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ABSTRACT
We propose a novel crossover operator for tree-based genetic
programming, that produces approximately geometric off-
spring. We empirically analyze certain aspects of geometry
of crossover operators and verify performance of the new op-
erator on both, training and test fitness cases coming from
set of symbolic regression benchmarks. The operator shows
superior performance and higher probability of producing
geometric offspring than tree-swapping crossover and other
semantic-aware control methods.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming;
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
genetic programming, program semantics, geometric
crossover

1. INTRODUCTION AND MOTIVATIONS
The conventional search operators used in genetic pro-

gramming (GP) are designed to be generic. Whether the
domain is symbolic regression, Boolean function synthe-
sis, or artificial ant, a standard operator like tree-swapping
crossover and subtree-replacing mutation manipulates the
code in the same way. Their actual impact on the effect
of program execution (i.e., on program output) can be very
complex and depend strongly not only on the code of the
program that undergoes modification, but also on the choice
of location at which the operator is applied. As a result, a
mutated GP program yields output that is often very differ-
ent from that of its parent. Similarly, an offspring solution
resulting from GP crossover frequently cannot be said to be
a ‘mixture’ of its parents in terms of the output it produces.
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This is unfortunate as, in the end, it is the output of pro-
gram execution that undergoes fitness assessment and drives
the search process.

This issue was known since the early days of GP, and
characterized from different perspectives. The convenient
framing of this phenomenon involves the notion of locality
[10], meant as the degree of distortion introduced by the
genotype-phenotype mapping. Put in these terms, in GP
genotypes (program code) map into phenotypes (program
behavior) at low locality, so that even a small change of
code can translate into huge difference in behavior.

This problem has been recently addressed in a system-
atic way using program semantics. The common feature
of semantic-aware approaches in GP is consideration of the
operational effects of code, which is usually realized by inves-
tigating the output values returned by programs or program
fragments. Such semantic information can be exploited in
different ways. It can be used as a means to design search op-
erators with properties that are believed to be advantageous,
e.g., crossover operators that swap only code fragments that
have sufficiently similar effect [11]. But even more can be
gained by noticing that semantic information induces certain
geometric structure on the space of solutions and the fitness
landscape [7, 4]. In this paper, following the recent studies
on such operators [9], we propose a specific approximate re-
alization of semantically geometric semantic crossover that
exploits reversibility of instructions. This operator and its
experimental validation are the main contributions of this
study.

2. BACKGROUND
In GP, the objective is to evolve a program that produces

desired output for a predefined set of program arguments,
i.e. inputs (examples, fitness cases). The vector of desired
outputs associated with particular examples forms the tar-
get for the search process. This process is driven by fitness
function that usually aggregates the errors committed by
a program on particular examples into single scalar value.
Usually, fitness function is expressed as a distance between
the vector of outputs produced by a program and the tar-
get, where the former one is known as program semantics (or
sampling semantics) [1, 11]. The particular form of distance
metrics depends on output data type and problem formula-
tion: Euclidean or city-block distance are commonly used for
real-valued programs (e.g., symbolic regression), and Ham-
ming distance for Boolean domain. However, such a metric
can also be defined for non-scalar data types, i.e., the Lev-
enshtein distance for strings.

Formally, semantics s(p) of program p is a vector of out-
comes produced by p in a response to the given set of ex-
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Figure 1: The conic fitness landscape defined by fit-
ness function expressed as Euclidean distance from
the given target semantics. The segments between
parents show the range of semantics of geometric
offspring. For p1 and p2 there exists a geometric off-
spring that is better than the best of the parents.
For p3 and p4 there is no better offspring. It is the
presence or absence of the target in the shaded area
that distinguishes these cases.

amples. For instance, if p is a symbolic regression program
tested on n fitness cases, its semantic s(p) is the vector of
n numbers it returns when applied to these cases. Denoting
the above mentioned metric by d, the fitness f of a program
p can be expressed as f(p) = d(s(p), t), where t is the tar-
get. Importantly, the same metric can be used to measure
the semantic proximity d(s(p1), s(p2)) of any pair of pro-
grams p1 and p2, and thus it endows the space of semantics
(and indirectly the space of programs) with certain geomet-
ric structure.

