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ABSTRACT

A large number of rule interestingness measures have been
used as objectives in multi-objective classification rule min-
ing algorithms. Aggregation or Pareto dominance are com-
monly used to deal with these multiple objectives. This
paper compares these approaches on a partial classification
problem over discrete and imbalanced data. After perform-
ing a Principal Component Analysis (PCA) to select candi-
date objectives and find conflictive ones, the two approaches
are evaluated. The Pareto dominance-based approach is im-
plemented as a dominance-based local search (DMLS) algo-
rithm using confidence and sensitivity as objectives, while
the other is implemented as a single-objective hill climbing
using F-Measure as an objective, which combines confidence
and sensitivity. Results shows that the dominance-based
approach obtains statistically better results than the single-
objective approach.

Categories and Subject Descriptors

1.2.6 [Artificial Intelligence]: Learning; G.2.1 [Discrete
Mathematics|: Combinatorics; 1.2.8 [Artificial Intelli-
gence|: Problem Solving, Control Methods, and Search—
Heuristic methods
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1. MOTIVATIONS

The classification rule mining problem is a Data mining
problem that can be seen as a multi-objective optimization
problem. A lot of approaches have been proposed and deal
with multiple objectives using Pareto dominance. Most of
them are detailed in the review of Srinivasan and Ramakr-
ishnan [26]. Learning classifier systems (LCS) are another
popular approach, very similar to the previous approaches,
at the difference they use a credit assignment module to
award good individuals and they deal with multi-objective
using an aggregation. As a result, the algorithm acts like
a single-objective algorithm, where the objective contains
an aggregation of the other objectives, generally a sum.
Weights are sometimes introduced to balance between ob-
jectives available in the aggregation. However adjusting the
weights could be difficult, despite some algorithms such as
GAssist — a LCS algorithm — dispose of an auto-weighting
feature [3]. Intuitively, aggregation will have to deal with
the same pitfalls than the single-objective algorithms: they
seem more subject to be stuck in local optima and will have
a smaller search space, probably resulting in less interesting
performance. Knowles et al. made a study in that direction,
on the Traveling Salesman Problem, showing that decompos-
ing one objective into several objectives could enhance re-
sults [20]. This process is called multi-objectivization. Since
decomposition can be difficult or impossible in some prob-
lems, Jensen et al. introduced the concept of helper objec-
tive, to allow multi-objectivization on more problems [17].
It consists in adding one objective, preferably conflictive
with the initial objective, to guide the search and avoid lo-
cal optima. They evaluated the performance of the multi-
objectivization over the Jobshop Scheduling Problem, where
it improved results. Similar studies have been applied to the
Knapsack problem [15], the Vehicle Routing Problem [28] or
to Protein Structure Prediction [13]; in all these cases multi-
objectivization improved the results compared to the use of



an aggregation of objectives. In [5], Deb et al. decomposed
a 3-objective classification problem into a 2-objective clas-
sification problem by aggregating 2 of the objectives. The
3-objective approach was more effective than the 2-objective
approach. In this paper we study the differences between a
single-objective approach and a multi-objective approach.
This paper studies the effects in terms of performance of
the multi-objectivization on a partial classification problem
over discrete and imbalanced data. This work is a part of
OPCYCLIN, an industrial project dedicated to optimizing
screening of patients for clinical trials, using hospital data.
The data at our disposal is binary, imbalanced and is subject
to uncertainty — for each patient information only two values
are available: "yes” or "unknown” — which is particularly in-
dicated to partial classification. Section 2 first describes the
partial classification problem. Since a lot of candidate objec-
tives exist, we explain how to choose the best set of conflict-
ing objectives thanks to a Principal Component Analysis.

Then, the modelization as a multi-objective problem is
proposed. Section 3 explains the two local search meth-
ods we use to compare the single-objective (SO-LS) and the
dominance-based multi-objective (DMLS) approaches of the
problem. In Section 4 the two approaches are compared over
10 data sets of the literature and the results are discussed.
Finally Section 5 gives the conclusions and perspectives for
further work.

