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ABSTRACT

This paper proposes a Bayesian approach for minimizing
the time of finding an object of uncertain location and dy-
namics using several moving sensing agents with constrained
dynamics. The approach exploits twice the Bayesian theory:
on one hand, it uses a Bayesian formulation of the objective
functions that compare the constrained paths of the agents
and on the other hand, a Bayesian optimization algorithm
to solve the problem. By combining both elements, our ap-
proach handles successfully this complex problem, as illus-
trated by the results over different scenarios presented and
statistically analyzed in the paper. Finally, the paper also
discusses other formulations of the problem and compares
the properties of our approach with others closely related.

Categories and Subject Descriptors

1.2.8 [Artificial Intelligence]: Problem solving, control
methods and search—Heuristic methods; Plan execution, for-
mation and generation; G.3 [Probability and Statistics]:
Probabilistic Algorithms

Keywords

Decision Making; Multi-agent System; Bayesian Search The-
ory; Bayesian Optimization Algorithm

1. INTRODUCTION

The constrained agent Minimum Time Search (MTS) prob-
lem in uncertain dynamic domains is a decision making pro-
cess that involves two dynamic partakers: a searcher (sens-
ing agent) with constrained dynamics and a searched object
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Figure 1: Multi-agent minimum time search

(the target) with uncertain initial location and uncertain dy-
namics [4, 9]. Its multi-agent version, presented in Fig. 1,
is a straightforward extension with a set of sensing agents
instead of a single one. In both versions, the objective is to
determine the best set of agent actions that simultaneously
1) maximizes the probability of finding the target and 2)
minimizes the time to detect it [20].

Modeling the uncertainty of the problem with a target
initial location belief, probabilistic target motion model and
probabilistic sensor model, the problem can be formalized as
a Partially Observable Markov Decision Process (POMDP,
[19]) defining the reward obtained by the agents during the
search [7, 16] and solved with approximated techniques [1].

Alternative approaches appear by exploiting the special
structure of the problem to consider it a sub-instance of a
POMDP [4, 11] or by reformulating the problem to optimize
1) the probability of finding the target and 2) the detection
time. Following this last approach, two types of works ap-
pear: those focused on optimizing only the first objective
[2, 3, 4, 6, 12] and those that for the single-agent case op-
timize both using the expected time [9, 18] or a discounted
detection probability function [9]. The optimization algo-
rithms used to tackle the alternative formulations vary from
gradient based techniques to heuristic methods, including
Estimation of Distribution Algorithms (EDA, [10]) such as
Cross Entropy Optimization (CEO, [17]).

The main contributions of our Bayesian proposal are:

1) Two wutility functions to formulate the dynamic multi-
agent MTS problem within the Bayesian framework:
one based on the expected time and the other on a
discounted probability function. In this regard, we ex-



tend our expressions in [9] for the single-agent ideal
sensor case to the multi-agent general sensor case.

2) A Bayesian Optimization Algorithm (BOA, [14]) to solve
the problem with the purpose of taking advantage dur-
ing the optimization process of the dependencies in-
duced by the probability models and utility functions
into the search space. In this point, we tackle the prob-
lem with an EDA with higher searching possibilities
than the CEO that we used in [9].

3) A statistical analysis of the results obtained over several
scenarios by two configurations of the BOA (which al-
low/avoid it to learn the dependencies of the agent
actions) with the two utility functions. We show that
the utility function based on the expected time usually
outperforms the one based on the discounted detection
probability and that a better solution is usually found
when the BOA learns the variables dependencies.

4) A comparison of the properties of our approach with
other closely related solutions.

Our approach improves previous methods to solve the dis-
crete MTS problem and is motivated by numerous applica-
tions such as determining the best route to find the survivors
of a shipwreck accident [2] or a submarine in an uncertain
water environment [8].

2. PROBLEM STATEMENT

In this section we describe the main elements of the MTS
problem and the models used to describe their behavior.

