto the allelic values. Attention
has been drawn to Wright’s “shifting balance” theory, but
only in a qualitative way [27, 39]. The strongest connec-
tion between evolutionary biology and evolutionary compu-
tation has been made by Mühlenbein and Mahnig [24], who
use the breeder’s equation to make a deterministic analysis
of genetic algorithms; they emphasise the independent evo-
lution of allele frequencies, which will be the focus of this
note. Several statistical physicists have included the effect
of random sampling on evolving populations; Prügel-Bennet
[33] describes a maximum-entropy approximation for trait
evolution, whilst [4, 38] independently derive the stationary
distribution in the limit where populations are close to fix-
ation for a single type. These results are closely related to
Wright’s [43] more general formula for the stationary distri-
bution of allele frequencies [2, 3].

2.2 Evolution as hill-climbing
We will focus on how selection can most efficiently accu-

mulate favourable alleles, viewing evolution as a hill-climbing
algorithm. This needs some justification, since the cen-
tral problem in optimisation is often seen quite differently:
how to find the best solution, without being trapped at lo-
cal peaks. These different viewpoints were at the heart of
the long dispute between Fisher and Wright [31]. Fisher’s
view was that although “adaptive valleys” obviously exist,
populations may never cross them: there may always be
ways by which fitness can increase, especially since in na-
ture, the adaptive landscape changes with the environment.
The metaphor of an adaptive landscape may be misleading
when visualised in two dimensions: if there are enough de-
grees of freedom, progress may always be possible in some
direction. If the landscape were in fact so rugged that pop-
ulations are trapped within a few steps, then any search
algorithm would be frustrated: values of individuals already

tested must carry some information about untested individ-
uals, otherwise search might as well be random.

It is important to understand that there are distinct ver-
sions of the adaptive landscape: it may refer to individuals
or to populations, and it may refer to genotypes or to traits.
The first distinction is between the fitness of an individual,
considered as a function of its genotype or traits (W (X) or
W (z)), and the mean fitness of a population, considered as
a function of its allele frequencies, or trait means

(
W̄ (p) or

W̄
(
z
))

; Wright used these without distinction [32]. How-

ever, it is the latter that leads to a quantitative theory: se-
lection moves populations through allele frequency or trait
space at a rate proportional to the gradient of mean fitness,
and (provided that genes are well shuffled by recombination)
the stationary distribution is proportional to W̄ 2Ne [43].

The second distinction is between the adaptive landscape
in allele frequency space versus trait space. We will assume
a smooth relation between fitness and traits, and ask how ef-
ficiently selection can push a population towards the locally
fittest trait combination. However, even if there is a single
peak in trait space, there may be multiple peaks in genotype
space: even in the simplest case where traits are additive
(i.e., z =

∑
i αiXi

)
, many combinations of + and - alleles

can give the optimal phenotype. However, populations can-
not evolve between different combinations by selection alone,
because mixed populations will produce sub-optimal geno-
types by recombination. Despite this microscopic rugged-
ness of the landscape, low rates of mutation and random
sampling can allow populations to evolve smoothly and pre-
dictably at the phenotypic level [3].

Note that in a large sexual population, if the individual-
level landscape has multiple peaks, then so will the population-
level version - provided that we consider allele-frequency
space: if all single-step changes from the locally fittest geno-
type are deleterious, then none can invade from low fre-
quency, and a fitter combination of alleles will be broken
up by recombination. In contrast, an asexual population
can move towards a higher peak provided that the mutation
rate is high enough that fitter combinations, involving mul-
tiple changes, are generated. A similar smoothing occurs in
a sexual population, when we consider the evolution of phe-

notypic traits: the mean fitness of a population
(
W̄
(
z
))

is

a smoothed version of the individual-level landscape (W(z)),
so that if the genetic variance is high enough, adaptive val-
leys may be smoothed out [19].

2.3 Evolution of allele frequencies
In the following, we assume that alleles are well shuffled

(i.e., in linkage equilibrium), so that the composition of a
population is described by its allele frequencies. This is a
good approximation for natural populations if recombina-
tion is faster than other processes, and indeed, applies to
most outcrossing sexual species. In simulations, it can be
imposed by constructing individuals locus by locus, from
the list of allele frequencies; this is a kind of mass mating,
in which all the genomes in the population take part, rather
than just two at a time [24]. In a breeding program, the same
result could be obtained by allowing several generations of
reproduction in the absence of selection.

