A Fast Genetic Algorithm for the Flexible Job Shop
Scheduling Problem

Marcin Cwiek
Future Processing
Bojkowska 37A
. 44-100 Gliwice, Poland
mcwiek@future-processing.com

ABSTRACT

This paper presents a fast genetic algorithm (GA) for solving
the flexible job shob scheduling problem (FJSP). The FJSP
is an extension of a classical NP-hard job shop scheduling
problem. Here, we combine the active schedule construc-
tive crossover (ASCX) with the generalized order crossover
(GOX). Also, we show how to divide a population of solu-
tions in the high-low fit selection scheme in order to guide
the search efficiently. An initial experimental study indicates
high convergence capabilities of the proposed GA.

Categories and Subject Descriptors

1.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

General Terms
Algorithms

Keywords

Genetic algorithm; randomized crossover; flexible job shop
scheduling problem

1. INTRODUCTION

The job shop scheduling problem (JSP) is a classical NP-
hard optimization problem. It consists in finding a schedule
o for completing n jobs J;, i € {1,2,...,n}, on m machines
M;, j € {1,2,...,m}. Each job J; is composed of h oper-
ations ofyj, k € {1,2,...,h}, which must be executed in a
pre-defined order, and of, ; should be run on M;. Execution
time of each ofyj is given as Tfj. The objective of the JSP
is to minimize the total time of completing all jobs, usually
referred to as the makespan. o must be feasible, i.e., the op-
erations of each job must be executed in the defined order.

In this paper we consider an extension of the JSP, called
the flexible job shop scheduling problem (FJSP). In the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).

GECCO’14, July 12-16, 2014, Vancouver, BC, Canada.

ACM 978-1-4503-2881-4/14/07.

http://dx.doi.org/10.1145/2598394.2602280.

Jakub Nalepa
Institute of Informatics
Silesian University of Technology
Akademicka 16

. 44-100 Gliwice, Poland
jakub.nalepa@polsl.pl

Algorithm 1 A genetic algorithm for the FJSP.

: Generate a population of N feasible solutions;
: done < false; C «+ 0;
while not done do
Determine N pairs (o4, 0B);
for all (04, o) do
X <+ SelectCrossoverOperator(Pa, Pg);
oc < Crossover(oa, op, X);
oc < Mutate(oc, Pm);
UpdateChildPool(C, o.);
10: end for

> Pre-selection

11: Form the next population; > Post-selection
12: done < CheckStoppingCondition();
13: C + 0;

14: end while
15: return best solution;

FJSP, an operation of (the k-th operation of the i-th job) can
be processed by more than one machine Mj, j € {1,2,...,m}.

The JSP, along with its numerous variants, are of a wide
practical applicability, thus they have been extensively stud-
ied over the years. Due to the NP-hardness of the FJSP, a
number of heuristic algorithms were proposed to solve it in
acceptable time [1,3-5].

The paper is organized as follows. Section 2 outlines the
genetic algorithm to solve the FJSP. The experimental study
is reported in Section 3. Section 4 concludes the paper.

2. GENETIC ALGORITHM OUTLINE

In the proposed GA, a population of N randomly gener-
ated feasible solutions (Alg. 1, line 1) evolves in time. In
this paper we aim at minimizing the makespan, which is the
primary objective of the FJSP. Once the initial population
is generated, N pairs of parents (c4,05) are determined for
the crossover (line 4). We utilize the high-low fit (HLF) se-
lection which has high exploration capabilities [2]. In HLF,
the population is sorted and divided into two parts. A par-
ent o4 is selected from the well-fitted part (e- N individuals,
0 < e < 1), and op from the other part. Here, € affects the
exploration and exploitation capabilities of the GA.

Then, the crossover operator is selected (line 6). Here,
the ASCX [1] is chosen with the probability P4, and the
GOX with the probability Pg, where P4 + Pg = 1. The
parents o4 and op are crossed-over (line 7) and the child o,
is mutated using the scramble mutation with the probability
P, which is decreased in time (line 8). The child o, is added

Table 1: The minimum makespan obtained using the
GA for mt10 and mt20 (best shown in boldface).