The world is the space (2 where the target and the agents
are contained, and where the search is done. It is defined as
a 2 dimensional discretized grid whose w, *w, cells can be
identified by their indexes (Q = {1, 2, ..wgz*wy }).

The agents are M independent moving sensing platforms
that take active part in the search by making observations
of the world at different time steps k. The location s¥ of
each agent i€ {1: M} is a cell of the grid, always known
and determined by the previous agent location sk ! and
the current control action uf. In other words, given an
initial agent location s* and a sequence of N control ac-
tions ufTUETN = fo k1 g kF2 k+Ng the trajectory of
the agent sk k"'N*{sf, f“, sf+2 .- N1 including the
starting location s® is completely determined and vicev-
ersa. The actions are defined as the 8 cardinal directions
that make an agent move from one cell to its adjacent ones.

The target is the object that we are looking for. Its
location 7% at every time step and dynamics are uncer-
tain, although modeled by the initial target location prob-
ability distribution or belief b2 = P(7°) and the motion
model P(7%|7%~1) that represents the probability of the tar-
get moving to location 7% from location 757!, Besides, the
lack of dependency of the target location on the agents lo-
cations in P(7*|7*~!) shows that the target is not evading
from the agents. Finally, its worth noting that the problem
with a static target is a special case of the moving one, where
P(r*|7%71) equals 1 when 7% =7""1 and 0 otherwise.

The sensors, placed in the agents, are the items capable of
observing and collecting information about the world. The
observations zF taken by each agent ¢ at time step k are
used by the agents to update the target location belief and
to decide which sequence of actions are the best. Assuming
that the agent and sensor location are the same, ie. s¥,
the sensor behavior is modeled with the likelihood function
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P(zF|T", s¥) that represents the probability of obtaining the
measurement z* when the target and agent are respectively
at 7% and s®. Besides, as we consider only two possible
observations, target detection D and no target detection D,
P(zF=D|m% sF) = 1 — P(zF = D|r",sF). As an example,
the ideal sensor only and always detects the target when the

agent and target coincide (i.e. P(zf = D|r¥,s¥) equals 1
k

when 7% = sF and 0 otherwise).

Our solution to the MTS problem is the joint sequence
of actions ufHIFHN = [uE+LReN (klkeN D ke TheNy
(or agent trajectories s}fﬁ'N = {sFRTN ghktN sﬁ}k+N )

that minimize the time of finding the target, given the tar-
get location belief b® at time k, the target motion model

(7*|7%~1) and the agents’ sensors models P(zF|7", s%). Fl—
nally, to simplify future expressions, we will use DF and Di
to represent zF=D and zF =D respectively, and redefine

P(TkiTkil) as T(kal) and P(ﬁfhk,sf) as O({r, sz}k)

3. UTILITY FUNCTIONS

In oder to formulate the MTS as an optimization prob-
lem we propose two different utility functions in sections 3.2
and 3.3, which simultaneously try to increment the chances
of finding the target while minimizing the time required to
do it. Section 3.1 shows the recursive expression used to
calculate the joint target and non detection history proba-
bility, which is required to obtain the values of the utility
functions. Each section also shows the simplified version of
the functions for the static target case. The demonstration
of the expressions has been deferred to Appendix A.

3.1 Joint Target and No Detection Probability

P(T’“Jrjﬂ,ﬁlfj\;:k“ }ﬁ}'N P fvj) also defined as fkifidl’
is a probability function that appears naturally in the pro-
posed utility functions and that represents the probability
of the target location 79+ at time step k+j+1 and of
no detecting it from time k+1 to k+j given the com-

plete agent trajectories s;: i}'N and the real past measure-

ments, zi:%,. Tts values can be calculated progressively with

Eq. (1) from j = 2 up to j = N — 1, considering that
f,;l;M Y orkeq T(7%)bk. Its important to highlight the

close relation that exists between Eq. (1) and the Recur-
sive Bayesian Estimation Filter (RBEF, [5]) that calculates
b = P(7%|s9%,, 21%,) given the initial target location belief
b9, past agents trajectories sJ:%; and real observations zi¥;.
The RBEF prediction step corresponds to the summation
and T(7*7) in Eq. (1) while its update step is related to
the [T, O(s"*7). However, the normalization factor of the
filter does not appear in Eq. (1) and the measurement used
to optimize the time (from k+1 to k+7) are no detections.