The prevalence of sexual reproduction suggests that nat-
ural selection acts most efficiently in this limit of complete
shuffling. However, it has taken a substantial theoretical ef-
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Population genetics

Breeder’s equation ∆z̄ = Va
Vp
S Va : additive variance

Vp : total variance
S : change in z̄ due to selection

[23]

Wright’s gradient formula ∆z̄ = Va
∂ log(W̄)

∂z̄
[21, 43]

Secondary theorem of natural selection ∆z̄ = cov
(
W
W̄
, z
)

[30, 35]

Mutation load ∆W̄
W̄
∼ −U U: total rate of deleterious mutation [10, 25]

Substitution load
∑
t ∆log

(
W̄
)
∼ − log

(
1
p0

)
p0 : initial allele frequency [11]

Drift load ∆W̄
W̄
∼ − d

2Ne
d : #of degrees of freedom
Ne : effective population size

[18]

Wright’s distribution
(∏

i p
4Neµ−1
i q4Neν−1

i

)
W̄ 2Ne µ, ν: rate of mutation away from al-

leles P, Q
[43]

Statistical physics

Fitness flux
〈
e−NeΦ+∆H〉 = 1 Φ : net fitness flux

∆H : change in log likelihood
[15, 26]

Maximum entropy ∂
∂t
〈A〉 ∼ B. (α− α∗) [3]

Evolutionary computation

Schema theorem E
[
gt+1[H]

gt[H]

]
≥ Wt[H]

W̄t
(1− π) gt[H] : frequency of H at time t

π : probability that H is broken up
[14]

Drift analysis [12]

Table 1: Summarises key results from the various fields, in schematic form. The first three lines give
alternative formulae for the change in trait mean, ∆z̄, due to selection and reproduction, ignoring random
fluctuations. The next three lines give the net reduction in mean fitness (i.e., the genetic load) due to
deleterious mutations at total rate U , due to substitution of an allele that was initially at frequency p0,
and due to random sampling (termed drift in population genetics). The final formula drawn from population
genetics gives the stationary distribution of allele frequencies under mutation, selection and random sampling.
The first result from statistical physics relates the change in log likelihood, ∆H, to the net fitness flux, Φ, a
measure of the total selection acting along an arbitrary path. The next result approximates the change in
expectation of arbitrary traits, A, under selection on those traits α; α∗ is the selection that would maintain
the current 〈A〉, and B is a generalised additive genetic covariance. The penultimate result sets a bound
on the change in frequency of a combination of alleles (or schema), H, given by the product of its relative
fitness and its chance of surviving recombination and mutation, 1 − π. Finally, drift analysis sets bounds on
the number of computations (or runtime) needed to reach some desired region of search space.

fort to show exactly why this is so, and how it leads to the
selection of higher rates of recombination. Essentially, re-
combination is favoured because it breaks up negative asso-
ciations between favourable alleles (++–, –++ etc.), which
mask the effects of each individual allele. Thus, in the pres-
ence of negative associations, recombination increases the
additive genetic variance that drives the response to selec-
tion. An allele that increases recombination is at an im-
mediate disadvantage, because it breaks up favourable gene
combinations, but gains a long-term advantage, because it
is associated with increased additive variance [1]. The key
issue, then, is why there should tend to be negative associa-
tions among alleles. Such associations may be generated by
selection, but this requires a delicate choice of parameters,
for which there is little evidence. More generally, random
drift interacts with directional selection to generate nega-
tive associations: in the simplest case, different favourable
mutations almost always arise separately, and so must be
brought together by recombination. This is known as the
Hill-Robertson effect [13]; when a large number of loci are
selected, it is more significant than epistatic interactions,
even in large populations [29]. This justifies our focus on
well-shuffled populations.