2. CONTEXT

2.1 Partial classification rule mining

The aim of classification rule mining is to find rules that
predict a given fact — called a class — on unknown observa-
tions, using their information. As an illustration it could
consists in predicting flu on unknown patients, using a com-
bination of tests on their symptoms information (fever?,
cough?,...), called attributes. In the case of partial clas-
sification, the rules predict only one side of the class, for
example the positive class (flu = yes). In the context of
the OPCYCLIN project we have to deal with hospital data
containing a lot of binary information (’yes’ or “unknown’)
about patients. Up to 10,000 attributes are available but
only a few are actually entered for a same patient. Conse-
quently we have to deal with highly imbalance data; a given
diagnosis can be available on less than 0.4% of patients to
at best 20%. Another complication is uncertainty: only di-
agnoses having a consequence on billing are completed. For
example, diabetes will not be present in the patient billing
file if it does not impact the billing of the medical procedure
the patient came for. Partial classification is well indicated
to deal with this partial data. Once a rule C =— P is

Table 1: Confusion matrix.

P P
C | TP FP
C | FN TN

N

obtained, different measures exist to assess the rule effec-
tiveness. Most are based on the confusion matrix given in
Table 1. It counts good classifications ( True Positives (TP)
and True Negatives (TN)) and wrong classifications (False
Negatives (FN)) and False Positives (FP) made by the rule
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over a set of known observations. More than 40 measures
have been proposed in the literature, Geng and Hamilton
indexed most of them [11] while Ohsaki et al. focused on
measures dedicated to the medical context [22].

2.2 PCA to find conflicting objectives

As a lot of measures exist to evaluate the rule effectiveness,

all are potential objectives for multi-objective algorithms.
However, Jensen et al. showed using too many objectives
does not improve results. Moreover, they suggest to choose
conflicting objectives: if not, optimizing one objective or
more will lead to the same results [17]. Hence, in the fol-
lowing we use a Principal Component Analysis (PCA) to 1)
identify a small subset of objectives and 2) make sure these
objectives are conflictive.
We selected 12 measures from the literature, based on their
ability to deal with imbalanced data. They are presented in
Table 2. Asregard to F-Measure, we used 8 = 1. In addition
to these measures, we included three hybrid measures: 1/
Confidencex Sensitivity since Weiss showed that it is adapted
to mine rare rules [29] (CfSe), 2/ a combination of confidence
and rule length Confidence divided by RuleLength (CfRL),
to favor simple rules, and 3/ Sensitivity x Specificity (SeSp),
a measure presented by Carvalho and Freitas [4].

Table 2: Candidate rule quality measures.

Name Abr. Formula
TP
Conﬁdence Cf TP+FP
L. (TP+FP)x(FP+TN)
Conviction Conv N<EP
Cosine Cos P
V/(TP+FP)x(TP+FN)
(1+52) X confidenceX sensitivity
F-Measure FIM B2 x sensitivity+ confidence
TP+1
Laplace LP TPirPia
. : NXTP
Lift Lift (TP+FP)x (T P+FN)
Interest
. . TP _ TP+FP ., TP+FN
Piatetsky-Shapiro PS N TN X T
Sensitivity Se TP:‘:_%
(True positive rate)
Specificity Sp %
(True negative rate)
TP
Support S ~
. TP—FP
Surprise Sur TNTFP
Uncovered negatives UN %
Confidence X Sensitivity CfSe TPZL% TPI;L};N
TP
Confidence Rule Length CfRL (TPTFP)xruleLength
Sensitivity X Specificity SeSp % TPI_W‘_%




eSp

Dimension2 (26.81 %)

Dimension1 (57.78 %)

Figure 1: PCA on classification rules with imbal-
anced data - habermand data set.

2.2.1 Results

This study is realized on three different data sets, to make
sure the obtained results are not specific to one data set.
These data sets (habermand, yeast3d and abalonel9d) have
class repartitions between 0.77% and 27.42% and are de-
scribed further in this paper (see Table 6). The PCA com-
putes correlations between variables by analyzing values of
these variables on different observations and then export a
correlation map. Therefore we need to generate observa-
tions: a population of 1,500 partial classification rules will
be generated, predicting the same class, and then the 15
measures under study will be computed for each of them.
Since the PCA needs a representative sample group of values
for each variable under study, we must ensure there are rules
representative of each measure under study. Half of the rules
(750) are randomly generated. The other half (750 = 15 X
50) are local optima generated using the single-objective lo-
cal search algorithm described later in Subsection 3.2. Start-
ing from 50 random solutions, this local search uses succes-
sively each of the 15 measures as a single-objective criterion.
Thus we obtain for each measure a set of at least 50 rules
having a good value. These rules and their 15 associated
values are then analyzed using the factoMineR R package
[18].