i i —=k+1:k+j5 .
L1 = P, D )
M . .
= > TEH[o0Um s N, ()

rh+ieQ i=1

When the target is static, the previous expression is sim-
plified due to the properties of the motion model. The sum-
mation and T'(7"%7) disappear and Eq. (1) becomes:

k+j+1 _
T81:M

k+j
TyS1:M

M . )
[0 s:3+)

i=1

(2)



Algorithm 1 Bayesian Optimization Algorithm
bil*

> Prior target location belief
> Initial agents location

> Target motion model

Require: O() > Sensor model
Require: MTS(-) > MTS Utility function (Eq. (3) or (5))

Require:
Require: sF.,,
Require: T(+)

Require: F > Number of samples
1: 1+ 0 > Set iteration index
2: ¢! + Initialize uniformly the action list BN distribution
3: Ul n < Sample actions lists: Ul = TR} N gt
4: Si.p + Get trajectories: SL = sFH1FHN « L5k UL}
5: J! g + Evaluate trajectories:

Je = MTS(S¢, b, T(-),0(-))
while no finished do
U’ + Select solutions with better Ji. 5 from U}, 5
¢'t! « Learn new action list BN distribution from U"
Ul < Sample new actions lists:
ULt = bt Lk it
10:  S'1) < Get new trajectories:
S = SEREN (g, DE)

11:  Jlf; < Evaluate new trajectories:
JIPI=MTS(SI 6%, 7(1), 0(-))

12: {UH}, Si'ﬁé, JHaY Select solutions from
{U{_FElv Si+E13 JH_I} and {Ul ‘B> Sl E> Jl E}
based on the best values of {J{J“El, Jie}

13: l+1+1

14: end while

15: return s}50 Y (solution with best JJ/5 ")

3.2 Truncated Expected Time Utility Function

Due to the probabilistic nature of the problem, the search-
ing time can be optimized by minimizing the Truncated Ex-
pected Time (TET) to find the target given the agents tra-
jectories. In the general case, this can be computed with
the following expression (which states that the TET is the
summation of the probabilities of no detecting the target up
to each time step k + j) and Eq. (1).

N
: —<k+1:k+j . .
TET(SIf]It?—N) = P(Dl ‘N ]|S}:§€\2_N’ZII:JI€W)

=2 2 [ToUr s )58, @

rhkticQi=1

When the target is static, Eq. (3) is valid, as the inner
summation does not include the motion model. However,
the fF17  of Eq. (3) has to be calculated with Eq. (2).

T,81: M

3.3 Discounted Detection Utility Function

An alternative way of formulating the search problem con-
sists on maximizing the probability of detecting the target
at any of the following 7 = 1: N time steps:

rc U

i=1:M,j=1:N

Z Z <I—HO({T75i}k+j)> fx:l_lj:lw (4)

k+ieq i=1

DY et -

However, this utility function does not necessary optimizes
the time, as the authors of [9, 18] point out. Nevertheless,

as we suggest in [9] for the single-agent case, the time can
be included within the external summation of Eq. (4) as a
penalization discount factor A7. This creates the Discounted
Detection (DD) utility function in Eq. (5), capable with the
help of Eq. (1) of optimizing simultaneously the probability
and time of detection.

DA =3 WY <1
Q

=1 rhtic

_Hé({Tv 5i}k+j)> f:ij;M (5)

i=1

When the target is static, Eq. (5) is valid too, and its
k43 has to be calculated with Eq. (2).