An important consequence of defining fitness as a distance
from the target t is that the fitness landscape spanning the
space of all semantics is a cone centered at t. By the proper-
ties of metric, this landscape is unimodal, with the only one
global minimum in t. If a program p is modified so that its
semantics s(p) becomes closer to the target t, the fitness f(p)
decreases (improves) too, because f(p) = d(s(p), t). There
is perfect correlation between f and the phenotypic distance
d, because they are equivalent. If one could manipulate the
semantics directly, the search on such landscapes would be-
come trivial, with even the simplest local search algorithms
guaranteed to find the target. However, typical search oper-
ators employed in GP operate only on program code, disre-
garding semantics, and such purely syntactic manipulations
translate into changes of program semantics in a complex
way.

The possibility of exploiting the properties of semantic fit-
ness landscape propelled research on corresponding search
operators. One of the most important concepts on this
avenue of research is geometric crossover. According to
Moraglio, a recombination operator is a geometric crossover
under the metric d if all offspring are in the d-metric seg-
ment between its parents [8]. The offspring resulting from
geometric crossover have certain attractive properties that
we explain in the following for the special case of Euclidean
metric.

Consider the space of programs represented by their se-
mantics and the conical fitness landscape spanned over that
space by the Euclidean fitness function (see Fig. 1). Choose
any two programs from the space and cross them over. For
the standard tree-swapping crossover, the semantics of the
resulting offspring may be located almost anywhere on the
cone, and that location is only weakly related to parents’
semantics. However, the semantics of an offspring resulting
from geometric crossover must lay somewhere on the seg-
ment between the parents, so its fitness must be not worse
than the fitness of the worst of parents. Moreover, if it hap-
pens to be closer to the target than the semantics of the
better parent, the offspring is more fit that both its parents.

This example illustrates that geometric offspring can out-
perform its parents. The main challenge for technical real-
ization of such operators is that, in GP, there is no direct
control on program semantics: the search operators change
program code, and these changes translate into complex tra-
jectories in the semantic space. Nevertheless, certain degree
of ‘geometricity’ can be attained using simple means, e.g., by
applying standard crossover multiple times and picking the
offspring that is as geometric as possible [4]. However, the
major recent advancement in studies on geometric crossover
is [9], where Moraglio et al. have proposed a systematic
way of designing exact mutation and crossover operators
that exploit the conic shape of the semantic fitness land-
scape (geometric semantic genetic programming, GSGP).
The key idea there is to use the instructions available to
the GP search process to build an expression atop the par-
ent(s) that modifies its semantics in a way that guarantees
preserving of the geometric properties. In this way, a mu-
tated program is guaranteed to be semantically similar to
the parent, and crossover’s offspring has to be located on
the segment between the semantics of the parents. For in-
stance, the semantically geometric crossover applied to a pair
of symbolic regression parent programs (p1, p2) produces an
offspring program of the form αp1 + (1− α)p2, where α is a
constant. It is immediately obvious that such an offspring,
being a linear combination of p1 and p2, has semantics lo-
cated on the Euclidean segment connecting their semantics.

However, as Moraglio et al. report [9], bloat remains the
main challenge for GSGP. Because the offspring solutions
are syntactic aggregates of entire parent programs (offspring
include parents as subprograms), every generation of off-
spring involves more code, and additional simplification is
necessary to make the search process technically feasible.
And simplification procedures incur also additional compu-
tational overhead. In this paper, we make an attempt to
circumvent this problem by proposing an approximate geo-
metric crossover operator. This operator, described in the
subsequent section, does not guarantee to produce perfectly
geometric offspring, but it is also less affected by bloat.

