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ABSTRACT

Particle swarm optimization (PSO) is a popular nature-
inspired meta-heuristic for solving continuous optimization
problems. Although this technique is widely used, up to now
only some partial aspects of the method have been formally
investigated. In particular, while it is well-studied how to
let the swarm converge to a single point in the search space,
no general theoretical statements about this point or on the
best position any particle has found have been known. For a
very general class of objective functions, we provide for the
first time results about the quality of the solution found. We
show that a slightly adapted PSO almost surely finds a lo-
cal optimum by investigating the newly defined potential of
the swarm. The potential drops when the swarm approaches
the point of convergence, but increases if the swarm remains
close to a point that is not a local optimum, meaning that
the swarm charges potential and continues its movement.

Categories and Subject Descriptors

I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—heuristic methods

General Terms

Algorithms, Performance, Theory

Keywords

Particle swarm optimization, quality of solution, fitness land-
scapes

1. INTRODUCTION
Background. Particle swarm optimization (PSO), introduced
by Kennedy and Eberhart [10, 4], is a very popular meta-
heuristic for solving continuous optimization problems. It
is inspired by the social interaction of individuals living to-
gether in groups and supporting and cooperating with each
other. Fields of very successful application are, among many
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others, Biomedical Image Processing [18], Geosciences [12],
and Materials Science [14], to name just a few, where the
continuous objective function on a multi-dimensional do-
main is not given in a closed form, but by a“black box.” The
popularity of the PSO framework in these scientific commu-
nities is due to the fact that it on the one hand can be
realized and, if necessary, adapted to further needs easily,
but on the other hand shows in experiments good perfor-
mance results with respect to the quality of the obtained
solution and the speed needed to obtain it. By adapting its
parameters, users may in real-world applications easily and
successfully control the swarm’s behavior with respect to
“exploration” (“searching where no one has searched before”)
and “exploitation” (“searching around a good position”). A
thorough discussion of PSO can be found in [13].

To be precise, let an objective function f : RD → R on
a D-dimensional domain be given that (w. l. o. g.) has to
be minimized. A population of particles, each consisting of
a position (the candidate for a solution), a velocity and a
local attractor, moves through the search space R

D. The
local attractor of a particle is the best position with respect
to f this particle has encountered so far. The population
in motion is the swarm. In contrast to evolutionary algo-
rithms, the individuals of the swarm cooperate by sharing
information about the search space via the global attractor,
which is the best position any particle has found so far. The
particles move in time-discrete iterations. The movement of
a particle is governed by so-called movement equations that
depend on both the particle’s velocity and its two attrac-
tors and on some additional fixed parameters (for details,
see Sec. 2).

Although this method is widely used in real-world applica-
tions, there has unfortunately not been any formal analysis
explaining more than only partial aspects of the algorithm.
A theoretical analysis of the particles’ trajectories can be
found in [2]. A discussion of runtime aspects is presented
in [19]. For the case of a bounded high-dimensional search
space, theoretical work about the initial behavior of the par-
ticle swarm is presented in [5, 6]. Some guidelines for the
choice of the fixed parameters that control the impact of
the current velocity and the attractors on the updated ve-
locity of a particle can be found in [16, 8], where the au-
thors prove that under certain conditions about the param-
eters the swarm provably converges. However, mathemati-
cal properties of the limit, i. e., the quality of the solution,
are unknown. Van den Bergh/Engelbrecht [17] substantially
modify the movement equations, enabling the particles to
count the number of times they improve the global attrac-
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tor and use that information. Empirical evidence for the
capability of their method to find local optima on common
benchmarks is given.

Closest to our work, Lehre/Witt [11] modify the move-
ment equations by adding in every step a small random per-
turbation to the velocity. Their detailed analysis for one
specific, simple, one-dimensional objective function shows
that their modified PSO finds this function’s unique opti-
mum. But it is not clear how to apply this special analysis
to higher dimensional search spaces and larger classes of
functions.

An overview of known theoretical results about PSO can
be found in [20].

