
A Novel Quantum Genetic Clustering Algorithm  
for Data Segmentation 

Ming-an Zhang  
Institute of Software, Chinese 

Academy of Sciences 
4# South Fourth Street, 

Zhongguancun, Beijing 100190, 
PR.China 

86 010 62661154 
171166789@qq.com 

Yong Deng* 
Institute of Software, Chinese 

Academy of Sciences 
4# South Fourth Street, 

Zhongguancun, Beijing 100190, 
PR.China 

86 010 62661154 
dengyong@iscas.ac.cn 

Dong-xia Chang  
Institute of Information Science, 

Beijing jiaotong University 
No.3 Shang Yuan Cun,Hai Dian 

District Beijing 100040, PR.China 
86 010 51684108 

dxchang@bjtu.edu.cn 
 
 

ABSTRACT 
Based on the concept and principles of quantum computing, a 
novel genetic clustering algorithm is proposed, which can 
automatically clustering a data set into clusters, and evolve the 
optimal number of clusters as well as the cluster centers of a data 
set. A Q-gate with adaptive selection of the angle for every niche 
is introduced as a variation operator to drive individuals toward 
better solutions. Experiments show that the algorithm proposed is 
better than simple clustering algorithms.  

Categories and Subject Descriptors 
I.4.6 Segmentation: pixel classification 

General Terms 
Algorithms 
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1. INTRODUCTION 
Clustering algorithms have been extensively used to data 
segmentation1. But the traditional ones need to obtain the cluster 
number and the initial cluster centers in advance. Stochastic 
clustering algorithms based on simple genetic algorithm have 
been proposed to overcome these problems2. Some concepts3 of 
quantum computing are adopted in the proposed algorithm 
(QGCA). A simpler representation with real-coded is adopted, 
whereby each individual represents a single cluster center.  

2. QGCA DESCRIPTION 
2.1 Quantum Concepts 
In quantum computation, the smallest unit of information is called 
a quantum bit, or a qubit. A qubit is generally expressed as 
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Where

2 2| | | | 1   , and complex   and  , known as the probability 
amplitude of the states, 0 and 1, respectively. The binary quantum 
coding method is commonly used, and a qubit can be represented 

by a plurality [ , ]T  . The chromosome can be as follows: 
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Here, m: the number of genes, k: the number of quantum bit in 

genes, and 
2 2| | | | 1pq pq    ,The traditional genetic algorithm keeps 

the population diversity with crossover, mutation operators, while 
quantum genetic algorithm with quantum probability amplitude 
method by quantum gates. The single qubit gate3 is used:  
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Here,   is the rotation angle of quantum rotation gate. There are 
many schemes of quantum rotation gate adjustment strategy4. Its 
core idea is: the current solution convergence to a higher fitness 

individual. If the i-th bit of the chromosome is 0, make 
2| |  

bigger. If i-th of the chromosome is 1, make 
2| |  bigger.  

2.2 Algorithm Flow 
1. Input the max generation, the probability of crossover and 
mutation. 2. Population initialization. 3. For each chromosome in 
the population, decoding the chromosome into real-valued; 
compute the fitness. 4. Dynamic niching4. 5. Quantum update by 
the quantum rotation gate. 6.If the generation is satisfied, output 
the niching masters, or continue the evolution process.  

2.3 Chromosome Representation 
The quantum chromosome can be represented as  
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where the feature vector 
lx  and 

ux  are the lower and the upper 

bound of x, respectively. Obviously, a qubit may be in the 
lx  

state, in the 
ux  state, or in any superposition of the two. Then the 

chromosome can be represented by qubit as follows:  
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The length of the quantum chromosome is 2N. We obtain a real-

valued encoded mode. For any qubit , ,,
Tt t

i k i k    , k=1,2, we generate 

a random number , [0,1]i kr  . If 
2

, ,
t

i k i kr  , the qubit will be in 
ux  

state. Therefore, the qubit chromosome collapses into [ , ]i jx x , 

where { , } { , }i j l u . Any each dimension of the qubit chromosome 
will be in the 4 states: [xl, xl], [xl, xu], [xu, xl], [xu, xu]. To decode 
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the chromosome into real value, a decoding criterion is introduced 
as Tab.1. Here  xi=(xu- xl)/4 and r is a random number between 0 
and 1. If the chromosome is [xl, xl], the xi will take a small value 
inclining to the lower bound. If the chromosome is [xu, xu], the xi 
will take a small value inclining to the upper bound. So the 
chromosome can be transformed into a real-valued one.    