The PCA produces 9 correlation maps: one per data set
and for each available projection over 3 axis. Figure 1 is one
of them, concerning habermand data set and a projection
on axis 1 and 2, with a significant inertia (84.59%). The
circled parts are common to all PCA results we obtained.
Laplace, Surprise and Conuviction are less expressed in some
PCA results so we will not focus on them. In some data sets
like abalone19d, Cosine is not grouped with Sensitivity. 3
groups are highlighted:

e Confidence x Sensitivity (Cfse), Cosine (Cos), Piatetsky-

Shapiro (PS), Sensitivity (Se), Sensitivity X Specificity
(SeSp), Support (S) and F-Measure (F1M) by axis 1
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e Specificity (Sp), Uncovered Negatives (UN) and Sur-
prise (Sur) by axis 1 and 3
confidence

e Confidence (Cf),oierorer (CfRL), Conviction (Conv),
Laplace (LP), Lift (Lift) and Surprise (Sur) by axis 2
and 3

In the following we will discuss about the major trends found
in all the 3 correlation maps.

2.3 Selected measures

The PCA identifies relations between the different mea-

sures and we have now to choose which ones can be used
as objectives, both in the single-objective and the multi-
objective approaches. Indeed, handling too many measures
will add complexity and increase computational time. Since
the PCA clusters measures under three groups, we choose
one measure from each of them (by giving a priority to mea-
sure mostly used in literature): Confidence, Sensitivity and
Specificity. First experiments showed that maximizing Con-
fidence and Specificity most of the time leads to similar rules.
According to their formula (Table 2), maximizing them min-
imizes the number of False Positives. The PCA does not
group Confidence and Specificity. Indeed a rule having a
good Specificity can have a bad Confidence. However, to
the medical domain point of view, rules having bad Confi-
dence are not interesting, therefore we drop Specificity to
mining only rules having both good Confidence and Sensi-
tivity.
F-Measure allows to find rules having both a good Con-
fidence and a good Sensitivity and is indicated to evalu-
ate performance in partial classification as, as compared to
other measures like error rate, it enforces a better balance
between performance on the minority and the majority class,
respectively, and, therefore, it is more suitable in the case
of imbalanced data. Thus, this is an interesting objective
to use in the studied single-objective approach. Regard-
ing the multi-objective approach, Confidence and Sensitivity
are two interesting objectives but first experiments showed
they are subject to bloat when used alone: we obtained
rules needlessly complicated or too specific such as age =
62 and cough = yes and diabetes = yes and metformin =
yes and fever = yes and muscle pain = yes = flu match-
ing only one patient, where a simpler rule having the same
Confidence is sufficient: cough = yes and fever = yes and
muscle pain = yes = flu.

A widely used solution to overcome bloat is the Minimum
Description Length principle introduced by Rissanen [25],
which is similar to the Occam’s razor: when two rules are
equivalent, the simpler one must be preferred. In application
of this principle, we introduce a third objective to promote
simpler rule sets: minimizing each rule set count of terms.
Finally, in the multi-objective approach, we choose to find
rules optimizing the 3 following objectives:

e maximize Confidence
e maximize Sensitivity
e minimize Number of Terms

3. METHODS UNDER STUDY

We show the partial classification rule mining problem
could be seen as a multi-objective problem, either using an
aggregation with F-Measure or by using the three distinct
objectives Confidence, Sensitivity and Number of Terms.



This section explains how to solve the problem using lo-
cal search, first in a single-objective way to deal with the
aggregated objectives, and then in a multi-objective way us-
ing a dominance-based local search (DMLS). First the com-
mon implementations details of the two approaches are pre-
sented, such as encoding and neighborhood. Then the two
local search methods under study are presented: the single-
objective and the dominance-based local search (DMLS)
able to deal with multiple objectives.