New results. Up to now, every formal analysis providing
results about the quality of the best search point obtained
by the particle swarm has been restricted to a very spe-
cial class of objective functions. In this paper, we provide
the first general mathematical analysis of the quality of the
global attractor when it is considered as a solution for ob-
jective functions from a very general class F of functions
(see Def. 2 below) and therefore of the quality of the algo-
rithm’s return value. Informally, functions in F resemble
(if restricted to 3-dimensional pictures) an (everted) island.
On its almost arbitrary surface, the lowest point has to be
found. The sea around the island is of no interest. We in-
troduce the new approach of defining the potential Φ of the
particle swarm that changes after every step. Φ covers two
properties of the swarm: It tends to zero if the particles
converge, but it increases if the whole swarm stays close to
a search point that is no local minimum. In the latter case,
the swarm charges potential and resumes its movement. As
a consequence, we prove an emergent property of PSO for F ,
namely that in the one-dimensional case the swarm almost
surely (in the well-defined probabilistic sense) finds a local
optimum. For the general D-dimensional case, we slightly
modify the classical PSO and prove that this adapted swarm
almost surely finds a local optimum. Necessity of such a
modification is constituted in [15], where we report on sig-
nificant experiments that show that even on the very simple
sphere function the swarm does not necessarily converge to-
wards the only local optimum at the center. Note that our
analysis carries over to presumably all variants of PSO de-
veloped so far. One would expect such strong results to hold
only for a very small class of objective functions. Indeed, we
need some restrictions, but as it turns out the class F of
objective functions for which our results hold is much more
general than, e. g., the subset of the class of unimodal func-
tions that is considered in [7] in the context of restricted
(1 + 1) evolutionary algorithms.

2. ANALYSIS OF THE CLASSICAL PSO

ALGORITHM
First we present the model we are going to use for our

analysis of the PSO algorithm. The model describes the po-
sitions of the particles, the velocities and the global and local
attractors as real-valued stochastic processes. Furthermore,
we define in Def. 5 the potential of the swarm which depends
on the state of the particles and will be a measure for their
movement. A swarm with high potential is more likely to
reach search points far away from the current global attrac-
tor, while a swarm with potential approaching 0 is converg-

ing. (The basic mathematical tools from probability theory
we need for our analysis can be found in, e. g., [3].)

Definition 1 (Classical PSO Process) A swarm S of N
particles moves through the D-dimensional search space R

D.
Let f : RD → R be the objective function. For S, we define
the stochastic process (St)t∈N0

= ((Xt, Vt, Lt, Gt))t∈N0
=

((X0, V0, L0, G0), (X1, V1, L1, G1), . . .), consisting of

• Xt = (Xn,d
t )1≤n≤N,1≤d≤D (d-th coordinate of the po-

sition of particle n after step t),

• Vt = (V n,d
t )1≤n≤N,1≤d≤D (d-th coordinate of the ve-

locity of particle n after step t),

• Lt = (Ln,d
t )1≤n≤N,1≤d≤D (d-th coordinate of the local

attractor of particle n after step t),

• Gt = (Gn,d
t )1≤n≤N,1≤d≤D, (d-th coordinate of the global

attractor before the t-th step of particle n).

We will write Xn
t for the vector (Xn,1

t , ..., Xn,D
t ) (analo-

gously, V n
t , Ln

t , G
n
t ) and Xd

t for the vector (X1,d
t , ..., XN,d

t )

(analogously, V d
t , Ld

t , Gd
t ). Furthermore G̃n,d

t denotes the
d-th coordinate of the global attractor after the t-th step of
particle n, i. e., G̃n,d

t = Gn+1,d
t if n < N , and G̃N,d

t =

G1,d
t+1. With a given distribution for (X0, V0) and the val-

ues G1
0 := argmin1≤n≤N{f(Xn

0 )} and L0 := X0, St+1 =
(Xt+1, Vt+1, Lt+1, Gt+1) is determined by the following re-
cursive equations that are called the movement equations:

• Gn+1
t = argmin{f(Ln

t ), f(G
n
t )} for t ≥ 0, 1 ≤ n ≤

N − 1,

• G1
t+1 = argmin{f(LN

t ), f(GN
t )} for t ≥ 0,

• V n,d
t+1 = χ · V n,d

t + c1 · rn,d
t · (Ln,d

t −Xn,d
t ) + c2 · sn,d

t ·
(Gn,d

t+1 −Xn,d
t ) for t ≥ 0,

• Xn,d
t+1 = Xn,d

t + V n,d
t+1 for t ≥ 0,

• Ln
t+1 = argmin{f(Xn

t+1), f(L
n
t )}.

In case of a tie when applying argmin, the new value prevails,
i. e., whenever a particle finds a search point with value equal
to the one of its local attractor, this point becomes the new
local attractor. If additionally the value is equal to the one of
the global attractor, this one is also updated. Here, χ, c1 and
c2 are some positive constants called the fixed parameters of
S, and rn,d

t , sn,d
t are uniformly distributed over [0, 1] and all

independent.

If after the t-th step the process is stopped, the solution
found by S so far is G̃N

t .
Basically, this definition describes the common movement

equations with two specifications: If a particle visits a point
with the same objective value as its local attractor or the
global attractor, then the attractor is updated to the new
point. And the global attractor is updated after every step
of a single particle, not only after every iteration of the whole
swarm. Another common variant of PSO only updates the
global attractor after every iteration of the whole swarm,
however, due to our choice the information shared between
the particles is as recent as possible.

PSO is designed to handle any objective function. But for
the rest of this paper, we consider only objective functions
from the set F defined below.