3. APPROXIMATE GEOMETRIC
CROSSOVER

The main idea behind Approximate Geometric Crossover
(AGX) is to replace subtrees in parents with such code frag-
ments (subtrees) that the semantics of offspring lays in the
middle of the segment connecting parents’ semantics. The
operator first calculates the semantics s(p1) and s(p2) of,
respectively, parents p1 and p2

1. Next, the midpoint m on
the segment connecting s(p1) and s(p2) is determined. For

1If the programs have been previously evaluated, their se-
mantics are already known.
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Figure 2: An example of semantic backpropagation.
For a given desired program semantics, we calculate
the desired semantics for each node on path from
the root node to the crossover point (the blue one).

numerical semantics and Euclidean distance, this is the av-
erage of semantics of both parents. The calculated vector m
becomes the desired semantics of offspring, as it corresponds
to a ‘perfect mixing’ of parents’ behaviors.

Next, AGX chooses two crossover points in p1 and p2.
The subsequent steps apply to each parent independently,
so for simplicity from now we focus on p1 only. Then the
operator executes all instructions on the path from program
root to the chosen crossover point in a ‘reverse manner’. The
input data for this process is the semantics m. Compared to
regular program execution, the order of execution is reversed
(execution proceeds top-down in the tree), and at each step
of this process an ‘inverse’ instruction is executed.

The details of reverse execution can be found in Section
3.1, and here we explain its objective. Let us consider the
first stage of this process, i.e., the root node r and its di-
rect child c on the path defined above. Reverse execution
determines what should be the output of c in order for r to
produce m. In other words, we calculate the desired seman-
tics of the subprogram to replace c (desired in the sense that
it would make the resulting offspring a perfect mixture of the
parents). This process, continued along the path, allows us
to propagate this information to the instruction located at
the crossover point, and thus determine the desired seman-
tics of the subtree to be replaced.

Once the operator determined the desired semantics for
crossover point, it searches the previously prepared library
of short programs (called ‘procedures’) for a procedure, that
has the closest semantics to the desired one (see Section 3.2).
Finally, the selected procedure replaces entire subtree under
the crossover point, producing the offspring. The same steps
are applied to the other parent.

3.1 Semantic backpropagation
We call the algorithm that calculates the desired seman-

tics of an intermediate node semantic backpropagation. By
analogy to error backpropagation in neural networks, we ap-
ply the desired value of semantics to program’s root node
and then propagate this value reversely, down the program
tree (Fig. 2). The algorithm needs to know the semantics
of all nodes in the program (subtrees) before performing the
backpropagation, but this requirement is already fulfilled if
the program has been previously evaluated (which is the case
in the standard GP loop).

To explain the details, let us focus on a single tree node.
Given the desired semantics of that node (desired output)
and the actual semantics of all children of that node, we want
to calculate the desired value of semantics of a specific child

of this node. To do that, we need to execute the inversion of
actual instruction in the node in context of the other children
and the desired semantics of current node.

For the instructions characteristic to symbolic regression
(considered in the experimental part), inversion can be im-
plemented by using a complementary operation that reverts
the actions performed by the actual instruction. For in-
stance, consider subtraction instruction output := child1 −
child2. Since subtraction is an asymmetric operation, the
form of complementary operation depends on which child
we propagate the desired semantics to. For the first child
the complementary operation is child1 := output + child2,
and for the second child it is child2 := child1 − output. The
values calculated in this way for all elements of the vector
that defines the desired semantics (output) form the seman-
tics (vector shown in blue in Fig. 2) to be propagated further
down the tree.

As long as an instruction implements a bijective func-
tion (transforms distinct arguments to distinct values in the
codomain and vice versa) it can be safely inverted in the
above way. However if an instruction is surjective (and not
bijective), its inversion is ambiguous, since there are many
arguments that cause it to return the same output value. In
general, two types of ambiguity are possible, with a finite
and infinite number of inversions. In the former case one
can calculate, provided enough computational resources, all
possible inversions and continue the semantic backpropaga-
tion in child node for each of these semantics. However for
the latter case, the set of possible inversions can be only
sampled.

