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ABSTRACT
In recent years, deep learning methods applying unsupervised
learning to train deep layers of neural networks have achieved
remarkable results in numerous fields. In the past, many ge-
netic algorithms based methods have been successfully applied
to training neural networks. In this paper, we extend previ-
ous work and propose a GA-assisted method for deep learn-
ing. Our experimental results indicate that this GA-assisted
approach improves the performance of a deep autoencoder,
producing a sparser neural network.

Categories and Subject Descriptors: I.2.6 [Artificial In-
telligence]: Learning—Connectionism and neural nets

General Terms: Algorithms.

Keywords: Genetic algorithms, Deep learning, Neural net-
works, Autoencoders

1. INTRODUCTION
While the motivation for creating deep neural networks con-

sisting of several hidden layers has been present for many
years, supported by a growing body of knowledge on the deep
architecture of the brain and advocated on solid theoretical
grounds [1, 3], until recently it was very difficult to train neu-
ral networks with more than one or two hidden layers.

Recently, deep learning methods which facilitate the train-
ing of neural networks with several hidden layers have been
the subject of increased interest, owing to the discovery of
several novel methods. Common approaches employ either
autoencoders [2, 10] or restricted Boltzmann machines [5, 8,
9] to train one layer at a time in an unsupervised manner.

In the past, genetic algorithms have been applied success-
fully to training neural networks of shallow depths (one or
two hidden layers) [11]. In this paper we demonstrate how
genetic algorithms can be applied to improve the training of
deep autoencoders.

2. DEEP AUTOENCODERS
In this section, we briefly describe autoencoders and explain

how they are used in the context of deep learning.
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An autoencoder is an unsupervised neural network which
sets the target values (of the output layer) to be equal to the
inputs, i.e., the number of neurons at the input and output
layers is equal, and the optimization goal for output neuron
i is set to yi = xi, where xi is the value of the input neuron
i. A hidden layer of neurons is used between the input and
output layers, and the number of neurons in the hidden layer is
usually set to fewer than those in the input and output layers,
thus creating a bottleneck, with the intention of forcing the
network to learn a higher level representation of the input.
The weights of the encoder layer (W ) and the weights of the
decoder layer (W ′) can be tied (i.e., defining W ′ = W T ).

Autoencoders are typically trained using backpropagation.
When an autoencoder’s training is completed, we can discard
the decoder layer, fix the values of the encoder layer (so the
layer can no longer be modified), and treat the outputs of
the hidden layer as the inputs to a new autoencoder added on
top of the previous autoencoder. This new autoencoder can be
trained similarly. Using such layer-wise unsupervised training,
deep stacks of autoencoders can be assembled to create deep
neural networks consisting of several hidden layers (forming a
deep belief network). Given an input, it will be passed through
this deep network, resulting in high level outputs. In a typical
implementation, the outputs may then be used for supervised
classification if required, serving as a compact higher level
representation of the data.

3. GA-ASSISTED DEEP LEARNING
Genetic algorithms (GA) have been successfully employed

for training neural networks [11]. Specifically, GAs have been
used as substitute for the backpropagation algorithm, or used
in conjunction with backpropagation to improve the overall
performance.

We now propose a simple GA-assisted method which (ac-
cording to our initial results presented in the next section)
improves the performance of an autoencoder, and produces a
sparser network.

When training an autoencoder with tied weights (i.e., the
weights of the encoding layer are tied to those of the decod-
ing layer), we store multiple sets of weights (W ) for the layer.
That is, in our GA population each chromosome is one set of
weights for the autoencoder. For each chromosome (which
represents the weights of an autoencoder), the root mean
squared error (RMSE) is calculated for the training samples
(the error for each training sample is defined as the difference
between the values of the input and output layers). The fitness
for chromosome i is defined as fi = 1/RMSEi. After calculat-
ing the fitness score for all the chromosomes, they are sorted
from the fittest to the least fit. The weights of the high rank-
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ing chromosomes are updated using backpropagation, and the
lower ranking chromosomes are removed from the population.
The removed chromosomes are replaced by the offsprings of
the high ranking chromosomes. The selection is performed
uniformly with each of the remaining chromosomes having an
equal probability for selection (regardless of the fitness val-
ues of the chromosomes, i.e., the fitness score is used only for
determining which chromosomes are removed from the popu-
lation). Given two parents, one offspring is created as follows:
Crossover is performed by randomly selecting weights from
the parents, and mutation is performed by replacing a small
number of weights with zero.

