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ABSTRACT
This paper presents an adaptive memetic algorithm (AMA)
to minimize the total travel distance in the NP-hard vehicle
routing problem with time windows (VRPTW). Although
memetic algorithms (MAs) have been proven to be very ef-
ficient in solving the VRPTW, their main drawback is an
unclear tuning of their numerous parameters. Here, we in-
troduce the AMA in which the selection scheme and the
population size are adjusted during the search. We propose
a new adaptive selection scheme to balance the exploration
and exploitation of the search space. An extensive experi-
mental study confirms that the AMA outperforms a stan-
dard MA in terms of the convergence capabilities.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

Keywords
Memetic algorithm; self-adaptation; vehicle routing problem
with time windows

1. INTRODUCTION
The vehicle routing problem with time windows (VRPTW)

is a well-known NP-hard discrete optimization problem. Its
applications are of wide range, thus, a number of exact [3]
and approximate algorithms to solve the VRPTW emerged
over the years. The latter include various improvement and
construction heuristics [2], ant colony algorithms, simulated
annealing, genetic and memetic algorithms, and more [5].

The VRPTW is defined on the graph G, where each cus-
tomer vi, i ∈ {1, 2, . . . , C} (and the depot v0) is given as a
vertex, and each edge is a travel connection with the cost ci,j ,
i, j ∈ {0, 1, . . . , C}, i ̸= j. Customers define the demands
di, di ≥ 0, and service times si. The time windows [ei, li]
are given for each vi and the depot. Let K be a number of
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vehicles with a constant capacity Q in a solution σ. Then,
σ is feasible if (i) Q is never exceeded, (ii) each vi is served
within [ei, li] in exactly one route, (iii) every vehicle starts
and finishes at v0 within [e0, l0]. The primary objective is to

minimize K. Also, the total travel distance T =
∑K

i=1 Ti is
to be minimized, where Ti is the distance of the i-th route.
σA is of a higher quality than σB if (K(σA) < K(σB)) or
(K(σA) = K(σB) and T (σA) < T (σB)).

The paper is organized as follows. The adaptive memetic
algorithm is described in Section 2. The experimental study
is reported in Section 3. Section 4 concludes the paper.

2. ADAPTIVE MEMETIC ALGORITHM
In the AMA, which extends our previous efforts [1, 6], a

population of solutions evolves in time to decrease T . First,
K is minimized by the guided ejection search [1], and a pop-
ulation of NI feasible solutions (each containing K routes) is
generated (Alg. 1, line 1). Then, according to a pre-selection
scheme S, N pairs (σA, σB) are determined (line 4) and
crossed-over to generate Nc children σc for each pair using
the edge assembly crossover (EAX) (line 8). If σc is infeasi-
ble then it is repaired, and it undergoes the education and
mutation procedures based on applying local search moves
(line 9). The best child σb

c is determined for each (σA, σB)
(line 10). Finally, the next population is formed (line 13).

The AMA parameters are adjusted during the search.
First, we propose to incrementally increase the population
size N , starting from the initial size NI (with step ∆N).
Also, we combine the AB-selection scheme, which proved to
have high exploration capabilities [4,6], with the scheme lo-
cally exploiting best individuals (termed Local Exploitation
Selection, LES). In LES, the population is sorted and di-
vided into ϵ parts. Then, N/ϵ pairs of parents are drawn
and crossed-over for each part. The children form the next
population of size N . Here, the elitist strategy is applied.

In the AMA, s indicates the number of consecutive gen-
erations for which the best solution σB was not improved.
S is switched to LES for better local exploitation once s
exceeds S, i.e., the maximum steady state selection counter
(line 19). If s surpasses P (the maximum steady state pop-
ulation counter), then S is set back to the AB-selection,
and N increases to explore new regions of the search space
(line 21). Finally, the best solution is returned (line 26).

3. EXPERIMENTAL RESULTS
The AMA was implemented in C++ and run on an Intel

i7 2.3 GHz (16 GB RAM) computer. It was tested on the
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Algorithm 1 Adaptive memetic algorithm (AMA).

