
A Genetic Algorithm for Linear Ordering Problem
Using an Approximate Fitness Evaluation

Jinhyun Kim
School of Computer Science & Engineering

Seoul National University
1 Gwanak-ro, Gwanak-gu

Seoul, 151-744 Korea
jh@soar.snu.ac.kr

Byung-Ro Moon
School of Computer Science & Engineering

Seoul National University
1 Gwanak-ro, Gwanak-gu

Seoul, 151-744 Korea
moon@snu.ac.kr

ABSTRACT
Genetic algorithms are widely used to solve combinatorial
optimization problems, but they often take a long time. Usu-
ally, generating and evaluating a large number of different
solutions spend most of the running time. We propose a ge-
netic algorithm for the linear ordering problem which uses
an approximate fitness evaluation. We use a part of the
edges to compute the fitness function value, and the num-
ber of the edges for this is gradually increased during the
evolutionary process. We present experimental results on
the benchmark library LOLIB. The approximation scheme
reduced the running time without loss of solution quality in
general.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—Global op-
timization; G.2.2 [Discrete Mathematics]: Graph The-
ory—Graph algorithms

General Terms
Algorithms

Keywords
Genetic algorithm, fitness approximation, linear ordering
problem

1. INTRODUCTION
Let G = (V,E) be a directed graph with N vertices and

M edges, and w(u, v) be the weight of an edge from ver-
tex u to v. The linear ordering problem(LOP) is to find a
linear ordering of vertices ⟨v1, v2, · · · , vN ⟩ which maximizes
the fitness function

f(⟨v1, v2, · · · , vN ⟩) =
N∑
i=1

N∑
j=i+1

w(vi, vj).

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Copyright is held by the author/owner(s).
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
ACM 978-1-4503-2881-4/14/07.
http://dx.doi.org/10.1145/2598394.2602282.

If the graph does not contain a cycle, then a topological
ordering is an optimal solution; if not, the problem is equiv-
alent to feedback arc set problem(FASP) which tries to re-
move minimal edges from the graph in order to make the
graph acyclic.

LOP, FASP, and several other related problems have been
studied for a long time [1]. And these problems have a
number of applications in various fields [3]. The problem is
known to be NP-hard and many metaheuristic approaches,
including evolutionary approaches have been proposed [2].
It is known that genetic algorithms are suitable for solving
combinatorial optimization problems. But usually they are
slow since a large number of candidate solutions are gener-
ated and evaluated during the evolutionary process.

In this paper, we propose a genetic algorithm for LOP
which evaluates an approximate fitness value. In the early
generation of the GA, only a portion of the edges are used to
evaluate the fitness. We increase the number of used edges
from 0 to M over time. The proposed algorithm was tested
on well-known instances. Experimental results show that
the proposed approach reduces the running time without
losing the quality of the solutions.

2. THE PROPOSED METHOD
We use a typical GA to solve the problem.

• Population: The population consists of 100 permu-
tations, each representing a linear ordering of the ver-
tices. We generate 20 offspring in each generation.
Among the 120 solutions, the best 100 solutions form
the population of the next generation.

• Selection: We randomly pick two solutions, and re-
turn the better one with probability 80%, and the
worse one with probability 20%.

• Crossover: We use order based crossover [3]. First,
each gene is copied from one of the two parents. Then
we pick some genes and reorder them with respect to
their order in the other parent. The probability for
each gene to be picked is 50%.

• Mutation: Each gene has 1% chance of mutation, and
the selected genes are randomly shuffled.

• Stopping Criterion: The GA runs for a fixed num-
ber of generations and stops. The number of genera-
tions K depends on the characteristic of the instance.

1461

To compute the fitness directly, all N2 pairs of vertices
has be considered. By considering the edges of the graph,
the fitness can be rewritten as∑

(u,v)∈E

w(u, v)R(u, v).

R is a binary relation on V and R(u, v) is defined to be 1 if
u comes before v in the ordering, and 0 otherwise.
To approximate the fitness, we use the subset E′ ⊆ E

which has M ′ edges, and compute the summation only for
(u, v) ∈ E′. The accuracy of the approximation is controlled
by the size of E′; it is more accurate if the size is close to
M . We set the size to be 0 in the first generation, and
to be M in the half-way point. During the first half of
the GA, the size is gradually and linearly increased as the
generation progresses. In the second half, the GA is as same
as the one using exact fitness evaluation. The GA travels
the search space almost randomly in the earlier generations,
and it gradually finds the right direction later.
The edges in E′ need to be changed at each time of the

fitness evaluation. GA could easily be stuck in a local op-
timum, if E′ has only few edges in it and it is being kept
similar for a while. However, it is inefficient to randomly
choose M ′ edges all the time. It takes time to generate a
random number, and shuffling the set of edges diminishes the
cache utilization. Instead, we only change some part of the
elements in E′. We first randomly shuffle the list of edges,
and the first M ′ edges form the subset E′. We exchange
0.005 × M random pairs of edges at each time of evalua-
tion; the ith and the jth edges(i, j are randomly picked from
{1, 2, · · · ,M ′} and {1, 2, · · · ,M}).