Gradient descent methods such as backpropagation are sus-
ceptible to trapping at local minima. Our method assists
backpropagation in this respect, reducing the probability of
trapping at local minima. Additionally, mutating the weights
to zero encourages sparsity in the network (fewer active weights).
Sparse representations are appealing due to information dis-
entangling, efficient variable-size representation, linear sepa-
rability, and distributed sparsity [4].

Note that when training of an autoencoder is complete, the
values of the best chromosome are selected for that autoen-
coder. These values are fixed and shared amongst all chromo-
somes when a new autoencoder layer is added on top of the
previously trained layer. Thus, each chromosome contains
only the values of the layer currently being trained.

4. EXPERIMENTAL RESULTS
For our experiments we used the popular MNIST hand-

written digit recognition database [7]. In the MNIST dataset,
each sample contains 784 pixels (28x28 image), each having a
grayscale value between 0 to 255 (which we scale to a 0 to 1
range). Each sample also contains a target classification label
(between 0 and 9), which is used for the subsequent super-
vised classification phase (using the high level representations
generated by the unsupervised autoencoder).

Our deep neural network uses a stack of 5 layers. The first
layer has 784 neurons, followed by four higher level layers con-
sisting of 500, 250, 100, and 50 neurons. Each layer is trained
separately, with the next layer added only once training is
complete: first we train the 784-500 layer, then use the 500
output neurons as inputs to the 500-250 layer, and similarly
for the 250-100 and 100-50 layers.

The GA implementation uses a population of 10 chromo-
somes. In each generation, the five worst chromosomes (half
the population) are removed and replaced by the offsprings of
the five best chromosomes. We used crossover and mutation
rates of 0.8 and 0.01 accordingly.

To compare the performance of our GA-assisted method
with traditional backpropagation, we ran both methods un-
der similar conditions. First, we ran the traditional back-
propagation version 10 times and selected the result with the
least reconstruction error (best tuned). Next, we ran the GA-
assisted method only once, allowing the same total runtime
as the previous method. Comparing the reconstruction errors
of the two approaches, the GA-assisted method consistently
yielded a smaller reconstruction error, as well as a sparser
network.

In order to compare the classification accuracy of the two
methods, we ran 10,000 new test samples through the two
trained networks and recorded the 50 output values for each
sample. Recall that in this test phase the weights of the net-
work are already fixed, hence an input sample of 784 values

is passed through the layers of 500, 250, 100, and 50 neurons
without modifying their weights. The representation qual-
ity of the networks can be compared by applying supervised
classification to the higher level values produced by the 50
neurons of the output layer. We used SVM classification with
a radial basis function (RBF) kernel. Using SVM, the tradi-
tional autoencoder achieved a 1.85% classification error, while
the GA-assisted method’s classification error was 1.44%.

5. CONCLUDING REMARKS
In this paper we presented a simple GA-assisted approach,

which according to our initial results improves the perfor-
mance of a deep autoencoder. While our implementation
used an autoencoder, the same method is applicable to other
forms of deep learning such as restricted Boltzmann machines
(RBM).

In recent years, several improvements upon traditional au-
toencoders and RBM have been proposed which improve their
generalization. Such improvements include dropout [6], which
randomly disables some neurons during training, dropconnect
[13], which randomly disables some weights during training,
and denoising autoencoders [12], which randomly add noise
by removing a portion of the training data. The improved
performance of the GA-assisted autoencoder could arise from
a similar principle, since mutation randomly disables some of
the weights during training. It is important to compare the
GA-assisted approach to the above mentioned alternative im-
provements in future research.
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