1630



Definition 2 Let f : RD → R be a function. f ∈ F iff

(i) there is a compact set K ⊂ R
D with positive Lebesgue

measure, such that P (Xn
0 ) ∈ K = 1 for every n and

{

x ∈ R
D

∣

∣ f(x) ≤ supK f
}

(the island) is bounded;

(ii) f is continuous and has a continuous derivative.

Restriction (i) states that there is a compact set K such
that for all x ∈ K, the set of all search points y as least
as good as x, i. e., all y with f(y) ≤ f(x), is a bounded
set. Since the particles are initialized inside K and since
f(Gn

t ) is nonincreasing in t, (i) ensures that the possible
area for the global attractor is limited if the positions of
all particles are initialized inside of K (being on any point
of the island is better than being in the sea). If for exam-
ple lim|x|→∞ f(x) = ∞ or if f has compact support and is
negative on K, (i) is already satisfied. E. g., common bench-

mark functions like the sphere function f(x) =
∑D

i=1
x2
i or

the Rosenbrock function f(x) =
∑D−1

i=1
((1 − xi)

2 + 100 ·
(xi+1 − x2

i )
2) are in F . On functions that violate (i), the

swarm might move forever because either they do not nec-
essarily have a local optimum like f(x) = x or they have
an optimum, but improvements can be made arbitrary far
away from it, like, e. g. in the case of the function f(x) =
x2/(x4 + 1), where x = 0 is the only local and the global
optimum, but if the particles are far away from 0, they tend
to further increase the distance because f converges to 0 as
|x| approaches ∞. Under such circumstances, convergence
cannot be expected and it is necessary to restrict the func-
tion class in order to avoid this. However, (ii) might be the
only true restriction.

From Def. 1 it follows that (St)t∈N has the strong Markov
property. Another interesting property of this stochastic
process that follows immediately from the movement equa-
tions is the following:

Observation 1 Let S be a swarm and ((Xt, Vt, Lt, Gt))t∈N0

its corresponding stochastic process. Let Lk denote the k-di-
mensional Lebesgue measure, L[Y ] the distribution of a ran-
dom variable Y and “≪” (just in this observation) absolute
continuity between two distributions. Assuming L[(X0, V0)]
≪ L2·N·D, it follows L[(Xt, Vt)] ≪ L2·N·D for every t ≥ 0.

If Xn
t 6= G̃n

t for every n, then for every t′ > t, L[(Xt′ , Vt′)
∣

∣

St] ≪ L2·N·D almost surely1.

If the positions and velocities of the initial population are
distributed in some natural way, e. g., uniformly at random
over K, Obs. 1 states that the swarm has similar restrictions
as a process consisting only of variables that are sampled
u. a. r. in the sense that events with probability 0 in the latter
case also have probability 0 in the first case. If the function
contains no plateaus, we cannot expect the swarm to ever hit
a local optimum since the probability to hit that particular
point by just sampling is zero and so is the probability for
hitting it with the swarm. Another consequence is that no
point in R

D is visited more than once because that would not
happen under uniform sampling since RD is not enumerable.
This implies that the well-studied equilibrium when every
particle is at the global attractor and has velocity 0 is a
state that the process may converge to but that will never

1Let (Ω,A, P ) be a probability space. An event E ∈ A
happens almost surely iff P (E) = 1.

be reached. Therefore we give a definition of the kind of
convergent behavior that can be expected.

Definition 3 (Convergence) Swarm S converges if there
almost surely is a point z such that the following two condi-
tions hold:

1. limt→∞ Vt = 0 (the movement of the particles tends to
zero),

2. limt→∞ Xn
t = z for each n ∈ {1, . . . , N} (every parti-

cle moves towards z).

A consequence of the above conditions is that for every n ∈
{1, . . . , N} limt→∞ Gn

t = z almost surely and limt→∞ Ln
t =

z almost surely. Although the convergence analysis in the
literature ([8]) usually makes the assumption that at least
the global attractor is constant forever, a prerequisite that
because of Observation 1 we cannot assume, the generaliza-
tion of the convergence proof from [8], showing that their
results still hold under the weaker assumption of only the
convergence of the attractors, is straight-forward.

We want to prove more, namely, that under the stated
assumptions about f the swarm is able to find a local min-
imum. Here, the notion of the potential of a swarm comes
into play. Roughly speaking, as long as the swarm has po-
tential high enough to overcome the distance to at least one
local minimum, the probability to find it within a few steps
is still positive. A problem occurs when the value of the po-
tential is too low for the swarm to overcome the distance to
the next optimum by only a small number of steps. In other
words, if f is monotonically decreasing in some direction
and on an area that is large in comparison to the potential
of the swarm, the particles must be able to “run down the
hill,” i. e., they must be able to surpass every distance as
long as f decreases. The following definition formally de-
scribes the situation of a swarm while it is “running down
the hill” and will lead to the definition of the potential.

