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ABSTRACT
This paper presents a fast genetic algorithm (GA) for solving
the flexible job shob scheduling problem (FJSP). The FJSP
is an extension of a classical NP-hard job shop scheduling
problem. Here, we combine the active schedule construc-
tive crossover (ASCX) with the generalized order crossover
(GOX). Also, we show how to divide a population of solu-
tions in the high-low fit selection scheme in order to guide
the search efficiently. An initial experimental study indicates
high convergence capabilities of the proposed GA.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

General Terms
Algorithms

Keywords
Genetic algorithm; randomized crossover; flexible job shop
scheduling problem

1. INTRODUCTION
The job shop scheduling problem (JSP) is a classical NP-

hard optimization problem. It consists in finding a schedule
σ for completing n jobs Ji, i ∈ {1, 2, . . . , n}, on m machines
Mj , j ∈ {1, 2, . . . ,m}. Each job Ji is composed of h oper-
ations oki,j , k ∈ {1, 2, . . . , h}, which must be executed in a

pre-defined order, and oki,j should be run on Mj . Execution

time of each oki,j is given as τk
i,j . The objective of the JSP

is to minimize the total time of completing all jobs, usually
referred to as the makespan. σ must be feasible, i.e., the op-
erations of each job must be executed in the defined order.
In this paper we consider an extension of the JSP, called

the flexible job shop scheduling problem (FJSP). In the
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Algorithm 1 A genetic algorithm for the FJSP.

1: Generate a population of N feasible solutions;
2: done← false; C ← ∅;
3: while not done do
4: Determine N pairs (σA, σB); ◃ Pre-selection
5: for all (σA, σB) do
6: X ← SelectCrossoverOperator(PA, PG);
7: σc ← Crossover(σA, σB , X );
8: σc ← Mutate(σc, Pm);
9: UpdateChildPool(C, σc);
10: end for
11: Form the next population; ◃ Post-selection
12: done← CheckStoppingCondition();
13: C ← ∅;
14: end while
15: return best solution;

FJSP, an operation oki (the k-th operation of the i-th job) can
be processed by more than one machineMj , j ∈ {1, 2, . . . ,m}.

The JSP, along with its numerous variants, are of a wide
practical applicability, thus they have been extensively stud-
ied over the years. Due to the NP-hardness of the FJSP, a
number of heuristic algorithms were proposed to solve it in
acceptable time [1,3–5].

The paper is organized as follows. Section 2 outlines the
genetic algorithm to solve the FJSP. The experimental study
is reported in Section 3. Section 4 concludes the paper.

2. GENETIC ALGORITHM OUTLINE
In the proposed GA, a population of N randomly gener-

ated feasible solutions (Alg. 1, line 1) evolves in time. In
this paper we aim at minimizing the makespan, which is the
primary objective of the FJSP. Once the initial population
is generated, N pairs of parents (σA,σB) are determined for
the crossover (line 4). We utilize the high-low fit (HLF) se-
lection which has high exploration capabilities [2]. In HLF,
the population is sorted and divided into two parts. A par-
ent σA is selected from the well-fitted part (ϵ ·N individuals,
0 < ϵ < 1), and σB from the other part. Here, ϵ affects the
exploration and exploitation capabilities of the GA.

Then, the crossover operator is selected (line 6). Here,
the ASCX [1] is chosen with the probability PA, and the
GOX with the probability PG, where PA + PG = 1. The
parents σA and σB are crossed-over (line 7) and the child σc

is mutated using the scramble mutation with the probability
Pm which is decreased in time (line 8). The child σc is added
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Table 1: The minimum makespan obtained using the
GA for mt10 and mt20 (best shown in boldface).
PA ↓ ϵ → 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
0.10

m
t1
0

971 971 976 993 976 1002 993 1017 1016
0.30 952 967 967 971 974 977 983 990 994
0.50 967 967 967 967 967 971 971 976 971
0.70 967 967 971 971 971 973 971 971 967
0.90 941 967 967 981 974 971 993 989 996
0.10

m
t2
0

1293 1293 1317 1314 1313 1316 1318 1301 1332
0.30 1237 1251 1291 1316 1307 1282 1304 1279 1314
0.50 1199 1220 1233 1253 1261 1285 1309 1298 1320
0.70 1195 1200 1213 1223 1228 1238 1250 1274 1271
0.90 1233 1216 1213 1205 1205 1205 1205 1211 1230

to the child pool C (line 9). Then, the next population
is composed of the children residing in C, and the elitist
strategy is applied (line 11). Finally, the best individual
from the last population is returned (line 15).

3. EXPERIMENTAL RESULTS
The GA was implemented in C# and run on an Intel Core

2 Quad Q9300 (3 GB RAM) computer. Its parameters were
set to the following values: N = 100, Pm = 0.3, τ = 20 sec.,
where τ is the maximum execution time. The GA was tested
on two benchmark tests1, namely mt10 and mt20. Each test
was run 10 times for each GA configuration.
The minimum makespan obtained using the GA is pre-

sented in Tab. 1. Here, the HLF parameter ϵ was subject
to change, along with the probability of applying the ASCX
(PA). The experimental results prove that the convergence
capabilities of the GA are strongly influenced by ϵ and PA.
Here, selecting parents from a relatively small set of well-
fitted individuals (see ϵ = 0.05) allowed for crossing them
over with a larger number of other ones (i.e., σA was drawn
from the ϵ ·N best individuals). Thus, the probability of im-
proving the best solutions in the population increased. The
search was guided fast towards the best regions of the search
space by exploiting a small number of the best individuals.
The makespan averaged for 10 runs of each GA config-

uration is presented in Figs. 1–2, for mt10 and mt20, re-
spectively. The results show that the exploitation of a small
number of best individuals help converge to the solutions
of the highest quality in short time. Moreover, the ASCX
operator should be preferred to guide the search efficiently.

4. CONCLUSIONS AND FUTURE WORK
We presented a fast GA to solve the FJSP. The initial

results confirm that the search can be guided by randomizing
the proportion of the applied crossover operators. Also, we
showed the influence of the high-low fit parameter on the
convergence capabilities of the GA. Our ongoing research
includes performing full benchmark tests of the proposed
GA, and designing a memetic algorithm to solve the FJSP.
Also, we aim at implementing a parallel version of the GA.
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Figure 1: Average makespan for the mt10 problem
(ϵ and PA are given in %).
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Figure 2: Average makespan for the mt20 problem
(ϵ and PA are given in %).
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