Palle— 005 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
0.10 971 971 976 993 976 1002 993 1017 1016
030 o 952 967 967 971 974 977 983 990 994
0.50 | & 967 967 967 967 967 971 971 976 971
0.70 | = 967 967 971 971 971 973 971 971 967
0.90 941 967 967 981 974 971 993 989 996
T0.10 [~ T 129371293 1317 131471313 1316 1318 1301 1332
0.30 | o 1237 1251 1291 1316 1307 1282 1304 1279 1314
0.50 | & 1199 1220 1233 1253 1261 1285 1309 1298 1320
070 | & 1195 1200 1213 1223 1228 1238 1250 1274 1271
0.90 1233 1216 1213 1205 1205 1205 1205 1211 1230

to the child pool C (line 9). Then, the next population
is composed of the children residing in C, and the elitist
strategy is applied (line 11). Finally, the best individual
from the last population is returned (line 15).

3. EXPERIMENTAL RESULTS

The GA was implemented in C# and run on an Intel Core
2 Quad Q9300 (3 GB RAM) computer. Its parameters were
set to the following values: N = 100, P,, = 0.3, 7 = 20 sec.,
where 7 is the maximum execution time. The GA was tested
on two benchmark tests', namely mt10 and mt20. Each test
was run 10 times for each GA configuration.

The minimum makespan obtained using the GA is pre-
sented in Tab. 1. Here, the HLF parameter ¢ was subject
to change, along with the probability of applying the ASCX
(Pa). The experimental results prove that the convergence
capabilities of the GA are strongly influenced by € and Pa.
Here, selecting parents from a relatively small set of well-
fitted individuals (see € = 0.05) allowed for crossing them
over with a larger number of other ones (i.e., 04 was drawn
from the e- N best individuals). Thus, the probability of im-
proving the best solutions in the population increased. The
search was guided fast towards the best regions of the search
space by exploiting a small number of the best individuals.

The makespan averaged for 10 runs of each GA config-
uration is presented in Figs. 1-2, for mt10 and mt20, re-
spectively. The results show that the exploitation of a small
number of best individuals help converge to the solutions
of the highest quality in short time. Moreover, the ASCX
operator should be preferred to guide the search efficiently.

4. CONCLUSIONS AND FUTURE WORK

We presented a fast GA to solve the FJSP. The initial
results confirm that the search can be guided by randomizing
the proportion of the applied crossover operators. Also, we
showed the influence of the high-low fit parameter on the
convergence capabilities of the GA. Our ongoing research
includes performing full benchmark tests of the proposed
GA, and designing a memetic algorithm to solve the FJSP.
Also, we aim at implementing a parallel version of the GA.

5. ACKNOWLEDGMENTS

This work has been partially supported by the European
Regional Development Fund under Operational Programme
Innovative Economy 2007-2013, based on the Agreement
No. UDA-POIG.01.04.00-24-138/11-01.

!See http://www.idsia.ch/ monaldo/f jsp.html.

1450

Figure 1: Average makespan for the mt10

1020-1040

W 960-980

1000-1020 = 980-1000
W 940-960

1040
1020
1000
980
960
940
920

Makespan

problem

(e and P4 are given in %).

Figure 2: Average makespan for the mt20

1350-1400 1300-1350 = 1250-1300
W 1200-1250 = 1150-1200

1400
1350
1300
1250
1200
1150
1100

Makespan

problem

(e and P4 are given in %).

6.
1

2

3]

REFERENCES

C. Dimopoulos and A.M. Zalzala. Recent
developments in evolutionary computation for
manufacturing optimization: problems, solutions, and
comparisons. IEEE T. Fvolut. Comput., vol. 4, no. 2,
pp. 93 — 113, 2000.

M. Kawulok and J. Nalepa. Support Vector Machines
Training Data Selection Using a Genetic Algorithm, in
S+SSPR 2012, ser. LNCS, vol. 7626. Springer, 2012,
pp- 557-565.

M. A. Perez and F. M. Raupp. A Newton-based
heuristic algorithm for multi-objective flexible
job-shop scheduling problem. J. of Intell. Manuf., pp.
1-8, 2014.

C. R. Scrich, V. A. Armentano, and M. Laguna.
Tardiness minimization in a flexible job shop: A tabu
search approach. J. of Intell. Manuf., vol. 15, no. 1,
pp. 103-115, 2004.

W. Xia and Z. Wu. An effective hybrid optimization
approach for multi-objective flexible job-shop
scheduling problems. Comp. and Ind. Eng., vol. 48,
no. 2, pp. 409 — 425, 2005.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20140524092651
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Down
 23.8320
 0.0000

 Both
 10
 AllDoc
 10

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 2
 1
 2

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20140524092651
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Left
 7.2000
 0.0000

 Both
 10
 AllDoc
 10

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 2
 1
 2

 1

 HistoryList_V1
 qi2base