Definition 4 (Running Particle Swarm) Let d0 ≤ D be
an arbitrary dimension. We call S positively running in di-
rection d0, if the following two properties hold: First, Gn,d0

t =

max1≤i≤N{Xi,d0
t′ } for t′ = t if i < n and t′ = t − 1 other-

wise. Second, Ln
t = Xn

t for every n. In other words, while
the swarm is running, each particle updates its local attrac-
tor at every step and the global attractor is always the local
attractor with greatest value in the d0-th dimension. If the
global attractor is always the position with smallest d0-value
instead, we call the swarm negatively running in direction
d0.

Note that while a particle swarm is positively running,
every particle has positive velocity in direction d0, in terms:
V n,d0
t > 0. If the swarm is negatively running in direction

d0, then V n,d0
t < 0. Intuitively one may think of running as

the behavior a swarm shows when it moves through an area
that is monotone in one dimension and changes in any other
dimension are insignificant.

For our analysis, we now define the potential of S .

Definition 5 (Potential) For a > 0, the potential of swarm
S in dimension d right before the t-th step of particle n is
Φn,d

t and its potential in dimension d after the t-th step of
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particle n is Φ̃n,d
t with

Φn,d
t :=

√

√

√

√

N
∑

n′=1

(

a · |V n′,d
t−1 |+ |Gn,d

t −Xn′,d
t−1 |

)

,

Φ̃n,d
t :=

√

√

√

√

N
∑

n′=1

(

a · |V n′,d
t |+ |G̃n,d

t −Xn′,d
t |

)

.

Basically, the potential Φ is an extension of the physical
interpretation of the particle swarm model. If the particles
move faster and get farther away from their global attrac-
tor, the potential increases. If the swarm converges, the
potential tends towards 0. However, for technical reasons
explained later, we need the additional parameter a and the
square root. Note that general tendencies towards 0 or ∞
are invariant under different choices of a.

Example 1 Consider a 1-dimensional particle swarm and
the objective function f(x) = −x. Assume that the velocities
of the particles are all positive. Then the swarm is positively
running in direction 1 from 0 until ∞. It is obvious that
the position with the greatest x-value leads to the smallest
value of f(x) and therefore becomes the global attractor. It
remains to prove that the velocity of every particle stays pos-
itive. Given the old velocity V n,1

t , the new velocity V n,1
t+1 is

a positive linear combination of the three components V n,1
t ,

Gn,1
t −Xn,1

t and Ln,1
t −Xn,1

t . The value for V n,1
t is positive

by assumption, Gn,1
t −Xn,1

t and Ln,1
t −Xn,1

t are non-negative
since Gn,1

t ≥ Ln,1
t ≥ Xn,1

t . Therefore, the velocity stays pos-
itive and the swarm will stay positively running forever. In
that situation, a good behavior would be increasing (or at
least non-decreasing) Φ.

Informally speaking, if a swarm S has a too little potential
Φ left to make it to the next local minimum, it is necessary
that Φ increases after S has become running, and so Φ en-
ables the swarm to overcome every distance. The following
lemma is the central technical observation of our work and
makes a statement about how to choose the parameters to
make sure that a running swarm has an increasing potential.

Lemma 1 (Running to Infinity Lemma) For certain
parameters N , χ, c1, c2 and the swarm S positively (nega-

tively, resp.) running in direction d0, V
n,d0
t +Xn,d0

t (−V n,d0
t −

Xn,d0
t , resp.) tends to ∞ for every n almost surely. In par-

ticular, the swarm leaves every bounded set B ⊂ R
D almost

surely.

Proof. W. l. o. g., assume that the swarm is positively
running. The main idea of this proof is to show that on
expectation the potential significantly increases after every
iteration of the particle swarm. More precisely, we want

to show that E[1/Φn,d0
t ]

t→∞−−−→ 0, which is equivalent to

1/Φn,d0
t

t→∞−−−→ 0 almost surely and therefore Φn,d0
t

t→∞−−−→
∞ almost surely. Our strategy to prove the convergence
of E[1/Φn,d0

t ] is to prove that for Φn,d0
t 6= 0 the bound

E[Φn,d0
t /Φn,d0

t+1 | St] ≤ q holds for some fixed q < 1 almost

surely (due to Lemma 1, the case Φn,d0
t = 0 for some t has

probability 0). We bound E[Φn,d0
t /Φn,d0

t+1 | St] for our con-
crete choice of the potential from Def. 5. Although there
are better choices for the definition of a potential leading to

larger areas of parameters that match our requirements, for
our existence proof this one is sufficient.

