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ABSTRACT 
The existence of the curse of dimensionality is well known, and 
its general effects are well acknowledged. However, perhaps due 
to this colloquial understanding, specific measurements on the 
curse of dimensionality and its effects are not as extensive. In 
continuous domains, the volume of the search space grows 
exponentially with dimensionality. Conversely, the number of 
function evaluations budgeted to explore this search space usually 
grows only linearly. New experiments show that particle swarm 
optimization and differential evolution have super-linear growth 
in convergence time as dimensionality grows. When restricted by 
a linear growth in allotted function evaluations, this super-linear 
growth in convergence time leads to a decrease in the allowed 
population size. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control 
Methods, and Search – Heuristic methods 

General Terms 
Algorithms 
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1. INTRODUCTION 
Our intuitive understanding of population-based heuristic search 
techniques is often based on examples formed in two dimensions. 
Of note, particle swarm optimization (PSO) starts with an image 
of birds circling in towards a food source in a corn field [1]. As 
we picture the 15-30 birds involved with this original 
conceptualization, we can imagine how the proposed search 
technique will achieve excellent coverage of the search space. 
However, these intuitive ideas can be inaccurate and even 
misleading in higher dimensional search spaces. 

A simple guideline from differential evolution (DE) is to use a 
population size (n) that is ten times the dimensionality (d) of the 
search space [2]. However, going from d = 2 to d = 42 can 
increase the size of the search space by a factor of about 1012. 
Whereas we might imagine 20 birds being able to fully explore a 
10m x 10m courtyard, we should have a different visualization of 
420 birds in an area similar to the size of the Atlantic Ocean. 

Despite this increasing sparseness in the coverage of the search 
space, popular guidelines for the recommended size of the 
population in PSO and DE include constant sized (e.g. [3] for 
PSO) and linearly increasing sizes (e.g. [2][4] for DE). The 
following experiments show that even these population sizes can 
become too large to allow convergence when PSO and DE are 
applied to large scale global optimization (i.e. d ≥ 1000). 

2. PARTICLE SWARM OPTIMIZATION 
The experiments measure what it takes for PSO and DE to 
converge “close” to the optimum on sphere. The sphere function 
is chosen because it is the simplest (unimodal) baseline function 
used in many benchmark sets. If a search technique is unable to 
reach the optimum on sphere, the error on sphere suggests a 
minimum error that will exist for any (local) optimum on a 
deceptive (multi-modal) problem. 

The current implementation of sphere uses the range of +/− 100 
and the limit of 10,000 * d function evaluations. Starting with 
uniform random solutions on this range, we record the number of 
function evaluations required to first produce a solution within the 
+/− 0.1 hypercube around the origin (where the un-shifted global 
optimum is located). Thirty independent trials are run for each 
data point. Since variations amongst the trials were negligible 
(with the excess of trials mostly to confirm the key trends), only 
averages of the converged trials are presented. 

The first set of experiments is a 10 by 10 grid – dimensions d 
from 50 to 500 in steps of 50 and population sizes n from 50 to 
500 also in steps of 50. The average number of generations (i.e. 
function evaluations divided by population size) to first find a 
solution within the target hypercube is reported in Table I. In 
general, the number of generations required for convergence is 
mostly constant with respect to population size with a slight 
benefit (i.e. fewer generations required) for larger values of n. 
However, the approximate growth rate in generations required to 
converge as a function of dimensions d is faster than a linear 
function with a constant of 1. Since the allowed function 
evaluations increases linearly (i.e. function evaluations = 10,000 * 
d), the growth rate in generations eventually eclipses the growth 
rate in function evaluations. PSO with n = 450 cannot converge 
for d ≥ 450 dimensions, and n = 500 fails for d ≥ 250 dimensions. 
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The observation that the resources required for convergence grow 
super-linearly with dimensions is more easily seen in Figure 1. 
The blue diamonds indicate the actual number of generations 
required to first produce a solution within the target hypercube, 
and the red crosses indicate a linear extrapolation of the first point 
for d = 50 and the origin.  

3. DIFFERENTIAL EVOLUTION 
A similar super-linear growth rate in the number of generations 
required for convergence is also observed in DE. In Figure 2, a 
standard DE/rand/1/bin is tested on sphere using a target 
hypercube of +/− 1, n = 50, and F  {0.5, 0.6, 0.7, 0.8}. The 
shaded area represents generation counts above the maximum 
imposed by the FE limit. These results also indicate that lowering 
F can lead to improved search efficacy – the curves from top to 
bottom have F = 0.8, 0.7, 0.6, and lastly 0.5. However, while the 
trend in the plot suggests that continuing to reduce F would 
produce further improvements, experiments with F = 0.4 resulted 
in premature convergence for all d > 50. The balance between 
allowing the population to contract (so that it can make effective 
exploratory moves) while maintaining sufficient diversity is 
evidently critical to DE’s success, but can be difficult to achieve. 

4. SUMMARY 
Since the budget of function evaluations usually grows only 
linearly with dimension d, it becomes clear that for any 
population size n, there will eventually be a problem size d for 
which this linear budget of function evaluations (e.g. 10,000 * d) 
will become insufficient to achieve a desired level of 
convergence. For large scale global optimization, the trends in 

Figures 1 and 2 suggest that populations sizes will have to 
become much smaller than the problem dimensionality (i.e. n << 
d) to ensure convergence in a reasonable amount of time. This 
limitation may affect the performance of PSO and DE in high 
dimensional search spaces. 
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Table 1. Number of generations required by PSO to converge on the sphere function. 

n 
Dimensions (d) 

50 100 150 200 250 300 350 400 450 500 
50 959.4 1982.9 3099.6 4251.3 5465.6 6816.1 8121.4 9346.4 10807.0 12361.0 

100 935.9 1961.3 3047.1 4212.2 5416.2 6653.1 7905.1 9234.7 10579.8 11899.0 
150 924.4 1963.1 3053.3 4174.4 5371.7 6611.6 7879.1 9180.5 10480.0 11870.7 
200 920.1 1942.8 3021.8 4177.8 5348.0 6562.4 7830.4 9107.8 10436.3 11738.2 
250 920.6 1944.1 3015.7 4148.9 5335.3 6559.6 7814.1 9078.4 10416.2 11776.3 
300 918.2 1932.7 3016.9 4134.9 5299.7 6563.9 7763.8 9059.8 10439.3 11739.0 
350 914.2 1938.3 3008.6 4129.6 5296.7 6557.4 7793.1 9045.3 10392.5 11692.9 
400 900.5 1918.4 3003.2 4118.1 5307.1 6548.5 7805.5 9069.5 10312.4 11685.8 
450 909.4 1919.1 3016.5 4121.0 5284.3 6504.5 7710.9 8821.3 - - 
500 913.3 1929.3 2971.6 3974.0 - - - - - - 

 
Figure 1. Convergence time grows super linearly in PSO. 

 
Figure 2. Convergence time grows super linearly in DE. 
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