To cope with the above problems while keeping computa-
tional cost at bay, in case of ambiguity we calculate at most
two desired semantics for the child node. The subsequent
part of the semantic backpropagation is then carried out for
both desired semantics independently. Each of them can
possibly lead to further ambiguities. Thus, even with this
constraint, the number of backpropagated semantics may
increase exponentially with node depth.

Another special case needs to be handled when inverting
non-surjective instructions. For instance, ∀x : exp(x) > 0,
so for negative values of desired semantics no argument x ex-
ists that could be propagated down the tree. In other words,
there is no semantics for the appointed crossover point (and
thus no procedure in the library) that can move the seman-
tics of the entire program to the midpoint of the segment. If
this happens even for a single element of desired semantics,
we discard it. However, this does not necessarily stop the
entire semantic backpropagation: if the ancestor nodes had
ambiguous inversions and thus led to alternative versions of
desired semantics, the processing continues for them. Only
when inversion fails for all versions of desired semantics, the
algorithm gives up.

Note that, an instruction can be both ambiguously invert-
ible and non-invertible. This is the case for, e.g. y := x2,
which maps exactly two x values to every positive value of
y and no x value to every negative value of y. Therefore,
the feasibility of instruction inversion is highly contextual:
it may be possible to unambiguously invert an instruction
at one location in a program but not at another. The rul-
ing factor is the desired semantics of the instruction being
inverted. In this sense, we may say that the instruction’s de-
sired semantics specifies (one unique inversion), underspec-
ifies (multiple inversions), or overspecifies (no inversions)
the desired semantics of instruction’s argument (the selected
child node).
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Table 1: The benchmarks used in the experiment.
E[a, b, n] means n equidistant points from the range
[a, b]. U [a, b, n] means n random points chosen with
uniform distribution from the range [a, b].

Problem Definition (formula)
Training set

Test set

Nonic
∑9

i=1 x
i E[−1, 1, 20]

U [−1, 1, 20]

R1 (x+ 1)3/(x2 − x+ 1)
E[−1, 1, 20]

U [−1, 1, 20]

R2 (x5 − 3x3 + 1)/(x2 + 1)
E[−1, 1, 20]

U [−1, 1, 20]

Nguyen-7 log(x+ 1) + log(x2 + 1)
E[0, 2, 20]

U [0, 2, 20]

Keijzer-1 0.3xsin(2πx)
E[−1, 1, 20]

U [−1, 1, 20]

Keijzer-4 x3e−xcos(x)sin(x)(sin2(x)cos(x) − 1)
E[0, 10, 20]

U [0, 10, 20]

In conclusion, due to possible ambiguities and non-inver-
tibility of instructions, the outcome of the semantic back-
propagation is a set of desired semantics for the given tree
node. That set may contain zero, one, or many semantics.

3.2 Library of procedures
AGX makes use of the library of short programs, called

procedures in following. Its purpose is to supply AGX with
code fragments that match as close as possible the desired
semantics resulting from semantic backpropagation. To pro-
vide high diversity of semantic, we populate the library with
all possible program trees, up to an assumed height, com-
posed of the elements of the assumed instruction set. Since
it is only the semantic distance between the desired seman-
tics and the semantic of a procedure that determines which
procedure is fetched from the library, storing semantically
identical procedures is pointless. Therefore, for any set of
procedures that have the same semantics, the library stores
only the shortest one. There are obviously many other ways
in which the library could be populated, but here we limit
our considerations to this straightforward method.

The size of the library is exponential in function of the
height limit, so providing fast search for the closest semantics
is essential. This process can be sped up by means of spa-
tial (multidimensional) indexes, data structures originally
designed for geographic databases. We tested wide range of
spatial indexes and found out that for this particular task,
characterized by high dimensionality of the search space, the
KD-tree [2] works best. The nearest neighbor query to the
index consisting of m elements takes on average O(logm)

time, and O(m1−1/k) in the worst case.