3.1 Encoding and Neighborhood

A local search algorithm is a meta-heuristic improving a
solution - a rule set, a schedule, a path. . .- by visiting similar
solutions, until no more improvement can be done. It needs
the definition of a neighborhood function that associates to
each solution a set of solutions - called neighbors - by apply-
ing a small modification on it; and the definition of a fitness
function, which assesses if a solution is better than another.
In this section we will see which encoding and neighborhood
we use in the partial classification rule mining problem, and
which algorithms are adapted to deal with this problem in a
single-objective way and then in a multi-objective way. We
use the encoding and the neighborhood used in MOCA-I al-
gorithm detailed in [16]. Each solution is represented using
the Pittsburgh encoding, where each solution is a variable-
length set of rules. Because of partial classification, each
rule predicts the same outcome, preventing inconsistencies
in the rule sets. Each rule is a variable-length conjunction
of terms, where a term is a test on an attribute (for ex-
ample: fever yes). In this paper we focus on binary
attributes and ordered list attributes. The neighborhood
consists in generating all rule sets having one more or one
less term. It also contains rule sets having a difference on
one term, where the value of one attribute can be different,
like ‘age > 0-10’ or ‘age > 20-30’ instead of ‘age > 10-20’...

3.2 Single-objective local search (SO-LS)

As single objective local search we chose to use the well-
known Hill Climbing algorithm. It starts from an initial so-
lution - here a rule set - and visits its neighborhood. When
a neighbor with a better fitness than the current solution is
found, it continues the search from this neighbor. This al-
gorithm naturally stops when it reaches a local optimum: a
solution whose neighborhood does not contain any improv-
ing neighbor. As defined previously, we use the maximiza-
tion of the F-Measure as a fitness function. F-measure is
the harmonic mean of Confidence and Sensitivity which are
the objectives used in the multi-objective local search. It
allows obtaining solutions with both high Confidence and
high Sensitivity.

3.3 Dominance-based local search (DMLS)

Dominance-based multi-objective local search (DMLS) al-
gorithms are an adaptation of single-objective local search
algorithms to multi-objective problems [21]. They use a
dominance relation, like Pareto dominance, to handle each
objective separately. Thus, the main difference with single-
objective approaches is that they have to cope with a pop-
ulation of compromise solutions, instead of one single so-
lution. Diverse algorithms have been proposed like Pareto
Local Search [23] or Pareto Archived Evolution Strategy [19].
Liefooghe et al. proposed a model to unify them [21], which
is quickly introduced in the following.
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Figure 2: An iteration of DMLS algorithm.

Figure 2 illustrates an iteration of DMLS, where objective
functions f; and f» have to be maximized. DMLS starts
with an initial population of non-dominated solutions, in our
case a population of random rule sets. The current set of
solutions is called archive and contains only non-dominated
solutions. Before the neighborhood exploration, solutions to
explore must be selected. Diverse strategies exist; a simple
one consists in selecting one random unvisited solution. In
Figure 2, S;3 is selected. During the neighborhood explo-
ration, all improving neighbors — better than the solution
under exploration — are kept. As in single-objective local
searches, several neighborhood exploration strategies may
be implemented. As an example, visiting exhaustively all
the neighbors and keeping all improving neighbor encoun-
tered is one solution. Since the archive contains a lot of
solutions to explore, after a complete neighborhood explo-
ration the solution will be labeled as visited to avoid multiple
explorations. In Figure 2, the exploration of the neighbor-
hood of S;3 brought improving neighbors N; and Na. After
neighborhood exploration, improving neighbors are added
to the archive. Dominated solutions are removed and a new
DMLS iteration can be done. In Figure 2, S;1 and S;2 are
removed because they are dominated by new solutions Ny
and Nz. DMLS naturally stops when all solutions of the
archive are wvisited. As diverse strategies are available re-
garding the selection of solutions to explore, and the way to
explore the neighborhood, this paper compares each of them
with the single-objective approach. Therefore, we consider
the following strategies:

Current solution(s) selection (1 or *) A simple strat-
egy consists in randomly selecting one unvisited solu-
tion to explore from the archive. It will be referred as
1 in the following of this paper. The other strategy is
an exhaustive exploration, referred as *, and consists
in exploring all unvisited solutions from the archive.
Strategy * needs much more computational time than
strategy 1



Neighborhood exploration (1. or *) Neighborhood ex-
ploration can be partial or exhaustive. First improv-
ing strategy (1) explores neighbors until a neighbor
dominating the current solution is found, in opposition
to Ezhaustive strategy (*) where the entire neigh-
borhood is explored. When a dominating neighbor is
found with First improving strategy, the solution is
not labeled as visited and can be further explored in
another iteration.