2.4 The infinitesimal model
Here, we focus on the infinitesimal model, introduced by

Fisher [6]. This has been developed as the foundation of
animal breeding, yet has received relatively little attention
within population genetics. It allows a remarkably general
analysis of the performance of genetic algorithms, without
requiring detailed knowledge of the complex relation be-
tween genotype and phenotype.

At the phenotypic level, the infinitesimal model is easily
defined, Unrelated parents produce offspring with trait val-
ues that are normally distributed around the mean of the
parents, with fixed variance V0

2
. If individuals mate ran-

domly, and all have the same fitness, then the population
rapidly tends to a normal distribution with variance V0:
random mating reduces the variance twofold in each gen-
eration, but this is compensated by the release of genetic
variance within families (i.e., Vt+1 = Vt

2
+ V0

2
). Selection

can produce arbitrary distortions in the trait distribution,
but these rapidly dissipate, so that in the long term, only
the mean changes, the variance remaining constant.

If parents are related, sharing a fraction F of their genes
identical by descent, the within-family variance is reduced
by a factor (1 − F ); in a population of size N , (1 − F )
decreases by a factor

(
1− 1

N

)
per generation. Mutation

adds a constant variance Vm per generation, and so at an
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equilibrium between mutation, random sampling, and sexual
reproduction, the trait variance equilibrates at N Vm.

This simple phenotypic model can be justified in the limit
of a very large number of unlinked loci, n,with additive ef-
fects. The within-family variance is generated by recombi-
nation, at a rate proportional to the number of heterozygous
loci, which is in turn proportional to (1 − F ). Selection on
each locus is weak

(
s ∼ 1

n

)
, and so only changes the genetic

variance over timescales of ∼ n generations. Short - term
changes in the distribution are due to correlations between
loci (linkage disequilibria), and so dissipate rapidly in the
absence of genetic linkage. Here, we assume that the pop-
ulation is well shuffled (i.e., in linkage equilibrium), so that
the distribution is close to Gaussian; this is a good approxi-
mation even with quite strong selection, and can be imposed
directly in a genetic algorithm.

The infinitesimal model leads immediately to a simple pre-
diction for the total response to selection - that is, the total
change in the expected trait mean [34]. Genetic variance
dissipates at a rate 1 − 1

N
, and so the total genetic vari-

ance, summed over generations, is V1N . Since the change
in mean (i.e., the selection response) is proportional to Vt in
each generation, the total change is just

∑∞
t=1 ∆z̄t = N∆z̄1.

Robertson [34] gave an alternative derivation of this re-
sult, based on the probability u(a, p) that an allele with
effect a and with frequency p will ultimately be fixed in
the population. The total change in the trait mean must
be
∑∞
t=1 ∆z̄t=

∑
i ai (u (ai, pi)− pi), where the sum on the

right is over all loci, i. If the effect of an allele, a, is weak,
then u = p+Nβ a p(1−p)+O

(
a2
)
, where β = ∂W/∂z [34].

This immediately gives
∑∞
t=1 ∆z̄t = Nβ

∑
i a

2
i pi (1− pi) =

NeβV1 = N∆z̄1. This shows that under the infinitesimal
model, the change in the mean is due to the cumulative
effect of small perturbations to the distribution of allele fre-
quencies at each locus. This simple additive approximation
predicts the selection response over 50 generations remark-
ably well, for a wide range of traits and organisms (Figure
1, from [40]). This suggests that the infinitesimal model
may also give a good approximation to arbitrary genetic al-
gorithms, where the relation between genotype and traits,
z(X), is far from additive.

Robertson’s derivation suggests a generalisation to arbi-
trary relations between genotype and phenotype. If traits
depend on a large number of loci, then strong selection on
the traits may only slightly perturb the underlying distribu-
tion of allele frequencies from its neutral trajectory. More-
over, this perturbation depends only on the marginal effect
of the allele - that is, its additive effect on the trait. In the
short term, the mean changes at a rate proportional to the
additive variance, which itself stays approximately constant.
In the longer term, the additive effects change as the genetic
background changes, in an unpredictable way that depends
on how genes interact. However, it may still be possible to
optimise the selection scheme, using purely “local” informa-
tion.