4. GEOMETRY OF OPERATORS
In general, AGX cannot guarantee the semantics of off-

spring to reach the midpoint of the segment connecting par-
ents’ semantics. There are two reasons for this. Firstly, the
library is a finite set of procedures, which by definition do
not implement all possible semantics. Therefore, in most
crossover acts, the substituted procedure has a non-zero dis-
tance from the desired semantics, and that discrepancy prop-
agates to the root node. Secondly, limited arithmetic preci-
sion makes the reversal process inherently inexact.

For these reasons we carry out a computational experi-
ment aimed at quantitative assessment of the probability at

Table 2: Fraction of geometric offspring (according
to Manhattan distance) bred by AGX, LGX, GPX,
and p-values of Z-test for the equality of two pro-
portions. Best values in rows and the significant
p-values (α = 0.05, one-sided test) are in bold.

Depth of

crossover
AGX LGX GPX

p-values

AGX>GPX LGX>GPX AGX>LGX

1 .0155 .1676 .0035 .0000 .0000 1.000

2 .0151 .0100 .0031 .0000 .0000 .0000

3 .0136 .0031 .0018 .0000 .0001 .0000

4 .0105 .0016 .0020 .0000 .9570 .0000

5 .0055 .0014 .0011 .0000 .1219 .0000

6 .0028 .0009 .0007 .0000 .1521 .0000

7 .0017 .0006 .0005 .0000 .2899 .0000

8 .0012 .0004 .0003 .0000 .1944 .0000

9 .0010 .0007 .0003 .0001 .0121 .0558

10 .0006 .0005 .0003 .0296 .0766 .3660

11 .0005 .0002 .0003 .1214 .8050 .0529

12 .0004 .0001 .0003 .2305 .9037 .0499

13 .0003 .0002 .0002 .3577 .6258 .3114

14 .0002 .0000 .0005 .9526 .8704 .2298

15 .0000 .0000 .0002 .6843 .6582 .5000

16 .0000 .0000 .0005 .5979 .6968 .5000

17 .0000 .0000 .0000 .5000 .5000 .5000

Overall .0057 .0035 .0008 .0000 .0000 .0000

which different operators produce geometric offspring. Tech-
nically, we ran evolution on six symbolic regression problems
from Table 1 for 100 generations each and recorded each
crossover act by AGX, standard subtree crossover (GPX)
[3], and a comparable approach, locally geometric semantic
crossover (LGX, [5]), that approximates geometric changes
on the level of homologous program tree loci. Next, for
each resulting offspring we checked whether it is located on
the segment connecting parent’s semantics according to the
Manhattan distance. We chose this metric because it is char-
acterized by the biggest size of segment between parents of
all Minkowski distances Lp, p ≥ 1. In other words, Manhat-
tan distance defines geometric offspring in the most ‘liberal’
way.

Table 2 presents the probability of producing geometric
offspring by all considered operators and the correspond-
ing p-values of Z-test for the equality of two proportions.
We present the overall outcome in the last row of the table,
and for particular depths of crossover points. Each offspring
is counted separately, thus two offspring resulting from the
same crossover act may contribute to different rows in the
table.

From the table, we see that in 12 of 17 cases AGX has the
highest probability of producing geometric offspring. LGX
dominates both other operators only in one case. GPX is
most geometric in three cases, however the probabilities are
very small and insignificant. AGX is significantly more geo-
metric than GPX in 10 of 17 cases, while LGX is significantly
better in only 4 cases. Taking into account overall result,
both AGX and LGX are significantly more geometric than
GPX, however the test also shows that AGX is significantly
more likely to produce geometric offspring than LGX. No
crossover act at depth 17 was geometric in this experiment.