In the next of this paper, each variant of DMLS will be
denoted as DMLS (current set selection - neighborhood ex-
ploration). Thus, DMLS (1 - 1.) refers to DMLS using
1-random selection for current set selection and first im-
proving as neighborhood exploration strategy. Table 3 sum-
marizes implementation details. First experiments showed
performance issues with some data sets, due to an archive
containing more than 3,000 solutions. In order to solve this
problem, the archive size is bounded to 500 individuals with
a simple strategy: if the archive is full, only solutions dom-
inating at least one solution of the archive are accepted. In
order to compare with SO-LS we need to obtain one single
solution. However, the result of DMLS is an archive of so-
lutions. Therefore we will select the solution of the archive
having the best F-measure, that allows us to compare with
the solution obtained by SO-LS.

Table 3: Implementation details under study.

Component Strategy Abr.
current set selection 1-random selection 1
exhaustive selection *
neighborhood exploration 1st improving 1.
exhaustive *

4. EXPERIMENTATIONS

This section compares the performance of the single-objective

approach with those of the multi-objective approaches, using
the proper statistical tests. As a reference, we also provide
the results of C4.5-CS - a cost-sensitive version of C4.5 which
is adapted to imbalance data [27]. The different approaches
will be compared on several different data sets.

4.1 Protocol

This work follows the recommendations proposed by Dem-
sar to compare multiple learning algorithms over multiple
data sets [6]. These recommendations present a way to eval-
uate the general performance of an algorithm over several
independent data sets or problems, instead of evaluating
the performance on a single problem. We will use Fried-
man [9] and Iman-Davenport [14] statistical tests to detect
differences between multiple algorithms over several prob-
lems. These tests are based on ranks obtained by the al-
gorithms over the different problems. Additionally we will
use the average ranks to graphically draw the results. Then
post-hoc all pairwise comparison of algorithms will be per-
formed using Wilcoxon statistical test and Bergmann and
Hommel’s [2] procedure as multiple testing correction, as
recommended by Garcia and Herrera [10]. We avoided us-
ing parametric statistical tests, since their conditions of use
are seldom met in machine learning.

Each algorithm — the 4 DMLS, the single-objective local
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Table 4: Average number of restarts over 25 runs.

DMLS SO-LS
1-1o 1-% x-1o  *x-x%

hab 0.00 0.00 0.88 0.00 | 258.32
ecl 1.52 1.32 1.16 0.00 | 128.08

ec2 2.04 1.92 1.28 0.00 89.60

yed 0.72 0.88 0.92 0.00 | 272.40
ab9 0.48 0.52 1.00 0.00 | 690.68
ye2 1.88 1.64 1.20 0.00 | 140.04
abl 0.88 0.76 0.96 0.00 | 765.52
ala 0.68 0.60 1.16 0.00 | 329.56
luc 0.76  0.68 1.24 0.00 | 245.20

wla 1.04 1.00 1.12 0.00 | 293.56

search (SO-LS) and C4.5-CS — will be evaluated using F-
Measure. To assess the capacity of the algorithms to deal
with unknown data, experiments are realized in 5-fold cross
validation: each data set is split in 5 fold and 5 successive
runs are executed, each using 4 folds as training data to
discover the rules and the last fold as test data to evaluate
the quality of the obtained rules. In this paper we pro-
vide F-Measure obtained both on training and test data to
allow detecting overfitting; statistical tests are realized on
test data only because we want to assess the capacity of the
algorithms to deal with unknown data.

Each algorithm will be run 5*5 times per data set: 5 times
for each fold, leading to 25 measures for each algorithm and
each data set. To make sure to give each DMLS algorithm a
chance to reach local optima, each DMLS is given as much
run time as DMLS (x-x), which is the algorithm needing the
highest execution time to reach local optimum. Using time
as a stopping criterion allows penalizing DMLS algorithms
that spend too much time in archiving instead of explor-
ing new solutions. Since the single-objective local search
does not handle an archive, we use the number of neighbor
evaluations of DMLS (x - %) as a stopping criteria. An al-
gorithm reaching local optima before the allowed time can
start again from another initial population until the stop-
ping criteria is reached. Hence, Table 4 shows the average
number of restarts performed by each algorithm (DMLS or
SO-LS), on each data set. As we can see, DMLS (x-x) is not
authorized to restart, while using the same number of evalu-
ations the other versions of DMLS are quicker and have the
time to reach local optima and restart. Since SO-LS has to
deal with only one single solution, it disposes of much more
time and can restart more. Table 5 shows the average time
spent by each algorithm. We can observe that each DMLS
algorithm spent in average the same time on each data set.
Since SO-LS has a number of evaluations as a stopping cri-
terion, the average execution time can be different from the
DMLS version. Tests are carried out on a computer with
a Xeon 3500 quad core and 8 GB ram, under Ubuntu 12,
using gcc 4.6.1.