3. EXPERIMENTAL RESULTS
The proposed algorithm was tested on the a widely used

benchmark library LOLIB [2]. There are 485 instances, com-
prising both real-world instances and randomly generated
ones. Among them, we selected the instances with sizes
N = 50, 100, 150, 200, 250, since there exist a sufficient num-
ber of instances having those sizes. An instance having an
error, N-t65f11xx_150, was excluded.
The number of generations K was selected in order to

guarantee that the population is converged after K gener-
ations. We assume that the population is converged if no
change is made to the population for 100 generations. An
appropriate value of K for each instance was chosen after a
sufficient number of experiments.
We conducted experiments with 4 different kinds of GAs.

Two of them are the GA using exact fitness(EXACT-K) and
the proposed GA using an approximate fitness(APPROX-K).
The other two GAs run for 2K generations, and each of them
uses either exact(EXACT-2K) or approximate fitness(APPROX-
2K). We measured the fitness value of an optimal solution
found and the running time for each run. We conducted 100
runs for each instance and each algorithm, and computed
the average result.
Table 1 shows the comparison between APPROX algorithms

and EXACT algorithms. For each instance, we compute the
relative fitness and time. The relative fitness is the ratio
of the average fitness value obtained by the algorithm with
approximation to the average fitness value obtained by the
algorithm without approximation. The relative time is com-
puted similarly. Then, we averaged the relative values over
the instances with the same size.

Table 1: Comparing the performance of the algo-
rithms in terms of fitness and time. APPROX-K was
compared to EXACT-2K, and APPROX-2K was compared
to EXACT-2K.

N
APPROX-K APPROX-2K

to EXACT-K to EXACT-2K

fitness time fitness time

50 0.9990 0.9819 1.0001 0.9821
100 1.0001 0.9426 1.0004 0.9446
150 0.9989 0.9595 0.9998 0.9595
200 1.0015 0.9346 1.0013 0.9342
250 0.9966 0.9905 0.9983 0.9907

By using the approximate fitness evaluation, the running
time was reduced for both of the cases with K and 2K.
However, the quality of an optimal solution found did not
changed significantly by using the approximation scheme.
In fact, it was even better for some of the instances.

The relative performance of APPROX-2K was slightly bet-
ter than that of APPROX-K. Note that the genetic algorithm
was converged in K generations. This suggests that, when
running a genetic algorithm with sufficiently large number
of generations, the approximation scheme helps to escape
from a local optimum. Using the approximate fitness eval-
uation gives a chance of accepting a worse solution, and
the probability gradually decreases during the space search.
The same idea is often used in some metaheuristics, and the
representative one of them is simulated annealing.

4. CONCLUSION
In this paper, we proposed a genetic algorithm for LOP

which uses the subset of edges to compute the approximate
fitness value of a solution. The accuracy of the approxima-
tion was gradually increased the first half of the evolution,
and exact fitness was used in the second half. The pre-
liminary experimental results showed that the running time
was decreased, but the performance was not harmed as well.
The proposed scheme seems to be useful when the number
of generations is large enough.

5. ACKNOWLEDGMENTS
This work was supported by the Engineering Research

Center of Excellence Program of Korea Ministry of Science,
ICT & Future Planning(MSIP) / National Research Founda-
tion of Korea(NRF) (Grant NRF-2008-0062609). The ICT
at Seoul National University provided research facilities for
this study.

6. REFERENCES
[1] M. Grötschel, M. Jünger, and G. Reinelt. A cutting

plane algorithm for the linear ordering problem.
Operations Research, 32(6):1195–1220, 1984.

[2] R. Mart́ı, G. Reinelt, and A. Duarte. A benchmark
library and a comparison of heuristic methods for the
linear ordering problem. Comput. Optim. Appl.,
51(3):1297–1317, Apr. 2012.

[3] T. Schiavinotto and T. Stützle. The linear ordering
problem: Instances, search space analysis and
algorithms. Journal of Mathematical Modelling and
Algorithms, 3(4):367–402, 2005.

1462

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20140524092651
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Down
 23.8320
 0.0000

 Both
 10
 AllDoc
 10

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 1
 2
 1
 2

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20140524092651
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Left
 7.2000
 0.0000

 Both
 10
 AllDoc
 10

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 1
 2
 1
 2

 1

 HistoryList_V1
 qi2base