2.5 Optimising the selection response
How can we optimise the net response to selection, for a

given total number of individuals? For simplicity, we ne-
glect mutation, and assume that the mean changes solely by
selection on the initial pool of variation. We begin by as-
suming truncation selection on an additive trait, z, choosing
the best θ of individuals out of N (0 < θ < 1). In order to

Figure 1: The ratio between the change in mean
over 50 generations, and the change in the first
generation (R50/R1), plotted against effective pop-
ulation size, Ne. Symbols represent the outcome of
independent selection experiments in maize, mouse
and Drosophila. The upper curve (labeled 2Ne)
is Robertson’s [34]) prediction for the ultimate re-
sponse, R∞ =2NeR1, whilst the lower curve is the
prediction for the response at 50 generations, from
the same infinitesimal model. The middle curve is
the prediction including a contribution from mu-
tation, Vm = 0.001Vg, which makes little difference
over this short timescale. The observed responses
are about 10-20% below the prediction, probably
reflecting the effect of selection on alleles of large
effect; however, the overall relationship fits surpris-
ingly well, given that the selected traits are unlikely
to have an additive genetic basis. From Figure 4 in
[40].

select a fraction θ from a normal distribution, those more
than x standard deviations above the mean must be cho-
sen; θ = 1

2
erfc

[
x√
2

]
, where erfc[]is the integral of a Gaus-

sian. The direct effect of selection is to change the mean
by S = i(θ)

√
V , where V is the variance of the trait, and

where i = e
− x2

2

θ
√

2π
. Throughout, we assume that there is no

non-genetic variance.
The problem is to choose the optimal Ni, θi, given the

constraint C =
∑∞
t=1 Nt. We will see that the maximum

possible response has the form A
√
V1C1, where A is to be

determined. With this ansatz, we must trade an immediate
gain of i (θ1)

√
V1 against a future gain of:

A

√
(C1 −N1)V1

(
1− 1

N1θ1

)
Note that the loss of variance depends on the number of

selected individuals, N1θ, whereas the cost is counted as
the total number of individuals, C1 =

∑∞
t=1 Nt. Assume

that Ct, Ntθt are large, so that Ct � Nt, Ntθt � 1. Then,

the optimal scheme is N1 =
√
C /θ1 , A = −2i′θ

3/2
1 . The

same argument applies throughout the process, and so gives
the full schedule of Nt, θt. We see immediately that the
optimal θ is the same throughout, but that the optimal Nt
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decreases with the remaining number of individuals,
√
Ct.

Approximating change as continuous in time, this implies

that ∂C/∂t = −N = −
√
C/θ, so that C =

(√
C1 − t

2
√
θ

)
2,

with selection ending at time tmax = 2
√
C1θ. Integrating

over time, we have:

A
√
V1C1 = i

√
V1

∫ 2
√
C1θ

0

exp

(
−
∫ t

0

dτ

2
√
Cτ/ θ

)
dt

=
2i
√
V1C1θ

1 + θ

This confirms the ansatz, and implies A = 2i
√
θ

1+θ
. Combin-

ing this with the criterion for optimising θ, A = −2i′θ3/2,
we find θ = 0.391, A = 0.883. For comparison, if we se-
lect with constant N, θ for time C

N
, then the response is

i
√
V1

∫ C/N
0

exp
(
− t
N θ

)
dt=2N θ i

√
V1

(
1− exp

(
− T

2N θ

))
. The

optimal solution is now when θ = 0.270, N = 1.213
√
C,

T =
√
C

1.213
= N

1.471
, and the net response is 0.574

√
V1C1 -

rather less than with the optimal schedule, in which N falls
over time, and the total response is 0.883

√
V1C1. These val-

ues agree with Robertson’s analysis of this problem [36].

20 40 60 80 100 120
time

10

20

30

40

50

Dzt

Figure 2: The decrease in the rate of response
to truncation selection over time. The blue curve
shows the change in mean in successive generations,
averaged over 5 replicates. The red curve shows
the predicted change, ι[θ]

√
Vt, which is proportional

to the standard deviation of the trait. The up-
per smooth curve shows the predicted rate of de-
cay of the standard deviation,

√
(1− 1/N)t ∼ e−t/(2N).