4.2 Data sets

To follow the recommendations of Demsar, the tests will
be run on a sample of 10 data sets. Most of the data
sets we selected come from the UCI repository'. In or-
der to obtain imbalanced data sets, multiclass data sets
are modified into binary-class data sets, as proposed by

"http://archive.ics.uci.edu/ml



Table 5: Average time (seconds) over 25 runs.

DMLS SO-LS
1-1o 1-x K- 1o * -k

hab 23.51 23.54 23.77 23.22 12.59

ecl 12.27 12.27 12.40 12.22 12.11

ec2 5.59 5.60 5.72 5.57 4.99

yed || 130.57 130.37 131.65 130.02 | 176.21

ab9 || 125.12 124.95 125.68 124.50 73.23

ye2 5.90 5.90 6.07 5.86 5.10

abl || 532.81 532.86 537.69 531.90 | 501.90

ala || 319.78 320.16 333.06 318.69 | 278.25

luc || 474.37 474.55 489.64 473.01 | 671.42

wla || 233.54 233.61 242.66 233.19 | 199.76

Table 6: Details of the data sets.

name abr.  #obs. #att. LR.
habermand hab 306 3(3) 0274 [
ecolild ecl 336 7(7) 0229 [§]
ecoli2d ec2 336 7(7) 0.155 8]
yeast3d yed 1484 8(8) 0.104 [
abalone9vs18d  ab9 731 8 (7) 0.056  [§]
yeast2vs8d ye2 482 8(8) 0.041 [g]
abalonel9d abl 4174 8 (7) 0.008 [§]
wla wla 2477 300 (0) 0.03 [24]
lucap0 luc 2000 144 (0) 0.278 [12]
ala ala 1605 123 (0) 0.246 [24]

Fernandez et al. [7]. Moreover, data set containing nu-
merical attributes are discretized using Weka (weka. filters.-
unsupervised. attribute. Discretize ; bins=10, findNumBins=-
true) to allow our algorithm to handle these attributes. Since
these data sets contain a small number of attributes, we se-
lected three additional binary imbalanced data sets from lit-
erature, having a higher number of attributes: wla, ala [24]
and lucap0 [12]. Table 6 shows the main characteristics of
these data sets such as the number of observations (#obs),
the number of attributes (#att.) (Including the number of
discretized numerical attributes) or imbalance ratio (L.R.).
An LR. of 0.77% indicates the positive class is available on
0.77% of the observations; the remaining 99.23% observa-
tions match the negative class.

4.3 Benefits of multi-objectivization

Table 7 gives the average of the 25 F-Measure values ob-
tained for each algorithm per data set. Additionally, we
provide the results of C4.5-CS to give an indication of the
results that can be obtained by state-of-the-art algorithms.
We experimentally selected C4.5-CS among 10 other state-
of-the-art algorithms available in KEEL framework [1], be-

2.8

2 3 4 5 6

1

DMLS 1.1 DMLS 1.* DMLS *.1

DMLS *.*

SO-LS C4.5-CS

Figure 3: Average ranks on test data.
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Table 7: Average F-Measure (training and test) over

25 runs.