T581: M

4. OPTIMIZATION ALGORITHM

The MTS is a problem whose complexity is NP-hard or
higher [21]. Therefore, to find a good solution in a feasi-
ble time for grids with many cells, the problem is usually
tackled with approximated optimization algorithms and/or
heuristics [2, 3, 9, 18, 22]. Besides, due to the constraints
imposed by the agents possible movements, it is easier to
search for actions lists than for its corresponding trajectories
as the action state space (with 8 possible values per action)
is smaller than the location one (with w; *w, possible values
per location) and the actions lists create feasible trajectories.
Moreover, if we analyze in detail any of the proposed utility
functions for TET or DD, we can observe that the external
summation partitions the variables in increasing subsets of
state variables according to Eq. (6). Finally, although the
search of actions lists is advantageous, the conversion from
actions lists to trajectories creates a dependency among the
values of the actions in the lists in the utility functions.

k: k+N GhHLkti pk
MTS(s1:5/ E S1:m b7,

7(),0())  (6)

Considering the characteristics of the problem, we apply an
EDA to optimize it as it is an approach capable of exploiting
the probability dependency that exists among the variables
of the search space. Additionally, as the variables dependen-
cies also depend on the starting belief b*, motion model ()
and sensing model O(-), the capability of the EDAs to learn
these dependencies releases us from the necessity to impose
them beforehand. Finally, among the existing EDAs, we im-
plement the BOA schematized for our problem in Algorithm
1, because BOAs have successfully solved other complex op-
timization problems [15] and this selection lets us maintain
the optimization method within the Bayesian framework.
Therefore, the actions lists distribution ¢' is represented as
a Bayesian Network (BN, [13]) with M -N discrete 8-valued
variables. The variables of the first BN ¢° are unconnected
and their probability tables uniformly initialized. The de-
pendencies of the variables of the following BNs ¢’ are learnt
from the subset U of the best samples in the sampled ac-
tions lists U-. ;, following the method proposed in [14], which
is a greedy strategy for learning BNs that only adds those
edges that imply a higher increment of the Bayesian Dirich-
let metric [13]. The actions lists U}, sampled from the
BN ¢ are converted into sampled trajectories St that are
evaluated by the selected utihty function MTS(-). The best
solutions among the current S “ and previous S}, itera-
tion samples are used as the the samples of the following
iteration [ + 1. The algorithm stops after a fixed number of
iterations returning the best trajectory of all the iterations.



Table 1: Closely Related Solutions Comparison

Solution | MTS | D/C | Constrained | Multi-Agent | Moving T. | Optimality(Horizon) | Optimization type

[20] v D,C Global Lagrange
4] D v v Global(N) DP
2] C v v Local(1) Greedy
[22] D v v v Local(2)+Expectation Heuristic+NN
3] C v v Local(1) Greedy
[12] C v v Local(N) Gradient
[18] v D+C v Local Approx(N) Limited DFS
[6] C v v Local(N) Explicit Gradient
9] v D v v Local(N) CEO

This work v D v v v Local(N) BOA

5. RELATED WORK

In this section we discuss other formulations of the prob-
lem and study the closer related approaches and algorithms.

5.1 Alternative Formulations

MTS can also be formulated as a POMDP [19], adding
to the problem definition a reward R([s%.,;,7%],u¥.,;) ob-
tained by the agents given the extended state [s}.,,, 7"] and
actions u¥.,;. Under this approach, followed in [7, 16], the

expected reward E Z ’ykR([s'f:M, Tk], qu:M) b0 | is usually
k

maximized. However, as the number of cells in the grid

grows, the problem becomes intractable for exact POMDPs

algorithms, and it has to be tackled with approximated

methods [1].

Other approaches reduce the complexity of the problem
exploiting some of its inner characteristics such as the binary
detection/non-detection nature of the sensor model. For in-
stance, [4] formulates the problem using a cell expansion and
a backward recursive technique of Dynamic Programming
(DP) to solve it exactly for small grids, while [11] takes into
account the fact that the MTS is finished when the target
is found to take out the expectation of the POMDP util-
ity function and optimize it directly with a gradient-based
method. However, neither [4, 11] optimize the time directly.