The important observation is that, while the probability
of producing geometric offspring drops with depth for all
operators, AGX maintains the relatively highest probability
for the widest range of depths. For AGX, the probability
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Table 3: Experimental setup.
Parameter AGX LGX GPX
Instruction set {+,−,×, /, sin, cos, exp, log, x}a
Population size 1024
Initial max tree depth 6
Max tree height 17
Selection tournament selection
Tournament size 7
Trials per experiment 100 independent runs
Termination
condition

250 generations

Crossover probability 0.9
Mutation probability 0.1
Max procedure height {3, 4} {3, 4} —
Crossover point
selection

linear homologous Koza-I [3]

aThe / and log are protected. Division by 0 returns 0 and
logarithm calculates absolute value of its argument.

decreases due to the growing number of instructions in the
path from crossover point to the program root, causing mul-
tiple transformations of geometry of semantic space. Since
the semantics of the procedure chosen from the library in
general only approximates the desired semantics, the error
of this approximation is propagated through the program
structure, where it may be increased or decreased depend-
ing on instructions on the path. This complex process may
affect each fitness case to a different extent, and apparently
causes the changes on the level of program root to be ‘less
geometric’.

In conclusion, we observe that AGX is more likely to pro-
duce geometric offspring than LGX and GPX, however the
probabilities are rather low. In the next section, we verify
whether these properties have any significant impact on the
effectiveness of evolutionary search.

5. PERFORMANCE OF OPERATORS
We use six univariate symbolic regression problems to as-

sess the performance of AGX, comparing to the LGX [5] and
subtree crossover (GPX) [3]. The problems, enumerated in
Table 1, come from [3, 6] and represent four classes. There
are problems with the target defined by a polynomial, ra-
tional, logarithmic and trigonometric functions. For each
problem, we define a training set of fitness cases used by
fitness function during evolution, and a disjoint test set of
fitness cases for post-evolution assessment of generalization
capability.

Evolution is allowed to use eight non-terminal instructions
(see Table 3). The only terminal instruction is the indepen-
dent variable x (there are no constants). Crossover operators
are engaged with 0.9 probability and are supplemented by
subtree-replacement mutation. Mutation is added to pre-
vent premature convergence and to make competition with
GPX more fair for the latter (without mutation, evolution
run by GPX can irreversibly lose instructions from popula-
tion). There is no reproduction.

AGX and LGX employ the same libraries of procedures.
We consider two libraries: a small one containing all unique
program trees of height up to 3, and a big one with height
limit 4. The cardinalities of libraries are, respectively, 212
and 108520 (recall that semantic duplicates are discarded).

Table 4: Symmetry test. P-values represent proba-
bility of erroneously judging method in row as better
than method in column. Values in bold are signifi-
cant (α = 0.05).

AGX3 AGX4 GPX LGX3 LGX4

AGX3

AGX4 0.002 0.048 0.123 0.996
GPX 0.892

LGX3 0.705 0.996
LGX4 0.009 0.123 0.262

The suffix following method name indicates the type of li-
brary (e.g. AGX4).

Note that the operators use different methods for selec-
tion of crossover point. AGX uses linear selection, which
assigns equal probability to each depth of tree. First the
set of nodes on particular depth is chosen, then a crossover
point is selected from this set. On the other hand LGX
involves homologous selection and GPX uses Koza-style se-
lection (with 0.9 probability an intermediate node is chosen,
otherwise a leaf).

5.1 Search progress
Figure 3 shows the average of best-of-generation fitness

achieved by AGX3, AGX4, LGX3, LGX4 and GPX for prob-
lems from Table 1, averaged over 100 runs, with confidence
intervals marked by shading. AGX4 is the unquestionable
winner in terms of speed of convergence. On average, it
leads from the beginning, and in less than 50 generations
achieves fitness that is unbeatable by the other methods for
long time. Only for two problems, Nonic and Nguyen-7,
AGX4 is overtaken by LGX4 at the end of trial. However,
these differences are statistically insignificant. The second
best method is LGX4, which achieves fitness at the level of
AGX4 or a bit worse, however it requires significantly more
time to do so.

The situation is quite different for the methods equipped
with the small library. AGX3 is better than LGX3 only on
the R2 problem, and in the other cases the latter is notice-
ably better. We hypothesize that it is an effect of imperfect
match of procedures to desired semantics. The big library is
three orders of magnitude larger than the small one, there-
fore it can be expected to provide procedures that match the
desired semantics more closely.