DMLS SO-LS | C4.5

1-1o 1% -1 * - % CS
hab 0.621 0.620 0.621 0.626 | 0.592 0.425
0.411 0.410 0.404 0.382 0.385 0.405
ecl 0.909 0.906 0.902 0.902 0.766 0.759
0.760 0.766  0.773 0.776 | 0.724 0.769
ec2 0.938 0.939 0.933 0.934 0.830 0.526
0.818 0.811 0.823 0.807 0.779 0.467
ye3 0.812 0.812 0.812 0.812 0.517 0.370
0.739 0.730 0.740 0.734 0.618 0.344
ab9 0.683 0.675 0.698 0.693 0.576 0.587
0.312 0.312 0.336 0.333 0.306 0.260
ye2 0.893 0.900 0.880 0.886 0.475 0.636
0.511 0.486 0.516 0.508 0.426 0.348
abl 0.318 0.321 0.312 0.304 0.146 0.256
0.024 0.034 0.021 0.026 0.012 0.031
ala 0.661 0.662 0.653  0.653 0.650 | 0.771
0.623  0.621 0.626 0.630 | 0.605 0.617
luc 0.840 0.840 0.836  0.836 0.834 | 0.945
0.816  0.812 0.814 0.817 0.815 | 0.825
wla || 0.691 0.693 0.692 0.693 0.604 0.197
0.492 0.494 0.481 0.474 0.443 0.129

cause it gives the best results over the proposed data sets.
If we come back to Table 7, we notice that SO-LS algo-
rithm is less subject to overfitting than DMLS. Overfitting
happens when the algorithm fits too much to the training
data set, showing a gap between results on training and
test data and problems to deal with data different from the
training data set. Despite being more subject to owverfit-
ting than SO-LS, DMLS gives more interesting results on
test F-Measure, showing its ability to deal with unknown
data. However, none of DMLS algorithms seems to outper-
form all others. Table 8 completes these results; it gives
more details about the F-Measure on the test data, by in-
cluding the standard deviation. On the first data sets, SO-
LS has an higher standard deviation of F-Measure than the
other algorithms, meaning that it is less robust between sev-
eral runs. Both DMLS and SO-LS approaches seem to have
high differences between runs over ab9, ye2 and wla data
sets, because they show a high standard deviation. C4.5-
CS has a lower standard deviation than DMLS and SO-LS
but it is not constraint by local optima that can gives differ-
ent results. This Table also highlights the results obtained
over the test data, since we want to measure the ability of
the studied algorithms to deal with new data. We notice
that DMLS (x - 1) obtains the best results on most of the
data sets, but does not outperform all algorithms. SO-LS is
always outperformed by at least 1 DMLS implementation.
This is confirmed in Figure 3, where the average rank of
each algorithm over the 10 data sets is represented. As an
example, algorithm DMLS (x - 1) has an average rank of:
(44-241+1414+14542+5+3)/10=2.5. The algorithm SO-
LS has the highest bar with average rank of 5.2, indicating
it is outperformed by the others algorithms, both DMLS
and C4.5-CS. The different DMLS algorithms seem to have
similar performance, since their average ranks are similar.



Table 8: Average and Standard deviation of F-Measure on test data, over 25 runs.

DMLS SO-LS C4.5- CS
1-1o 1-x% s 1 * -k
hab || 0.411 +£ 0.107 | 0.410 4+ 0.118 | 0.404 =+ 0.085 | 0.382 £ 0.106 || 0.385 £ 0.137 || 0.405 = 0.028
ecl 0.760 £ 0.065 | 0.766 =+ 0.067 | 0.773 £ 0.045 | 0.776 £ 0.054 || 0.724 £ 0.145 0.769 4 0.081
ec2 0.818 £ 0.071 | 0.811 =+ 0.060 | 0.823 =+ 0.065 | 0.807 £ 0.087 || 0.779 =+ 0.176 0.467 =4 0.058
ye3 0.739 £0.047 | 0.730 £ 0.050 | 0.740 =£0.053 | 0.734 £ 0.058 || 0.618 =+ 0.267 || 0.344 =£ 0.025
ab9 0.312 £0.209 | 0.312 +£0.215 | 0.336 £ 0.222 | 0.333 £ 0.199 || 0.306 =+ 0.175 0.260 =4 0.239
ye2 0.511 4+ 0.181 | 0.48 £ 0.150 | 0.516 £ 0.175 | 0.508 4+ 0.172 || 0.426 =+ 0.285 0.348 =+ 0.084
abl 0.024 £ 0.049 | 0.034 =+ 0.067 | 0.021 £ 0.051 | 0.026 =+ 0.054 || 0.012 = 0.041 0.031 =+ 0.032
ala 0.623 £ 0.019 | 0.621 =+ 0.015 | 0.626 =+ 0.025 | 0.630 =+ 0.023 || 0.605 = 0.024 0.617 =+ 0.006
luc 0.816 4+ 0.023 | 0.812 =+ 0.023 | 0.814 =+ 0.023 | 0.817 =+ 0.025 || 0.815 =+ 0.025 || 0.825 4+ 0.024
wla || 0.492 £ 0.200 | 0.494 =+ 0.199 | 0.481 £0.194 | 0474 £ 0.193 || 0.443 £ 0.187 || 0.129 £ 0.031

Table 10: Post-hoc N x N comparison using Bergmann-Hommel’s procedure.