We need to determine the values for N , χ, c1 and c2, for
which the potential fulfills

E
[

Φn,d0
t /Φn,d0

t+1

∣

∣ St

]

≤ q (1)

for a q < 1. In other words, during one iteration of all par-
ticles, we want the reciprocal of the potential to decrease
on expectation by at least a factor of q. Since the contribu-
tions of the different particles to the whole potential might
differ arbitrarily much, we can not expect that every step of
a single particle decreases the potential of the swarm by a
constant factor. More reasonable and sufficient for our pur-
pose is to prove that the expectation during each step of a
single particle is bounded from above by 1 and that there
is at least one particle (e. g., the one with the largest con-
tribution to the potential) with an expected decrease of the
term bounded from above by q. Therefore we now focus only
on the movement of one single particle n. If we can verify
E[Φn,d0

t /Φ̃n,d0
t ] ≤ 1 for every n and E[Φn,d0

t /Φ̃n,d0
t ] ≤ q for

at least one n, that would imply (1). We show the calcula-
tion only for n = 1 since the situation is symmetric and we
want to avoid too much mess with the indices.

E

[

Φ1,d0
t+1

Φ̃1,d0
t+1

∣

∣ St

]

= E





√

√

√

√

a · V 1,d0
t +N ·G1,d0

t+1 −X1,d0
t +R

a · V 1,d0
t+1 +N · G̃1,d0

t+1 −X1,d0
t+1 +R

∣

∣ St





where we substitutedR for
∑N

n=2
a·V n,d0

t −Xn,d0
t , describing

the state of the other particles that did not move.
Now there are two cases. In the first case, the position of

particle 1 is the global attractor, i. e., G1,d0
t+1 = X1,d0

t . Then
its move is deterministic and its new position will be the
new global attractor. In this case, we obtain:

E

[

Φ1,d0
t+1

Φ̃1,d0
t+1

∣

∣ St

]

= E





√

√

√

√

a · V 1,d0
t + (N − 1) ·G1,d0

t+1 +R

a · V 1,d0
t+1 + (N − 1) · G̃1,d0

t+1 +R

∣

∣ St





=

√

√

√

√

a · V 1,d0
t + (N − 1) ·G1,d0

t+1 +R

a · χ · V 1,d0
t + (N − 1) ·

(

G1,d0
t+1 + χ · V 1,d0

t

)

+R

=

√

√

√

√

a · V 1,d0
t + (N − 1) ·G1,d0

t+1 +R

(a+N − 1) · χ · V 1,d0
t + (N − 1) ·G1,d0

t+1 +R
,

which is less than 1 for every possible V 1,d0
t and every pos-

sible R if and only if a < (a + N − 1) · χ. Given that,
we can furthermore find the desired bound of a q < 1,
if (N − 1) · G̃1,d0

t+1 + R < const ·V 1,d0
t for some constant.

That is the case, if, e. g., particle 1 has the largest value of
a·V +(G−X) among all particles of the swarm and therefore
makes the largest contribution to the potential.

The second case when G1,d0
t+1 > X1,d0

t is more difficult.
Since the potential is invariant under translation, we can
assume X1,d0

t = 0. Furthermore, w. l. o. g., we set G1,d0
t+1 = 1.

Otherwise we could scale Φ̂1
t and L̃1

t by the factor 1/G1,d0
t+1

and replace V 1,d0
t /G1,d0

t+1 by V 1,d0
t and R/G1,d0

t+1 by R which
does not change the result since we need to bound the term
for every positive V 1,d0

t−1 and every R > −(N−1) ·G1,d0
t+1 . We
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Figure 1: The integral I(χ, c2, N, a) for different parameter choices

obtain:

E

[

Φ1,d0
t+1

Φ̃1,d0
t+1

∣

∣ St

]

= E





√

√

√

√

a · V 1,d0
t +N ·G1,d0

t+1 −X1,d0
t +R

a · V 1,d0
t+1 +N · G̃1,d0

t+1 −X1,d0
t+1 +R

∣

∣ St





= E

[
√

a · V 1,d0
t +N +R

a · V 1,d0
t+1 +N · G̃1,d0

t+1 −X1,d0
t+1 +R

∣

∣ St

]

Now we insert the movement equations from Def. 1

= E









a · V 1,d0
t +N +R

(a− 1) ·
(

χ · V 1,d0
t + c2 · s1,d0t

)

+

+N ·max
{

1, χ · V 1,d0
t + c2 · s1,d0t

}

+R
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a · V 1,d0
t +N +R

(a− 1) ·
(

χ · V 1,d0
t + c2 · s

)

+

+N ·max
{

1, χ · V 1,d0
t + c2 · s

}

+R





1/2

ds

=: I(χ, c2, N, a)

Here we make use of the square root in our potential! The
integral I(χ, c2, N, a) is a function containing a case distinc-
tion (because of the max) and square root terms. So, the
desired bound can be shown by tedious, but straight-forward
calculation, after eliminating the square roots, a polynomial
remains. If we had left out the square root in the defini-
tion of the potential, the result of the integral would have
contained logarithmic terms that can not be handled that
easily. We plotted the integral (see Fig. 1) for three different
choices of the parameters, so one can easily verify that for
the typical parameter sets found in the literature and a good
choice of a, only two or three particles are sufficient to keep
the value always less than 1 and that under the assumption
that particle 1 makes the largest contribution to the poten-
tial, one can find an upper bound q̂ < 1. That finishes the
proof.