The relation of GPX to other methods is highly problem-
dependent. It is significantly worse than the best of the
other methods. However, for each problem there is at least
one other method that does not outperform it. Usually it is
the AGX3, but for R2 it is LGX3.

We performed Friedman’s test for multiple achievements
of series of subjects on the average of best-of-run fitness to
assess significance of the differences between methods. The
resulting p-value is 0.0024, so assuming α = 0.05 there exists
at least one statistically significant difference. Therefore we
conducted post-hoc analysis using symmetry test to analyze
significance between particular pairs of methods. The re-
sults, shown in Table 4, indicate that AGX4 is significantly
better than GPX and AGX3.

5.2 Test-set performance
To assess the performance of generalization, we ran best-

of-run individual on independent test-set data (Tab. 1) and
averaged the results over 100 runs of GP. The values shown
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Table 5: Error committed by best-of-run individual on test set (avg. of 100 runs). For values higher than 100
we left only an order of magnitude.

Problem AGX3 AGX4 GPX LGX3 LGX4

Nonic 0.359±0.036 0.093±0.012 0.130±0.021 0.201±0.037 0.191±0.074
R1 0.224±0.025 0.050±0.006 0.261±0.053 0.167±0.025 0.103±0.018
R2 107 ± 107 0.028±0.004 0.316±0.073 0.621±0.126 0.042±0.012
Nguyen-7 0.051±0.008 0.005±0.001 0.044±0.011 0.018±0.015 0.004±0.003
Keijzer-1 0.190±0.032 0.039±0.007 0.134±0.026 0.091±0.013 0.041±0.010
Keijzer-4 3.113±2.792 1013 ± 1013 0.492±0.084 2.008±1.141 2.854±3.278

in the Table 5 demonstrate that AGX4 generalizes the best
for 4 out of 6 problems. In contrast, LGX4 provides the best
generalization for only one problem, however the difference
compared to AGX4 is insignificant in this case. GPX proves
superior to other methods only on one problem.

Comparison of the errors obtained for the test set to the
corresponding fitness values measured on the training set
(Fig. 3) show that AGX4 noticeably overfits only on the
Keijzer-4 problem. On the other hand, there are no doubts
that overfitting occurs also twice for AGX, once for LGX3

and LGX4. GPX turns out to be the most resistant to over-
fitting, which is however not surprising given its poor per-
formance on the training set.

5.3 Impact on tree size
Figure 3 presents the average number of nodes of pro-

grams in evolutionary runs for AGX, LGX and GPX. The
very first observation is that the size of solutions created by
both AGX and LGX depends on the size of used library.
Both methods, when equipped with the small library, pro-
duce solutions that are noticeably smaller than the solutions
created by standard tree-swappinng crossover. With the big
library, both produce significantly bigger trees.

Though the trees produced by AGX4 at the end of runs are
rather large, it is worth noticing that the method achieves
its top fitness much earlier, typically in less than 50 genera-
tions (Fig. 3), and the remaining ∼ 200 generations do not
noticeably improve fitness. And when we consider the pro-
grams generated by AGX4 in the 50th generation, their sizes
can be claimed comparable to those evolved by, e.g., GPX.

At this point it is also desirable to compare AGX, an ap-
proximate geometric crossover, to the exact geometric cross-
over from [9]. The exact geometric crossover combines two
parent programs into one offspring, by adding an additional
structure as a new program root. Such a structure must
consist of at least one node. Thus, the exact crossover on
average doubles the size of programs in every generation.
The rough estimate of the expected number of nodes in
programs produced by this operator after g generations is
2g × avgp∈P0(size(p)), where P0 is the initial population.
Even if P0 contained single-node programs, for g = 50 this
amounts to 1.1 × 1015. Though the authors of [9] do not
report tree sizes and claim that bloat can be kept at bay
by employing simplification procedures, this analysis shows
that the sizes of programs produced by AGX4 when fitness
saturates (∼ 170 nodes on average) can be still attractive. In
other words, compared to exact geometric crossover, AGX
trades exactness for program size.