DMLS SO-LS
1-1o 1-x% * - 1o * -k
DMLS 1-1o X =(0.4795) =(0.6714) =(0.8875) =<(0.0019)
1-x% =(0.4795) X =(0.2579) =(0.5716) <(0.0162)
x- 1y || =(0.6714) =(0.2579) X =(0.5716)  <(0.0004)
* ok =(0.8875) =(0.5716) =(0.5716) X =<(0.0030)
SO-LS >(0.0019) >=(0.0162) >=(0.0004) >(0.0030) X

Table 9: Friedman and Iman-Davenport tests with

«=0.05.
Test | Crit. Value Value Hypothesis
Friedman 11.0704978  16.1142857 REJECTED
Iman-Davenport | 2.42208546 4.27993255 REJECTED

In order to determine if one algorithm outperforms the
others over the 10 data sets, we applied Friedman and Iman-
Davenport statistical tests. These tests are realized using the
average F-Measure over the test data sets (Table 8). The
HO hypothesis is that all algorithms are equivalent over the
10 data sets, regarding their measured average ranks. We
obtained the results given in Table 9. The critical values are
the values under which ones we can consider HO is accepted
with @ = 0.05. Since the values obtained by Friedman and
Iman-Davenport tests are higher than their respective crit-
ical values, we can reject HO. In other words, it detects
that at least one of the algorithms under study outperforms
the others. As the null hypothesis is rejected, we can now
proceed with a post-hoc test to determine which algorithm
outperforms the others. We use Bergmann and Hommel’s
procedure to run the multiple comparisons, it avoids mul-
tiple test issues but is more efficient than other methods
such as Bonferroni correction [10]. Results are available in
Table 10 and show for each pair of algorithms the result of
the statistical comparison, with the associated p-values. We
can observe that SO-LS is outperformed by each version of
DMLS. However, the experimental data is not sufficient to
reach any conclusion towards which of the DMLS version
is better than the others. The same happened with C4.5-
CS, this is why we do not display its results. Since SO-LS is
outperformed by each DMLS algorithm, it shows that multi-
objectivization is more efficient than single-objective search
in the context of partial classification rule mining.
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S.  CONCLUSION AND FURTHER RESEARCH

This paper first described the partial classification rule
mining problem, in the context of imbalanced and discrete
data. This problem can be solved as a multi-objective prob-
lem, either using a multi-objective approach based on Pareto
dominance or as a single-objective approach using an ag-
gregation of objectives. In this paper we compared these
two approaches within local search algorithm, using a single-
objective local search algorithm (SO-LS) and a dominance-
based multi-objective local search algorithm (DMLS) respec-
tively for the aggregation approach and the Pareto dom-
inance approach. Since a lot of candidate objectives are
available in the literature we first performed a statistical
study using a PCA to determine which objectives are the
more appropriate. That study highlighted Confidence and
Sensitivity as candidate objectives. Thus, they are used for
the DMLS approach. F-Measure — combining Confidence
and Sensitivity — is used as an objective in the SO-LS ap-
proach. Our statistical comparison over 10 data sets showed
that the DMLS approach — multi-objective approach us-
ing Pareto Dominance — is more efficient than SO-LS, the
single-objective approach using an aggregation. These re-
sults show that the multi-objectivization is efficient in the
context of partial classification rule mining on imbalanced
and discrete data sets. This is consistent with those ob-
tained on other problems, as the Traveling Salesman Prob-
lem, Knapsack Problem or Vehicle Routing Problem [20, 15,
28]. Further research could focus on improving the results of
some state-of-the-art classification algorithms in Data min-
ing: in a recent study Fernandez et al. showed that GAssist -
a LCS classifier based on an aggregation - gives the better
results than the others state-of-the-art algorithms over 40
data sets [7]. We believe that multi-objectivization could
improve these results.
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