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ABSTRACT 
 The paper proposed a new genetic clustering algorithm with 
variable-length chromosome representation(GCVCR), which can 
automatically evolve and find the optimal number of clusters as 
well as proper cluster centers of the data set. A new clustering 
criterion based on message passing between data points and the 
candidate centers described by the chromosome are presented to 
make the clustering problem more effective. The simulation 
results show the effectiveness of the proposed algorithm.  

Categories and Subject Descriptors 
I.4.6 Segmentation: pixel classification 

General Terms: Algorithms 
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1. INTRODUCTION 
People share their daily activities and opinions on social 
networking websites, opening the floodgates of information that 
can be analyzed by marketers as well as consumers. However, low 
barriers to publication and easy-to-use interactive interfaces have 
contributed to various information quality problems in the social 
media. Approaches such as data mining have begun to address 
these challenges1. Clustering techniques have been broadly 
employed in data mining. Clustering algorithms are essentially 
local search algorithms, using an iterative climbing technique to 
find the optimal solution2. And the algorithms are also apt to fall 
into a local optimum and the result is sensitive to initialization3,4. 
The paper proposes a clustering genetic algorithm with variable-
length chromosome representation.  

2. SIMILARITY MEASURE 
We propose a similarity measure firstly. It uses two kinds of 
message, responsibility and availability, exchanged between data 
points and the candidate centers. Here, the responsibility and 
availability between the data set X={x1,…,xn} and the candidate 
centers set C={c1,…,cn} are defined. For the candidate center set 
C, an input preference that candidate centers with larger values of 
input preference are more likely to be chosen as a center. If a 

priori, the value can be set by the priori information. 
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This is the mean distance between a center and all the data point 
in the data set. This value will be optimized when ck is the center. 
Note that the distance measure here is chosen with the Euclidean 
norm. IP(k) represents the suitability of the candidate centers as 
the real one. The responsibility r(i,k), sent from data point xi to the 
candidate center ck, reflects the evidence for how well-suited ck is 
as the center for point xi, taking into account other potential 
centers for point xi. The availability a(i,k), sent from candidate 
center ck to point xi, reflects the evidence for how appropriate it 
would be for point xi to choose ck as its center, taking into account 
the support from other points that ck should be an center.  
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Here, d(i,k) denotes the distance between data point xi and the 
candidate cluster center ck. For each candidate cluster center, a 
self-attribution is defined as:  
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Whereas the above responsibility update lets all candidate centers 
compete for ownership of a data point.  
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This availability a(i,k) reflects evidence that point ck is a center. 
Then the similarity between the data point and the candidate 
center is defined by the sum of the responsibility r and the 
availability a. The similarities between data point xi and the 
candidate centers C = {c1, . . . ,cK} are 

( , ) ( , ) ( , ), 1, 2, , is i k r i k a i k k K               (5) 

then xi will be assigned to the cluster with the maximum 
similarity. 

3. GENETIC CLUSTERING ALGORITHM 
3.1 Chromosome Representation and 
Population Initialization 
A chromosome representation is needed to describe each 
individual in the population of interest. Extensive experiments 
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