
First Results of Performance Comparisons on Many-core 
Processors in Solving QAP with ACO:  

Kepler GPU versus Xeon Phi 
Mikiko Sato 

Tokyo University of 
Agriculture and Technology, 

Tokyo, 184-8588 Japan 
mikiko@namikilab.tuat.ac.jp 

Shigeyoshi Tsutsui 
Hannan University 

Osaka 580-8502, Japan 
tsutsui@hannan-u.ac.jp 

 

Noriyuki Fujimoto 
Osaka Prefecture University 

Osaka 599-8531, Japan 
fujimoto@mi.s.osakafu-

u.ac.jp 

Yuji Sato 
Hosei University 

Tokyo 184-8584 Japan 
yuji@hosei.ac.jp 

 
 

Mitaro Namiki 
Tokyo University of  

Agriculture and Technology 
Tokyo, 184-8588 Japan 

namiki@cc.tuat.ac.jp 

ABSTRACT 
This paper compares the performance of parallel computation on 
two types of many-core processors, Tesla K20c GPU and Xeon 
Phi 5110P, in solving the quadratic assignment problem (QAP) 
with ant colony optimization (ACO). The results show that the 
performance on Xeon Phi 5110P is not so promising compared to 
the Tesla K20c GPU on these problems. Further efficient 
implementation methods must be investigated for Xeon Phi. 

Categories and Subject Descriptors 
I.2.8 [Articial Intelligence]: Problem Solving, Control Methods, 
and SearchHeuristic Methods; D.1.3 [Programming 
Techniques]: Concurrent ProgrammingDistributed 
programming, Parallel programming 

General Terms: Algorithms 

Keywords 
Parallel EA, GPU, Xeon Phi, ACO, QAP, Tabu search 

1. INTRODUCTION 
Applications of evolutionary algorithms (EAs) often take a long 
time to obtain acceptable solutions, or require a large amount of 
computational resources to obtain high-quality solutions in a 
given time. Thus, since the earliest studies, researchers have 
attempted parallel EAs in order to obtain high-speed execution of 
EAs. 

Many of the traditional parallel EAs run on multi-core machines, 
massively parallel cluster machines, or grid computing 

environments. However, recent advances in General-Purpose 
computing on Graphics Processing Units (GPGPU) in scientific 
computing has made possible using Graphics Processing Units 
(GPUs) for parallel EAs. GPUs are low-cost, parallel, many-core 
processors and thousands of threads run in parallel in SIMD  
manner on a GPU. With the low-cost GPU found on ordinary PCs, 
it is becoming possible to use parallel EAs to solve optimization 
problems of all sizes [1]. 

In 2012, Intel® Xeon® Phi™ coprocessors, another type of 
many-core processor, became available. Xeon® Phi™ has 60 
cores based on x86 architecture and can execute a maximum of  
240 (60threads in parallel in MIMD (multiple instruction, 
multiple data) manner [2]. This enables us to re-use existing 
programs which are written for parallel execution without a major 
re-coding. 

In this paper, we compare performance of these two types of  
representative many-core units, NVIDIA® Tesla® k20c GPU 
(based on the Kepler architecture)  and Intel® Xeon® Phi™ 
5110P in solving the quadratic assignment problem (QAP) with 
ant colony optimization (ACO), a meta heuristics classified into 
EA.  

2. ACO TO SOLVE QAP   
The quadratic assignment problem (QAP) is the problem which 
assigns a set of facilities to a set of locations and can be stated as 
a problem to find a permutation  which minimizes 

 
 


n

i

n

j
jiijbaf

1 1
)()()(  , 

where A = (aij) and B = (bij) are two nn matrices and  is a 
permutation of {1, 2, 3..., n}. Matrix A is a flow matrix between 
facilities i and j, and B is the distance between locations i and j. 
The QAP is considered one of the hardest optimization problems. 
In this experiment, we use benchmark instances in QAPLIB [3]. 

ACO has been applied with great success to a large number of 
hard problems. Although the ACO is a powerful metaheuristic, in 

http://dx.doi.org/10.1145/2598394.2602274   

1477

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
ACM 978-1-4503-2881-4/14/07.



many applications of ACO in solving difficult problems, it is very 
common to combine it with a local search or metaheuristics. In 
this experiment, we combine ACO with the tabu search (TS) [5]. 
TS seeks the solution with the best evaluation among all the 
neighboring solutions in each TS iteration. If there are no 
improving moves, TS chooses one that least degrades the 
objective function. Thus, we need to calculate costs of all 
neighboring solutions efficiently. Let N() be the set of neighbors 
of the current solution . Then a neighbor, 'N(), is obtained by 
exchanging a pair of elements (i, j) of . Then, we need to 
compute move costs (, i, j) = f(')f() for all the neighboring 
solutions. The neighborhood size of N(ϕ) (|N(ϕ)|) is n(n1)/2 
where n is the problem size. Thus, the computation cost of (, i, 
j) is very costly. 

3. IMPLEMENTATION OF ACO WITH TS 
ON TESLA® K20C AND XEON® PHI™ 
5110P 
Table 1 shows 
specifications of 
both  Tesla® K20c 
and Xeon® Phi™ 
5110P [4]. 