In Fig. 2, one can see the borderlines between choices for
c2 and χ that satisfy the conditions of Lemma 1 and those
that do not. The parameters that satisfy both Lemma 1
and convergence requirements will be referred to as good
parameters. Note that in [11], the authors have shown the
existence of “bad” parameters that allow stagnation on ar-
bitrary search points with positive probability. They have
proven that for N = 1, all choices of parameters are bad, so
a swarm with good parameters needs at least two particles.
From here on we assume the parameters to be good.
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N=100
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N=10

Figure 2: Borders between the too low values for c2 and
χ and the ones large enough to satisfy the requirements in
Lemma 1 for some swarm sizes N .

Lemma 1 says that, given the parameters are good, a
swarm that moves into the right direction can overcome ev-
ery distance and increase its potential, no matter how small
it was in the beginning. In other words: The equilibrium
when all attractors and particles are on the same point and
every velocity is zero is not stable because arbitrary small
changes of an attractor, a position or a velocity can be suf-
ficient to lead the swarm far away from this equilibrium,
as long as there is a direction with decreasing value of the
fitness function.
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Figure 3: Fitness function f monotonic on Bτ (z), global
attractor in ε-neighborhood of z

Theorem 1 If D = 1, then every accumulation point of
(Gn

t )n=1,...,N;t∈N
is a local minimum of f almost surely.

Proof. Assume for contradiction, that there is an accu-
mulation point z ∈ R such that (w. l. o. g.) f is monotoni-
cally decreasing on Bτ (z) = (z − τ, z + τ ) for some τ > 0.
Since z is an accumulation point, for every ε > 0 Gn

t is inside
the neighborhood Bε(z) = (z− ε, z+ ε) of z infinitely often.
Fig. 3 gives a visualization of the described situation. For
no n and no t, Gn

t enters [z, z+τ ] because otherwise it could
never again get closer to z since f(Gn

t ) is decreasing with t.
Let for some n0 and some t0 be Gn0

t0
∈ Bε(z). Now we

consider two cases: The first case is that there is at least
one particle n (maybe n0 itself) that has position outside of
Bτ (z), i. e., if the swarm has large potential, this will hap-
pen with positive probability. The set M := {x ∈ R

D
∣

∣

f (x− ε) > f(x) > f(z)}, which is the set of all search
points that improve the global attractor without abandon-
ing z as an accumulation point, can be made arbitrary small
by choosing ε small. So we can assume that with positive
probability M \ Bτ (z) will not be hit by particle n0 within
the next iteration. The only situation violating this assump-
tion is when a particle has position and local attractor close
to Gn0

t and a velocity greater than τ and pointing towards
a point in M , because the influence of the random terms
in the movement equation for its next move will be small
unless another particle updates the global attractor before.
However, for this situation to occur a very specific value of
the velocity is necessary, so it will with positive and actually
comparatively high probability not happen.

Now we will outline a sequence of iterations that leads
particle n to [z, z + τ ]. In the worst case, particle n has
a large velocity compared to the distances to the local and
global attractor. However, after the first constant number
of iterations this is no longer the case because this huge ve-
locity will lead the particle far away from the attractors, so
it points away from Gn0

t and can therefore be consumed.
How many iterations this takes depends on the parameters
of the swarm. When a state is reached where the velocity of
particle n is much smaller than the distance to the attrac-
tors, the global attractor in particular, it is easy to see that
the probability for hitting [z, z+ τ ] within the next constant
number of iterations is positive. I. e., assuming c2 > 1, one
decreases the velocity between 0 and τ/(3 · χ). Then, with
rnt ≤ τ/(3 · c1 · (Ln

t −Xn
t )) and snt ∈ [1/c2 +(z−Gn

t+1)/(c2 ·
(Gn

t+1 −Xn
t )), 1/c2 + τ/(3 · c2 · (Gn

t+1 −Xn
t ))], the next step

leads to [z, z + τ ]. If c2 < 1, the argument is similar, one
needs just more iterations. Note that the probability for the
described sequence is constant and therefore the probability

for this sequence to happen never within the infinite number
of times when the global attractor is within an ε from z is 0.