6. DISCUSSION
An observant reader has probably noticed the following.

If the objective of semantic backpropagation is to ‘shift’ par-
ent’s semantic from its current location to specific other lo-

cation (in our case: the midpoint of the segment spanning
parents’ semantics), then why not use the same procedure
to shift the semantics directly to the target of the search
process? In such a case, the semantic being backpropagated
through the path of instructions would be simply the ulti-
mate goal of the entire search process. Assuming that the
semantic backpropagation is at least partially effective at
changing the semantic in the right direction (and the above
experiments suggest that it is), one may expect such search
converge to the target faster than AGX.

Indeed, such direct search is a natural analog to AGX, and
we investigate it in a separate study [12]. Note however that
applicability of direct search is limited. Firstly, it requires
the target to be explicitly given. This requirement is met
in all typical symbolic regression tasks. However, there are
conceivable scenarios in which this is not the case. Imagine
for instance an application in which the target cannot be re-
vealed due to privacy concerns or other issues (e.g., the target
is a confidential historical time series). In such a case, even
if the fitness function definition is fully conformant with the
formalisms presented in Section 2, and fitness landscape is a
unimodal cone, the target cannot be directly used. Contrary
to direct search, AGX, for which the knowledge of target is
irrelevant, can be still applied to such tasks.

There is also a much wider class of problems that can
be approached with AGX, but not with the direct search.
In this study, we assumed that fitness function is a distance
from a uniquely defined target, which causes the fitness land-
scape to be conic and guarantees the offspring of geomet-
ric crossover to be not worse than the worse of its parents
(Fig. 1). Many problems involve fitness function that can-
not be expressed in that way, e.g., where fitness results from
some simulation process (control problems like pole balanc-
ing, design problems, etc.). Consequently, unimodality is
lost (or uncertain), and the above guarantee becomes void.
Nevertheless, it is reasonable to expect that fitness land-
scapes for such problems are at least locally convex, and
within such local basins AGX can still be effective at im-
prove solutions (while, again, direct search is useless as the
target is unknown). More specifically, as long as both par-
ents dwell in the same basin of local optimum, AGX’s op-
eration is consistent with the reasoning presented in Section
2. Its effectiveness on such problems will be subject of our
future studies.

Probably the strongest limitation of the approach pro-
posed here is the requirement of instruction inversibility.
Definitely, many instructions are in general irreversible, par-
ticularly those used in conventional programming languages.
Nevertheless, we hypothesize that AGX can bring some ben-
efits even if the inversion operations are imperfect in some
sense (e.g., return multiple possible outcomes or do not re-
turn any outcome). Note that the library typically does not
contain the procedure with exactly the desired semantics,
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so even if all instructions on the path would be perfectly
inversible, the semantics of the modified individual is not
guaranteed to shift to the prescribed location. Also, in the
end, given the stochasticity of the other elements of evolu-
tionary search (selection, mutation), the approximate nature
of AGX can be of secondary importance.

In conclusion, the performance of AGX is clearly related
to the contents of the provided library. If we could hypo-
thetically equip AGX with an ideal library, that provides a
perfectly matching procedure to the desired semantics, the
AGX would operate almost identically on semantics level to
the exact geometric crossover [9]. However we expect that
the sizes of trees produced by AGX would remain smaller
than exact crossover’s. Note that the ideal library is virtu-
ally not possible to be built. Additionally one may consider
such library as a form of an oracle, which returns a program
for a given semantics. It is clear that having this form of an
oracle, we need not any optimization algorithm anymore.

7. CONCLUSIONS
We presented AGX, a new GP crossover operator that is

semantically approximately geometric. AGX exhibits supe-
rior performance compared to the locally geometric semantic
crossover [5], and the canonic tree-swapping crossover [3]. It
maintains this advantage on both training set and test set.
Though it suffers from substantial bloat, particularly when
allowed to run too long, the sizes of trees produced by AGX
are significantly smaller than the theoretical expected tree
size of non-simplified programs produced by exact geometric
crossover [9].
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