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1. INTRODUCTION

Optimization problems may present different solutions de-
pending on the chosen model representing the system to
optimize; in particular, from an initial coarse model, more
refined ones can be derived with additional decision vari-
ables which may present better performances. However, in
the context of generic algorithms, the computation time re-
quired to generate individuals and evaluate their fitnesses
increases accordingly.

In this abstract, we present an Iterative Model Refinement
Approach (IMRA) used to solve a Multi-Objective Opti-
mization Problem (MOP) based on NSGA-II. It is aimed at
decreasing the computation time and identifying the opti-
mal number of decision variables to achieve the best perfor-
mances.

This abstract will introduces a state of the art of related
methods in Section 2. Section 3 presents the algorithm
which is applied to a simple 2D geometric problem in Section
4.

2. STATE OF THE ART

The approach presented in this abstract builds upon prior
works regarding design variables expansion [1] and model
refinement in the field of Free-Form-Deformation [2]. Those
works showed the benefits of an iterative model refinement in
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the case of monocriterion, non-evolutionary based optimiza-
tion. More refined models presented better performances
while the refinement strategy allowed a significant improve-
ment in the computation time.

The proposed Iterative Model Refinement Approach (IMRA)

extends such methods in the case of a Multi-Objective Evo-
lutionary Algorithm (MOEA). The Hypervolume Estimator
is therefore used to assess the global quality of a population
regarding the MOP hence determining the need for further
refinements of the model.

3. PROPOSED ALGORITHM

The IMRA can be used with any Genetic Algorithm (GA).
The refinement consists in the introduction of new Decision
Variables (DV) in the model, thus allowing better perfor-
mances (assessed through hypervolume estimation).

It relies on a Trigger Operator (%) to identify a suitable
moment for the refinement to happen, with regards to the
computation time. ¥ operates on the basis of an Hypervol-
ume Estimator (HVE) average slope and takes two parame-
ters as inputs: an averaging window (w) and a threshold (t)
under which the refinement is launched.

Algorithm 1: General algorithm

Data: MOP, initial population
Result: Pareto Front Estimation, Optimized
Population
1 P = initial population
2 for i < MOP.num_gen do
fast_non_dominated_search(P)
P = make_new_pop(P)
if ¥(P,w,t) then
| P = MOP.refine(P)
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7 Return fast_non_dominated_search(P), P

The refinement function for P is problem dependant and
is uniformely done over the entire population. In the case
of a geometric problem, this refinement is most likely the
addition of vertices in the model.

4. CASE STUDY

4.1 Description

The case study is an MOP that can be described as fol-
lows:
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(a) 6 DV vs 12 DV (b) 12 DV vs 24 DV

(c) 6 DV vs 24 DV (d) Threshold effect

Figure 1: Effect of the refinement on the Pareto-Front and the computation time

Algorithm 2: Trigger operator
Data: P, w, t
Result: Trigger decision: True if the model needs to be
refined
HVE = compute HVE(P)
Append HVE to HVE._list
Average HVE = sum(HVEL_list[:-w]) /w
Append Average HVE to Average HVE List
if Average HVE < t * maz(Average HVE List[:-w])
then
Empty HVE List
Empty Average HVE List
Return True
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Return False

Maximize fi1(X) = Area(X)
Minimize f2(X) = Perimeter(X)
Subject to £ = [—5;5] X [—5; 5]
[(2,2); (3,3)]" € X
[(0,0); (3,2); (4, 4] ¢ X

with X representing the polygon.

At first, X consists of three vertices (i.e. six DV). This
MOP is solved with IMRA using NSGA-II, with the number
of DV doubling with each refinement.

The computing times are compared to the one required
by NSGA-II when optimizing directly the refined model (12
vertices i.e. 24 DV).

4.2 Optimization results

The optimization results of the IMRA are shown in Fig-
ure 1 After the first model performance stops improving it
is refined, thus leading to a second step of performance en-
hancement. Those two optimization phase are compared in
Figure la (with red being the coarse model). This behaviour
continues upon reaching the Pareto-Front plotted in blue in
Figure 1b and lc.

4.3 Performances

Figure 2 shows the speedup provided by the IMRA with
a suitable Trigger. The speedup happens in the second part
of the optimization (Figure 2b), when the IMRA reaches its
final model. The initial coarse model allows to explore a
first part of the decision space while presenting a reduced
computation time. The first part of the optimization gives
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(b) Second part: IMRA and
NSGA-II use the same 12
vertices model

(a) First part: IMRA still
not at its final model

Figure 2: Performance comparison: NSGA-II (blue dots)
IMRA (red triangles)

the feeling of the IMRA being slower; however it is due to
the fact that only a small portion of the objective space is
reachable with a coarse model thus impacting the HVE.
The reachable space is being expanded with each refine-
ment. In this case study, first triangles optimize low-area
low-perimeter polygons. Then, the hexagons expands the
decision space beyond the constraints points from already
optimized triangles. Finally, the dodecagons complete the
optimization while exploring high-area high-perimeter parts
of the Pareto-Front from already optimized hexagons. Those
phenomena explain the 3x speedup upon final convergence.

5. CONCLUSIONS AND FUTURE WORK

As can be seen in the different experimentations, the IMRA
can yield satisfying results both in terms of computation
speed and final estimation of the Pareto-Front. However,
this algorithm seems to be very dependant of the Trigger
operator, which takes two inputs: its sensibility and its av-
eraging window. Future work will explore the possibility to
handle 3D geometric problems, which is a class of real-world
problems for which IMRA is likely to be suitable.
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