It remains to cover the case when no particle has posi-
tion outside of Bτ (z), so assume the potential is low enough
such that all particles will stay inside Bτ (z) forever, which
means that the local attractors are inside Bτ (z) as well.
That is the point were Lemma 1 becomes useful. Since f
is monotonic on Bτ (z), the local and the global attractor
are always greater or equal to the current position of the
particle. Therefore the velocities will with probability 1 all
become positive after a finite number of iterations and stay
positive. It follows that each particle will exceed its local
attractor almost surely after a finite number of iterations.
Let t1 be the time when the last particle has exceeded its
local attractor. Then the swarm is positively running from
t1 to t2 with t2 being the time when the first particle sur-
passes a local minimum and therefore leaves or has already
left Bτ (z). With Lemma 1, this will happen after a finite
number of iterations almost surely. So, z is no accumulation
point of Gn

t .

Corollary 1 If D = 1, then f(Gn
t ) converges towards the

value of a local minimum. Particularly, if no two local min-
ima have the same value, then Gn

t converges towards a local
minimum. If the swarm converges towards a point z ∈ R,
then z is a local minimum.

Proof. The first statement follows directly from Thm. 1.
From Def. 2 it follows that the sequence of the global attrac-
tors over the time is bounded and therefore has at least one
accumulation point. If there is more than one accumulation
point, then f has the same value on each of them because
f is continuous. Due to Thm. 1 every accumulation point is
a local minimum, so if there are no two local minima with
the same value, there is only one accumulation point that
therefore is the limit of Gn

t . That proves the second state-
ment. The third statement again is a direct consequence of
Thm. 1 because convergence of the swarm implies conver-
gence of Gn

t .

3. MODIFIED PSO ALGORITHM
Now the question arises how much of the results from

the 1-dimensional PSO can be transferred to the general
case. Unfortunately, the stated result is not true in a D-
dimensional situation with D > 1. The main problem is the
following: Assume that the whole swarm is close to a point
that allows improvements neither in positive not in negative
changes of the first coordinate. Furthermore let the swarm
have high potential in the first and low potential in any other
dimension. Then an improvement of the global attractor is
still possible and will indeed happen infinitely often, but it is
very unlikely and between two updates are many iterations
without an update. The reason is that any improvement in
some of the dimensions 2, ..., D is voided by the much larger
worsening in dimension 1. In the meantime, the swarm tends
to converge and therefore continuously looses potential and
never gets running. A small and simple modification of the
PSO algorithm avoids that problem by enabling the swarm
to rebalance the potentials in the different dimensions:

Definition 6 (Modified PSO) For some arbitrary small
but fixed δ > 0, we define the modified PSO via the same
equations as the classic PSO in Def. 1, only modifying the
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third equation to

V n,d
t+1 =







































(2 · rn,d
t − 1) · δ,

if ∀ d′ ∈ {1, ..., D} : |V n,d′

t |+ |Gn,d′

t+1 −Xn,d′

t | < δ,

χ · V n,d
t + c1 · rn,d

t · (Ln,d
t −Xn,d

t )

+ c2 · sn,d
t · (Gn,d

t+1 −Xn,d
t ),

otherwise.

Whenever the first case applies, we call the step forced.

In words: As soon as for one particle the sum of the ve-
locity and the distance between the position and the global
attractor are below the bound of δ in every single dimen-
sion, the updated velocity of this particle is drawn u. a. r.
from the interval [−δ, δ]. Note the similarity between this
condition and the definition of the potential. Indeed, we
could have used the condition Φn,d

t+1 < δ (with some fixed a)
instead, but we decided to keep the modification as simple
and independent from the terms occurring in the analysis
as possible. Now the potential can no longer converge to
0 while staying unbalanced because if it decreases below a
certain bound, we randomly assign a value to the velocity
which on expectation has an absolute value of δ/2.

This modified PSO is similar to the Noisy PSO proposed
by Lehre and Witt in [11] where they generally add a ran-
dom perturbation drawn u. a. r. from [−δ/2, δ/2] for some
small δ and prove that their swarm is able to find a local op-
timum. However, their analysis is restricted to one specific
1-dimensional fitness function.

In case of our modified PSO, we consider the change from
the classic PSO as comparatively simple. The main differ-
ence to previous approaches (e. g., [17]) is that the PSO uses
the modification not as its engine. Rather, we will see that
the number of forced steps is small and if the swarm is not
already within an δ-neighborhood of a local optimum, af-
ter some forced steps the potential increases and the swarm
switches back to classical steps, a behavior we also observed
experimentally [15].

Note that we sacrifice the convergence of the swarm in
order to increase the quality of the solution, since the po-
tential cannot approach 0 anymore. Instead, we can only
expect the global attractor to converge.

Theorem 2 Using the modified PSO algorithm, every accu-
mulation point of Gn

t is a local minimum of f almost surely.

Proof. Assume, for contradiction, that there is some ac-
cumulation point z of Gn

t that is no local minimum. Then, in
any neighborhood of z and therefore in particular in Bδ(z),
there is a point x0 ∈ Bδ(z) with f(x0) < f(z). Since f
is continuous, x0 has some neighborhood Bτ (x0), such that
f(x) < f(z) for every x ∈ Bτ (x0). Fig. 4 gives an overview
over the situation.