The area under the blue curve gives the total se-
lection response, whilst the area under the smooth
curve gives the prediction based on the infinitesi-
mal model. There are N=30 selected individuals,
each with 104 selected loci with equal additive ef-
fects, α=1. In each generation, N/θ=111 individuals
are generated; the fraction selected is θ=0.27. Initial
allele frequencies are drawn from a beta distribution
with mean p0=0.5, and variance F p0q0, F = 0.5.

These arguments are illustrated by simulations of trunca-
tion selection on an additive trait, based on 104 loci of equal
effect, α=1, and starting with average allele frequency 0.5
- and hence a trait mean

∑n
i=1 αi pi = n

2
. Figure 2 shows

an example with N = 30 selected individuals, showing how
the standard deviation initially decreases as

√
(1− 1/N)t,

but then falls away more rapidly than predicted by the in-
finitesimal model, as selection fixes favourable alleles. In
any generation, the change in mean is very close to the pre-
diction, ι

√
Vt. The area under these jagged curves gives

the total response to selection, which is somewhat less than
the infinitesimal prediction, shown by the area under the
smooth curve. Figure 3 shows that the infinitesimal model
predicts the ultimate response quite well for N≤30; in larger
populations, selection is more effective at eliminating varia-
tion relative to sampling, and so the infinitesimal prediction
is much to high. This must necessarily be so, because the
ultimate response approaches the maximum possible, n

2
, as

N increases. Figure 4 shows the optimal choice of N ,and
the maximum possible response, given the constraint that
the total number of individuals realised is C = N T (and
using constant N , θ for simplicity). This fits the predictions

N̂ = 1.213
√
CV0, R̂ = 0.574

√
C well for N ≤ 50; for larger

values of C, N̂ is larger and R̂ is smaller, because selection
as well as sampling eliminate variation.

1 5 10 50 100
N0
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2000
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ÚDz

Figure 3: Points show the ultimate response to se-
lection,

∑∞
t=1 ∆z̄t, plotted against the number of se-

lected individuals, N ; other parameters are as in
Figure 2. The upper flat line shows the maximum
possible change, n

2
= 5000, and the curve shows the

prediction based on the infinitesimal model, 2N ∆z̄1.

3. CONCLUSIONS
This note has outlined how quantitative genetics can pre-

dict the response of a population to selection on a trait,
without any detailed knowledge of the genetic basis of that
trait: the assumption is essentially that selection is spread
over so many loci that the distribution of allele frequencies
at each is hardly perturbed. In biology, this very simple
model, which assumes additive effects, is remarkably suc-
cessful in predicting the short-term evolution of traits that
are clearly not additive (e.g. Figure 1). Figure 3 shows that
the ultimate change due to selection on an additive trait -
made without making any assumption whatever about the
number of loci involved, the distribution of allele frequen-
cies, or the distribution of allelic effects - is predicted well
for small population sizes, provided that the number of loci
is large. It overestimates the response for larger popula-
tion sizes, essentially because the population approaches the
global optimum, which sets an upper bound on the response.
One might object that in evolutionary computation, one is
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interested in precisely this regime. However, local predic-
tions for the response over some tens of generations, may
allow optimisation of the selection scheme. In biology, arti-
ficial selection of domesticated plants and animals has been
remarkable, even though it is very far from producing an
ultimate “global optimal” (whatever that might mean).

Figure 4: The optimal population size, N̂ , and
the corresponding maximum possible selection re-

sponse, R̂ =
(∑T

t=1 ∆z̄t
)

max, plotted against the

total number of individuals realised, C = T N/θ.
These values are calculated by interpolation from
the simulation results summarised in Figure 3. The
straight lines show the theoretical predictions, N̂ =
1.213

√
CV0, R̂ = 0.574

√
C.
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There is clearly much more to be done in applying quan-
titative genetic methods to improving evolutionary algo-
rithms: most obviously, in finding the range of non-additive
models for which these methods are sufficient approxima-
tions. Mutation should also be incorporated, and here one
must take account of the effect of mutation in degrading
the mean, as well as increasing the variance. An intrigu-
ing possibility is to use the regression of mean and variance
of trait values on the number of mutations in the realised
individuals, to estimate the optimal mutation rate.
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