1: Generate a population of NI solutions with K routes;
2: done← false; N ← NI ; s← 0; T (σB

p )←∞; S ← AB;
3: while not done do
4: Determine N pairs (σA, σB);
5: for all (σA, σB) do
6: σb

c ← σA;
7: for i ← 1 to Nc do
8: σc ← CrossoverAndRepair(σA, σB);
9: σc ← Educate(σc); σc ← Mutate(σc);

10: σb
c ← UpdateBestChild(σb

c, σc);
11: end for
12: end for
13: Form the next population of size N and update σB ;
14: if T (σB) < T (σB

p ) then
15: s← 0;
16: else
17: s← s + 1;
18: if (s > S and s < P ) then
19: S ← LES;
20: else if s > P then
21: S ← AB; N ← N + ∆N ; s← 0;
22: end if
23: end if
24: σB

p ← σB ; done← CheckStoppingCondition();
25: end while
26: return best solution;

Gehring and Homberger’s (GH) benchmark tests with 200
customers. GH tests are divided into six subclasses: C1, C2
(clustered customers), R1, R2 (random ones), RC1 and RC2
(both random and clustered). The subclasses C1, R1 and
RC1 have smaller Q and shorter time windows than C2, R2
and RC2. There are 10 problem instances in each subclass.

Each test (out of 10) in each subclass was executed 5
times, and the best results (i.e., with the minimum T ) were
averaged for each subclass. The AMA parameters were set
as follows: NI = ∆N = 10, Nc = 20, ϵ = 5, S = 20,
P = S + 5. For the MA we used the AB-Selection and
N = 20000/C = 100, as suggested in [5]. The maximum
execution time of the AMA was limited to τ = 5 min.

The experimental results are given in Tab. 1. We compare
the best travel distances obtained using the MA, the AMA
without the selection scheme adaptation (S = P ) and the
AMA, in various time points τi (i stands for minutes). Also,
we show the world’s best known T averages (WB)1. In this
study we obtained the world’s best known K for each test.

It is easy to note that the initial best solutions (in τ0)
were of the highest quality in the MA, due to its large N
– the probability of obtaining a well-fitted individual in the
initial population was large. However, the MA, in which N
is constant during the search, required much more time to
converge to the better solutions compared with both versions
of the AMA. They outperformed the MA in τ < τ1. Here,
the small populations were intensively exploited with LES
and extended to include new individuals if necessary. The
average populaton sizes N1 and N5 (in τ1 and τ5) prove
that balancing the exploitation and exploration of the search
space can be achieved by a smooth growth in N .

1See SINTEF website (ref.: March 18, 2014): http://www.
sintef.no/Projectweb/TOP/VRPTW/Homberger-benchmark.

Table 1: The best results averaged for each subclass.
C1 C2 R1 R2 RC1 RC2

M
A

τ0 T0 2853.57 1856.97 3988.23 3068.85 3790.70 2686.44
τ1 T1 2784.95 1848.77 3876.20 3043.86 3607.92 2657.72
τ5 T5 2720.07 1837.44 3721.14 2969.83 3432.39 2575.97

A
M

A
(S

=
P
) τ0 T0 2902.41 1870.89 4063.52 3102.48 3812.95 2705.66

τ1
T1 2720.06 1834.78 3672.62 2952.20 3344.80 2566.55
N1 24 14 12 10 11 10

τ5
T5 2719.64 1832.59 3649.20 2937.43 3272.49 2546.71
N5 60 34 30 18 29 19

A
M

A

τ0 T0 2880.22 1857.79 4043.66 3106.33 3842.79 2702.22

τ1
T1 2720.23 1834.37 3671.78 2957.36 3334.32 2566.31
N1 15 11 13 10 11 10

τ5
T5 2718.87 1831.95 3647.68 2936.61 3270.71 2545.80
N5 48 29 29 14 28 17

WB 2718.41 1831.59 3611.86 2929.41 3176.23 2535.88

4. CONCLUSIONS AND FUTURE WORK
We proposed an adaptive memetic algorithm for solving

the VRPTW. The population size and the selection scheme
are adjusted dynamically during the search in order to bal-
ance the exploitation and exploration of the search space.
The experimental results proved its high convergence capa-
bilities compared with the standard MA. Our ongoing re-
search includes enhancing the AMA further, and incorpo-
rating it into our parallel algorithm.
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