The approaches on next section and ours also tackle the
search problem as a POMDP sub-instance. In our case,
this strategy lets us optimize, without defining the POMDP
reward R(-), utility functions directly related to the expected
time and detection probability.

5.2 Closely Related Solutions

In the following, we compare our approach against other
solutions closely related to it. Although the comparison is
not exhaustive, it constitutes a compilation of the works that
have motivated this paper. Besides, all the solutions, except
[4], are tractable, i.e., they are able to compute a solution
in an acceptable amount of time.

We compare these works based on the seven properties
represented in the last seven columns of Table 1:

MTS, the most important for us, indicates which algo-
rithms solve directly the task of locating the target in
the minimum possible time. [2, 3, 4, 6, 12] are based
on detection maximization, although maximizing the
detection does not imply to find the target in minimum
time [9, 18]. Indeed, the authors in [2] talk about mini-
mizing Expected Time (ET), although they decline to

use its expression due to complexity issues. [22] re-
duces the uncertainty using the entropy, although this
utility function does not imply that the target is lo-
cated in minimum time. Therefore, only [9, 18, 20]
and this work tackle the MTS directly.

D/C indicates if the search is modeled over a continuous
world (C) with piecewise linear control actions or in a
discrete world (D) with a discrete set of actions. [18]
constitutes a special case as it performs the search in
the discrete space to obtain a set of points that are
later used to determine a continuous space trajectory.

Constrained shows when the dynamic constraints of the
agent are considered within the problem formulation.

Multi-Agent indicates if the solution is applicable to sev-
eral agents. Additionally, [2, 3, 6, 12, 18, 22] are decen-
tralize cooperative approaches, where the agents inter-
change the knowledge in a transparent way. Besides, in
[22] the agents only interchange the information when
they are in adjacent cells.

Moving Target shows when the target can be moving
during the decision stage. In [2, 3, 6, 12, 20] the target
is assumed to be static during the planning horizon.
The rest assumes Markovian target motion.

Optimality (Horizon) indicates if the solution is local
or globally optimal and the horizon (how many steps
ahead the algorithm optimizes). Most of the solutions
are not globally optimal in the horizon window be-
cause, due to the non-convexity of the problem, they
get trapped in local optima (e.g. [6]). Besides, proba-
bilistic optimization approaches like the ones that we
have used in [9] and in this paper are not globally op-
timal, due to their sampling mechanisms. Finally, [22]
uses the future expectation as an heuristic, to evaluate
also the solutions beyond the horizon.

Optimization Type is more informative than compara-
tive and shows which algorithm is used to solve the
problem. [12] and [6] are essentially the same work,
although [6] uses an explicit gradient based algorithm
to speed up the computation. [22] uses an expectation
as the heuristic and Neural Networks (NN) to learn
the target location, [4] implements a DP solution, [18]
applies a limited Depth First Search (DPS), our work
in [9] uses CEO, and in this paper we tackle the M'TS
problem with a BOA.

Finally, we want to highlight the tight relation that exists
between this work and our previous contribution in [9]. In



both cases, we optimize the TET and the DD utility func-
tions and use an EDA. Nevertheless, this paper improves our
previous contribution by solving the multi-agent problem for
no necessary ideal sensor models and by using a probabilistic
optimization algorithm that is able to exploit the inherent
dependencies of the variables of the problem.

6. RESULTS

In order to characterize the performance of our approach
over different starting conditions and probability models, we
use the 5 scenarios schematized in the 5 graphs/columns of
the the first row of Fig. 2. The selected scenarios differ in
the number of agents (M), number of control actions (N),
initial agents location (represented by the red stars), initial
target location belief b* (which is no zero inside the black
shapes) and target motion model (static (S) or dynamic (D),
the last following the black and blue arrows). The same grid
size (20 % 20) and sensor model (ideal) is used in all of them.
Finally, in the same graphs we also show with the red arrows
the beginning of the best trajectories of the agents.

