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ABSTRACT 
The gravitational search algorithm (GSA) is a stochastic 
population-based metaheuristic inspired by the interaction of 
masses via Newtonian gravity law. In this paper, we propose a 
modified GSA (MGSA) based on logarithm and Gaussian signals 
for enhancing the performance of standard GSA. To evaluate the 
performance of the proposed MGSA, well-known benchmark 
functions in the literature are optimized using the proposed 
MGSA, and provides comparisons with the standard GSA. 

Categories and Subject Descriptors 

 G.1.6 [Mathematics of Computing]: Optimization—Global 
Optimization; I.2.8 [Artificial Intelligence]: Problem Solving, 
Control Methods, and Search—Heuristic methods  
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1. INTRODUCTION 
Gravitational search algorithm (GSA), proposed by Rashedi et al. 
[1], is a versatile population-based metaheuristic recently 
proposed inspired on the law of gravity and mass interaction for 
global optimization. There are several advanced GSA variants 
available in the literature to obtain better performance than the 
original GSA, such as approaches based chaos theory [2], 
oppositional operator [3], and quantum bits [4]. 

In this paper, we propose a modified GSA (MGSA) by 
introducing a new operator to update the velocities to diminish 
premature convergence and local minima for a minimization 
problem. In this context, the main purpose of this paper is to 
verify that the search ability of GSA can be enhanced by 
modification to update the velocities logarithm and Gaussian 

signals instead to uniform distribution signals. GSA and MGSA 
are used to optimize well-known benchmark functions and some 
simulation results are compared. Obtained results confirm the 
efficiency of the proposed MGSA. 

The remainder of this paper is organized as follows: In Section 2 
we provide a brief summary of GSA and explains the MGSA. 
Section 3 introduces the well-known benchmark functions and 
optimization results. Finally, we provide conclusions in Section 4. 

2. GRAVITATIONAL SEARCH 
ALGORITHM 
In GSA, agents are considered as objects and their performance 
are measured by their masses, with all objects attracting each 
other by the gravity force, while this force causes a global 
movement of all objects towards the objects with heavier masses 
[3]. This approach provides an iterative method that simulates 
mass interactions, and moves through a multi-dimensional search 
space under the influence of gravitation. 

To describe the GSA, consider a system with N agents (masses) in 
which the position of the ith agent is represented by: 
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where n is the search space dimension and d
ix defines the position 

of the ith agent in the dth dimension. At any time (or current 
iteration)  t the force acting between the ith mass and the jth mass 
based on Newtonian gravitation theory is defined as [3]: 
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where G(t) is parameter which is reduced during iterations 
according to 
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where max_t is the maximum of iterations,  is a constant value, 
M is the mass, Rij is the distance and  is a small value. It is then 
assumed that the total force acting on a mass is a randomly 
weighted sum of the individual forces (2), thus: 
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where rj is a uniformly distributed random number in the interval 
[0,1]. This allows the update of velocities and positions according 
to [3]: 
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where 
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After this step masses are updated according to: 
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where b and w indicate the best and worst objective function 
values and f is the objective function. The procedure is then 
repeated until some convergence criterion is satisfied. 
Summarizing, the classical GSA is composed of following steps: 

(i) Randomized initialization of the agents including positions and 
velocities using uniform distribution; 

(ii) Fitness evaluation for each agents; 

(iii) Update G(t), b(t), w(t) and Mi(t); 

(iv) Calculation of the total force in different directions; 

(v) Calculation of acceleration and velocity; 

(vi) Updating agents’ position; 

(vii) Repeat steps (ii) to (vi) until a given stopping criterion 
related to the number of objective function evaluations is reached. 

(viii) Return the best fitness computed at final iteration as a global 
fitness and the positions of the corresponding agent at specified 
dimensions as the global solution of that problem. 

To improve the performance of GSA, a logarithm and Gaussian 
updating of the ri is incorporated into MGSA by means of 
utilizing a modified version of the equation (5) given by 
following procedure: 

if  ru > 0.5  then 8/)/1ln( rdir   else  rgir  1.03.0  

where ru and rd are uniformly distributed random numbers in the 
interval [0,1], and rg is a normally distributed pseudorandom 
number with mean 0 and standard deviation 1. 

3. COMPUTATIONAL RESULTS 
In order to test the performance of the proposed MGSA, two well-
known benchmark functions are evaluated in N = 30 dimensions 
(50 runs). For all runs, we used the following parameters in GSA 
and MGSA: population size is set to 100 agents, stopping 
criterion (max_t ) is equal to 3,000 iterations, G0, is set to 100, 
and  = 20. Figure 1 shows mean best objective function (for the 
best solution) for the GSA and MGSA with 30 independent runs 
for the benchmark functions. It is evident from the Figure 1 that 

the MGSA is able to give better convergence trends for the 
Rosenbrock and Rastrigin functions. 
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Figure 1. Comparison of mean best objective function (30 
runs) for the GSA and MGSA. 

 

4. CONCLUSION 
In this paper, the proposed MGSA has been successfully 
implemented to solve two benchmark functions. It has a flexible 
and well-balanced mechanism for enhancing exploration and 
exploitation abilities. Simulation results show that MGSA 
achieves promising results and outperforms the classical GSA. In 
the future we may examine the performance of MGSA for other 
continuous optimization problems. 
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