Figure 1 shows the 
implementation of 
ACO described in 
Section 2 on 
Tesla® K20c. 
Here, all of the 
programs are executed on the GPU.  Each calculation of (, i, j) 
in TS is assigned to the thread of the streaming multiprocessor of 
CUDA, and is executed in parallel (please refer to [5] for detail). 
Note here that all of the data of the algorithm are located in 
VRAM of GPU. They include ACO data (the population pools) 
the pheromone density matrix, TS data, and QAP data. 

PCI Express

kernel call

Best
solutions Pheromone density matrix

(ij)

Agents

ACO
Pheromone density matrix

(ij)

Agents

ACO

Temporal memory for move costs

Tabu list
Tabu
search

Temporal memory for move costs

Tabu list
Tabu
search

Flow  and distance matrices
(texture memory)

QAP Flow  and distance matrices
(texture memory)

QAP

VRAM

Kernel functionsKernel functions

Construct_solutions(…)

Apply_TS(…)

Update_Pheromone_density(…)

CPU

GPU

Initialize Pheromone density 

Update pheromone density 

Construct solutions based on 

Apply local search (Tabu search)

Terminate?

start

end

 

Figure 1 Implementation of ACO with TS on GPU 

In the implementation using Intel Xeon® Phi™, almost all 
processing of ACO is offloaded to Xeon Phi, in a similar manner 
to the GPU method shown above. The program run on Xeon Phi 
and data transfer are specified by #pragma directive. First, the 
data which are needed for ACO processing, i.e., ACO data, the 
pheromone density matrix, TS data, and QAP data, are transferred 
to the memory on Xeon Phi. Then each individual of the 
population is assigned to a thread of Xeon Phi. This includes 

calculation of (, i, j). Note here that updating pheromone 
density is performed as a single thread. The host CPU functions 
only to receive solutions from the Xeon Phi cores for each 
generation and determines the termination. 

4. RESULTS AND CONCLUDING 
REMARKS 
We compared three types of runs, i.e., runs on Tesla® K20c with 
Intel Core i7 965 (3.2 GHz) CPU, runs on Xeon® Phi™ 5110P 
with Xeon X5690 (3.333GHz), and runs on Intel Core i7 965 (3.2 
GHz) CPU with a single thread. For all three runs, population size 
was set to n (problem size). We run the algorithms until the 
optimal solutions are obtained. We measured the performance by 
the average run time Tavg over 25 runs. The results are 
summarized in Table 2. 

The speedup ratios of Tesla GPU to CPU are in the range from 
x27.2 to 47.6, showing their average is x33.5. In contrast to these 
results on the GPU, the speedup ratios of  Xeon Phi to CPU are in 
the range from x3.8 to 6.6, showing their average is 5.3. These 
speedup values of Xeon Phi are not so promising compared to   
Tesla K20c GPU on this application. 

In this application, about 99% computation time is used by TS to 
find the best neighboring solution in each TS iteration [5].  On 
GPU, this computation was parallelized using the threads of 
CUDA. However, since the grain of the computation is very fine, 
the parallelization is difficult on Xeon Phi. Instead, using very 
wide (512-bit) SIMD units in Xeon Phi might be useful for an 
efficient parallelization. But this remains for future work. 

Table 2  Summary of  results 

Tesla K20c Xeon Phi CPU
CPU

Tesla K20c
CPU

Xeon Phi
tai50b 0.19 1.14 5.94 31.7 5.2
tai60b 0.39 2.75 12.77 32.8 4.6
tai80b 4.99 22.61 141.30 28.3 6.2

tai100b 6.22 57.35 296.28 47.6 5.2
tai150b 14.06 61.92 382.73 27.2 6.2
Average - - - 33.5 5.5

Run time in T avg  (sec)
QAP

instances

Speedup in T avg

 
 

5. REFERENCES 
[1] S. Tsutsui and P. Collet (Ed). Massively parallel 

evolutionary computation on GPGPU, Natural Computing 
Series, Springer, 2013. 

[2] Intel. http://blogs.intel.com/technology/2012/06/intel-xeon-
phi-coprocessors-accelerate-discovery-and-innovation/ 

[3] QAPLIB - a quadratic assignment problem library, 2009. 
www.seas.upenn.edu/qaplib. 

[4] T. Aoki. http://www.ocw.titech.ac.jp/index.php?module 
=General&action=T0300&GakubuCD=226&GakkaCD=226
717&KougiCD=77065&Nendo=2013&Gakki=1&lang=JA&
vid=05 

[5] S. Tsutsui and N. Fujimoto. ACO with Tabu Search on a 
GPU for Solving QAPs using Move-Cost Adjusted Thread 
Assignment, Genetic and Evolutionary Computation 
Conference, pp. 1547-1554, ACM, 2011 

Table 1  Specifications of  Tesla K20c 
and Xeon Phi 5110P 

Xeon Phi
5110P

Tesla
K20c

Performance
(Single precision)

2022
Gflops

3520
Gflops

Memory
Bandwidth

320 GB/s
(ECC off)

208 GB/s
(ECC off)

Memory
Size

8 GB 5 GB

Clock
Speed

1.053 GHz 0.706 GHz

Number of
Core

60 2496

1478