Due to the probability nature of the MTS problem and
sampling support of the BOA used to optimize TET or DD,
the performance of our approach is statistically analyzed
over the results obtained for 50 runs of the BOA for each
utility function over each scenario. Moreover, in order to
determine if our approach takes advantage of the capability
of the BOA to learn the intrinsic dependencies of each sce-
nario, we compare two different configurations of our BOA:
using during the whole optimization a BN without connec-
tions' (i.e. without dependencies) or letting the BOA learn
BNs with a maximum number of 3 parents per node (i.e.
with a limited number of dependencies). Besides, for all the
scenarios, BOA configurations and utility functions, we run
on a Inter Core 2 Duo at 2 GHz a non-optimized Matlab
+ C implementation of Algorithm 1, with the following set-
tings: F = 10-8-N-M samples, subsets U’ of size E/10, and
A = 0.9 (when optimizing DD).

The statistics over 50 optimizations for each scenario, BOA
configurations and utility functions are summarized in the
following rows of Fig. 2:

2) TET /Iter, which shows the mean and standard devi-
ation of the best TET value at each iteration [ of the
BOA with and without dependencies. The graphics of
this row show how BOA with dependencies has better
(lower) mean TET values than BOA without them.

3) TET/Time, which shows the mean of the best TET
values obtained at the computation times (associated
to each iteration) of both BOA configurations. That is,
it represents the TET mean against the computation
time needed to obtain the solutions instead of against
the iteration number, to be able to study if the bene-
fits of learning the dependencies of the BN is shadowed
by the time needed by the greedy adding-edges algo-
rithm to learn them. The graphics of this row show
a higher computation time increase (dependent on the
number M- N of action variables of the scenario) in
the BOA with dependencies than in the BOA without
them. As a consequence, the mean TET value of the
BOA without dependencies is better than of the one

!Note that this configuration and CEO assume the proba-
bility independence of the problem variables.
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with them initially sometimes, although the final value
is always slightly /significantly better in the BOA with
dependencies. Hence, in some scenarios the time in-
crement of the dependencies learning allows us to find
significantly better solutions.

4) DD /Iter, which shows the mean and standard devia-
tion of the best DD value at each iteration ! of both
BOA configurations. The graphics of this row show
how the BOA with dependencies has a better (higher)
mean DD value than the BOA without them?.

5) Dom, which shows the results of the dominance study
presented in [9] among the two BOA configurations.
The study uses the Wilcoxon test to determine if there
is a significant difference between the number of times
that each of the 50 solutions obtained by one config-
uration is better, in terms of the selected utility func-
tion, than the 50 solutions obtained by the other. The
graphics of this row represents in blue/white, for each
iteration and utility function, when the BOA with de-
pendencies dominates the BOA without them/when
there is not a significant statistical difference. Hence,
this study complements TET/Iter and DD/Iter. On
one hand, BOA with dependencies dominates BOA
without them at the iterations when there is enough
difference between the regions defined by the mean and
standard deviation. On the other hand, both con-
figurations are similar at the iterations when the re-
gions overlap. However, from the dominance study we
can not infer how big are the differences between the
TET/DD values of both configurations. Finally, it is
worth noting that this analysis shows that TET with
dependencies dominates TET without them more of-
ten than its corresponding counterparts in DD do.

6) ETET, which shows for each iteration the Experimen-
tal TET value associated to both BOA configurations
(with (w) and without (w/o) dependencies) and util-
ity functions (DD and TET), in order to determine
if one solution is usually better than the 3 remain-
ing. To calculate ETET, we first generate 10000 tar-
get trajectories for each scenario sampling the initial
target location from the initial target location belief
b® and the remaining positions of the target trajec-
tory from the motion model P(7%|7%71). Next, we
confront the 10000 target trajectories with the 50 so-
lutions found at each iteration by each utility function
& BOA configuration to determine the action step j
where the target is found. We use these values to
obtain experimentally P(k<t<k+j) and ETET as
Z;.V:l(lfP(kgtSk+j)) [20, 9]. The graphics of this
row show that for the same utility function, the ETET
value of the BOA with dependencies is usually better
than the ETET values of the BOA without them. Be-
sides, in all scenarios except C, the results obtained
with TET are better regarding ETET than the ones
obtained with DD.