The set Bτ (x0) plays the role of the interval (z, z+τ ) from
the proof of Thm. 1. Now we investigate what happens
when Gn

t enters Bε(z). This will for each ε > 0 happen
infinitely often because z is an accumulation point. Like
in the first case of the proof of Thm. 1, one can explicitely
construct a sequence of iterations, leading a particle into
Bτ (x0) if the potential is sufficiently high. However, due
to the modification of the movement equation, the potential
cannot converge to 0 anymore, so the second case from the
proof of 1 is unnecessary here.

Figure 4: Every point x0 with f(x0) < f(z) has a neighbor-
hood Bτ (x0), such that f(x) < f(z) for x ∈ Bτ (x0)

This result is not surprising because in the modified PSO
random perturbations occur when the swarm tends to con-
verge and it is easy to see that small random perturbations
can optimize any continuous function (but with a very poor
runtime). Note that the proof of Thm. 2 does neither make
use of f having a continuous derivative nor of Lemma 1.
To supplement this result, we need to prove a statement
about how often the modification actually applies. It is ob-
vious that for δ chosen too large, every step of the particles
could be forced. The case of δ being small with respect to
the structure of the function is the interesting one. On the
other hand, if the distance of a particle and a local optimum
is smaller than δ, presumably all upcoming steps will be
forced because there is no room for further improvements.
But one can show that, given the swarm is sufficiently far
away from the closest local optimum, the forced steps only
balance the potentials between the different dimensions and
enable the swarm to become running. In particular, consider
the following situation: Let for some dimension d0 and some
c ≫ 1 be ∂f

∂d0
< 0 on a (c · δ)-neighborhood of the current

global attractor and let the swarm have low potential, i. e.,
every particle has in every dimension potential of order δ.
Instead of only being driven by the random perturbation,
we would like the swarm to become running in direction
d0, increasing the potential in that direction, so the velocity
updates can be done according to the classical case again.

Theorem 3 In the situation described above, the probability
for the swarm to become running within a constant number
of iterations is positive and independent of δ.

Proof. We will explicitely describe a possible sequence
of iterations enabling the swarm to become running. First,
the particles decrease their distance to the global attractor
in every single dimension to at most δ · ǫ/2 with ε ≪ 1 and
a velocity of absolute value less than δ · (1− ε/2), such that
the local attractor is updated for all particles except the one
whose local attractor is equal to the global attractor. If the
current global attractor Gn

t is no local maximum, this can
be done because every local attractor has a function value
worse than the global attractor and since f is continuous, so
the function values of f approach f(Gn

t ) when x approaches
Gn

t . The case of Gn
t being a local maximum has probability

0. Then the next step of each particle is forced. In the next
iteration, the velocity of every particle gets smaller than
δ · ε/2 in each dimension except d0. In dimension d0, one
particle obtains velocity greater than δ·(1+ε)/2, such that it
gets to a search point that is in dimension d0 more than δ/2
and in any other dimension at most ε · δ away from the pre-
vious global attractor. For ε sufficiently small, this particle
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will update the global attractor since f has a positive partial
derivative in dimension d0. Every other particle obtains in
d0 a velocity less than −δ ·(1+ε)/2, making sure that its new
position and the new global attractor after that step differ
by more than δ. So the next step will not be forced and the
potentials have order

√
δ in dimension d0 and only

√
δ · ǫ in

every other dimension. So for ε sufficiently small with re-
spect to the function f , the swarm will become running and
therefore the steps will actually become unforced.

The behavior of the modified PSO is the same as of the
classic PSO, except that due to the modification the parti-
cles can overcome“corners,” i. e., if the global attractor stag-
nates because the potential of wrong dimensions is too high
and the potential of dimensions where the function value
can be decreased is too low, the modification helps to bal-
ance the potentials of the different dimensions. The “blind”
algorithm that just randomly checks a point around the pre-
vious best solution with range δ would of course find a local
minimum but the running time would tend towards ∞ if δ
approaches 0.

4. CONCLUSION
This paper focuses on the capability of a particle swarm to

find a local minimum. The PSO algorithm is analyzed un-
der this aspect and it is pointed out why the swarm might
not always find a local minimum, namely the swarm gets
stuck if the differences of the potentials between the dimen-
sions are too large. A suggestion to modify the algorithm
by randomly assigning a small velocity when the potential
of a particle falls below a certain bound is suggested. It
is proven that this modification together with some new pa-
rameter selection guidelines enables the swarm to find a local
minimum for a large class of objective functions. Addition-
ally, it is shown that the modification does not take over
the swarm, it just corrects the direction before the classic
movement equations are applied again.
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