Table 1. Encoded rules of the chromosome 

Qubit Encoded mode 
[xl, xl] / 4l

i ix x r x    
[xl, xu] (1 ) / 4l

i ix x r x   

[xu, xl] (1 ) / 4u
i ix x r x   

[xu, xu] / 4u
i ix x r x    

The population size is P, and the initial population is generated 

randomly. 
0
,i j  and 

0
,i j  are initialized to 1/2, i=1,…, P, j=1,2. 

2.4 Fitness Function 
The fitness function is defined as 
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where, , j=1,…,n, are all points in the data set to be clustered. 

2.5 Adaptive Quantum Rotation Strategy  
We adopt a dynamic niching method4 to divide the individuals in 
evolution into some small populations. 
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After the population is divided into multiple sub ones, in order to 
make the qubit chromosomes effectively converge to the better 
states, we put forward an adaptive rotation angles computing 
method. For the real individuals, the rotation angle is as  
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Where, 
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 is the master of the q-th niche, 
t
lc   is the individual in 

the q-th niche, 
,(M )t qf , (c )t

lf  and 
qf  are the fitness of 

,Mt q

，
t
lc  

and the average fitness of q-th sub population, sign(.) seen in 
Ref.6. When the performance is poor, the evolution of individual 

choice angle will increase. When good, we will choose small 
,
,

t q
k i  

so as to avoid the better individual damaged. For the individuals 
in the isolated set 

*
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rotation angle is defined as:  
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3. SIMULATION EXPERIMENTS 
We use the UCI machine learning repository Iris, Breast Cancer 
and Wine data sets on GAC1, KGAC2, GAGR5 and QGNC in the 
experiments. GAC, KGAC, GAGR algorithm can’t automatically 
determine the number of clusters. We should set several different 
clusters. Then determine the appropriate clusters according to the 

clustering performance under the condition of different values. 
The initial populations are set to 50. The crossover probability 
and mutation probability of GAC, KGAC, GAGR are 0.8 and 
0.001. QGNC can divide the population into different niche, and 
the number of niche is same as the one of clusters. Therefore, we 
first validate QGNC’s performance of automatically determining 
clusters.  We made experiments for each data independently 100 
times. Results are in Tab.2.  

Table 2. Mean, variance and correct estimate 

Data set Iris Breast wine 
Actual 3 2 3 

Obtained 2.86(0.4494),72 
2(0.0408)

,98 
3.0769(0.4130),

65 

Tab.2 shows QGNC algorithm can effectively determine the 
number of clusters. We will further analyze the algorithm 
efficiency of QGNC, GAC, KGAC and GAGR on Iris data set. 
We will run the algorithms independently 20 times. Tab.3 gives 
the running times (MATLAB R2009a, 2.33GHz Xeon (R) CPU). 
Tab.3 shows QGNC algorithm search the optimal solutions 
running better time than the other three algorithms. It spent 
shorter time to obtain the optimal solution.  

Table 3.The average running times to four algorithms 

Data set GAC KGAC GAGR QGNC 
Iris 45.295 0.4494 0.3741 0.2040 

4. CONCLUSIONS 
In the paper, each chromosome is encoded a center of a cluster by 
a real-valued qubit. The dynamic niching is accomplished without 
assuming any a priori knowledge on the number of niches. An 
adaptive selection of the rotation angle used by the quantum 
rotation gate is introduced. The experiment results have shown 
that our algorithm is effective for data segmentation.  

5. ACKNOWLEDGMENTS 
This work was supported by Beijing Municipal Science 
Foundation No. 4133092 and 863 program (No.2012AA011206). 

6. REFERENCES 
[1] Murthy C A, Chowdhury N, In search of optimal clusters 

using genetic algorithms. Pattern Recognition Letters, 1996, 
17: p 825-832.  

[2] Bandyopdhyay S, Maulik U, An evolutionary technique 
based on K-Means algorithm for optimal clustering in RN. 
Information Sciences, 2002, 146: 221-237.  

[3] Sha Lin-Xiu, He Yu-Yao. A novel self-adaptive quantum 
genetic algorithm[J]. International Conference on Natural 
Computation, 2012, p 618-621.  

[4] B. L. Miller and M. Shaw. Genetic algorithms with dynamic 
niche sharing for multimodal function optimization, Proc. 
1996 IEEE Trans. Evol. Comput., 786-791.  

[5] Chang D X, Zhang X D, Zheng C W, A genetic algorithm 
with gene rearrangement for K-means clustering. Pattern 
Recogn, 2009, 42: p 1210-1222.   

 

1486