The graphs of Fig. 2 allow us conclude that the mean
and dominance results obtained with the BOA configuration
that learns the dependencies are better or no worst than the

2DD/Time is not represented, as the tendency in the time
increment (due to the computational time needed to learn
the BN) with respect the iteration number of DD/Iter is
similar to the one presented in TET/Time.



1) Scenarios

3) TET/Time 2) TET /Iter.

4) DD /Iter.

5) Dom.

6) ETET

ones obtained without the dependency learning. However,
the improvements depend on the scenario characteristics,

A) M=1, N=10, §

B) M=1, N=20, D C) M=2, N=10, D

E) M=2, N=10, D
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Figure 2: Scenarios and Performance Statistical Analsys

which justify the variability of the observed behaviors:

Scenario A) The asymmetry in the search space associ-
ated to the original b® (due to the small black circle at
the bottom of the scenario) originates the discrepan-
cies and standard deviations observed with both BOA
configurations: BOA with dependencies is better as it
originally maintains the solutions that move the agent
towards the north or the south. This static scenario
has the smaller computation time differences too as its
number of action variables (N-M =10) is the smallest.

Scenario B) The benefits of learning the dependencies are
clearer in this dynamic scenario as the regions defined
by the iterations, mean and small standard deviations
do not overlap after generation { = 5. This happens
because this scenario is asymmetric by definition, as
its initial target location belief is concentrated in a

10 15
Iteration (1)

cell of the map that is probabilistically moved towards
the north west.

Scenario C) The benefits of learning the dependencies are
clear in this dynamic scenario too. The discrepancies

in the results with and without dependencies are big-
ger than in other cases, due to the scenario complexity
originated by the circular spreading movements of the
two circular black regions where the initial target lo-
cation belief is concentrated.
Scenario D) The benefits of learning the dependencies are
smaller again in this dynamic scenario that models a
lost object in the sea that is moved by the probabilistic
wind map associated to the blue arrows. Besides, this

scenario has the higher computation time penalization
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as the BOA has to learn the dependencies of a BN with
N-M =30 action variables.
Scenario E) In this dynamic scenario the results obtained
with and without dependency learning are pretty sim-
ilar. This occurs because the selected initial agent lo-
cations, init target location belief and target motion



model induce a symmetry in the scenario that makes
equally good to explore the 2 possible solutions (a task
facilitated by BOA with dependencies) or only one.

Another interesting result observed in the graphics is that
TET is better than DD in terms of ETET in all scenarios
but C. In other words, TET (which optimizes the truncated
expected time) usually obtains the actions lists that allows
the agents find the target sooner. But there are some cases
where DD (which optimizes a discounted detection proba-
bility dependent on an additional tuning parameter \) is the
best choice. This is a consequence of the different landscapes
induced by each utility functions and scenario characteristics
over the search space.

Finally, we want to highlight that the computation time
penalization of the BOA with dependencies can be reduced
by optimizing the code or by using a different strategy to
learn the BN, for instance, from the previous BN instead
of from scratch. Besides, as the results converge before the
maximum iteration number, the computation time can be
reduced too with a convergence stop criteria. Additionally,
the extra time is required for those scenarios whose results
are significantly better in the BOA with dependencies.

7. CONCLUSIONS

This paper models, formulates and solves the constrained
multi-agent Minimum Time Search (MTS) problem in un-
certain dynamic discrete domains following a Bayesian ap-
proach. The uncertainty in the problem is 1) associated to
the target initial location, target dynamics and agents sen-
sors; and 2) modeled with the initial target location, target
motion and sensor probability functions. Based on these
probabilities, the problem is formulated as a decision mak-
ing problem that optimizes the agents actions lists by either
minimizing the Truncated Expected Time (TET) or maxi-
mizing the Discounted Detection (DD) probability function
to find the target. Finally, in order to handle the inherent
complexity of the problem, the optimization is carried out
using a Bayesian Optimization Algorithm (BOA) capable of
exploiting the dependencies that the probability and utility
functions impose between the actions of the lists.

The paper also statistically compares the results obtained
over 5 scenarios by our approach when 1) the utility function
is TET or DD and 2) when the BOA is allowed or not allowed
to learn the dependencies between the variables. The results
show that TET obtains usually better solutions than DD
and that learning the dependencies favors the search of the
BOA at the expense of increasing its computation time.

Analysis of the influence of the number of allowed parents
or samples in the results will be carried out in the future.
Finally, it is worth highlighting that the extension to the
continuous domain (in actions and space) is straightforward,
by substituting the - _,,; by integrals and the BOA by an
EDA capable of handling continuous search spaces.
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APPENDIX
A. UTILITY FUNCTIONS DERIVATIONS

In the appendix, we demonstrate the expressions presented
in Section 3. The basic probability properties exploited dur-
ing the derivations are presented in Table 2.

A.1 Joint Target and No Detection Prob.

The derivation of ff';'f?{j is shown in the following expres-
sion, where to go from Eq. (7) to Eq. (8) we marginalize
over 7°%9 from Eq. (8) to Eq. (9) apply the BR assuming
independence of 787711 on any variable except %7, from
Eq. (9) to Eq. (10) substitute the motion model by its
alternative expression and apply the BR assuming indepen-
dence of ﬁ’fﬁ on everything but 757 and s¥%7 and from
Eq. (10) to Eq. (11) assume that the measurements are
independent on other measurements or agent locations and
substitute the sensor model by its alternative expression.

j i+1 =k+lk+5, 1. :

B p(rE I DY RN 2k ) = (7)
Y 2 CAARARE SN R Py S (8)
Tk+ieQ
=D P ) P D s 21
rhtieq

(9)

k k+ k+7j k+j
_ZT ﬂ ]|T +J731;J1ré)'
Thkt+ieQ

—=k+1l:k+j—1, 1. :

P( s Dl M - 81:§;N7Z%:§4) (10)

=> <T’“”>H5<{T, s¥ (11)
i=1

rk+icQ

A.2 TET Utility Function

As TET is a truncated version of the Expected Time
(ET), in the following expression we show how to obtain
ET, supposing, when required, the same independencies as
in the previous case. According to [9, 20], ET can be cal-
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culated with Eq. (12) where P(k<t <k+j) represents the
probability of finding the target at any time between k and

k + j, which is calculated as P( U DFF|gikbee 2ER ) in
1=1:M,l=1:1

Eq. (13). Besides, operation U— N is applied from Eq. (13)

to Eq. (14), a marginalization over 7°%7 from Eq. (14) to

Eq. (15), the BR from Eq. (15) to Eq. (16), and the mea-

surement independence assumption plus the sensor model

alternative expression from Eq. (16) to Eq. (17). Finally,

in TET (Eq. (3)) we substitute co by N in the external
summation.
oo
ET(syiy ) =Y (1 - Pk <t <k+j)) (12)
j=1
=> (1=P(J Dit'lsin ™ z1in) (13)
j=1 i=1:M,l=1:j5
= k+1 k+j tk+oo :
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i=1rk+ieq
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J=1rktieq
P Dm LA ) (0
=3 H5({7, st N (17)
Qi=1

[

Jj=1rk+ie

A.3 DD Utility Function

As the DD utility function (Eq. (5)) is an adaptation of
the detection probability (Eq. (4)), in the following expres-
sion we demonstrate the last. Operation U— Y is applied
to go from Eq. (18) to Eq. (19), a marginalization over 7777
from Eq. (19) to Eq. (20), the BR from Eq. (20) to Eq.
(21), operation U— N from Eq. (21) to Eq. (22), and the
measurement independence assumption plus sensor model
alternative expression from Eq. (22) to Eq. (23).
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